Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

A heterocyclic molecule containing five rings, three carbon atoms, two nitrogen atoms, and a single endocyclic bond is called pyrazoline. Because of its intriguing electrical characteristics and potential for dynamic applications, pyrazoline is one type of electron-rich nitrogen carrier that is becoming more and more popular. This study synthesizes pyrazoline derivatives using a variety of techniques to demonstrate a highly biological function.

Objective

Pharmaceutical chemistry has found the study of the biological activity of pyrazoline derivatives to be an interesting field. Pyrazolines find utility in numerous multipurpose applications. It has been discussed to examine the current study of patent literature on pyrazoline derivatives (2000–2024) that describes the introduction, general approach, synthesis scheme Structure-activity and relationship, marketed drug, and patents on anticancer activities.

Conclusion

A recognized heterocyclic chemical is pyrazolines. Three carbon atoms and two adjacent nitrogen atoms make up the five-membered ring that is pyrazoline. A variety of methods are available to determine its synthesis. Extensive studies have been conducted in this field since it has been found that many pyrazoline derivatives have a crucial biological effect on anticancer activity. The application of pyrazoline as an anticancer agent is a fascinating moiety with a wealth of potential applications for further research by scientists.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266339816241212081205
2025-01-08
2025-09-14
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever‐increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.33587
    [Google Scholar]
  2. HassanR.A. EmamS.H. HwangD. KimG.D. HassaninS.O. KhalilM.G. AbdouA.M. SonousiA. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity.Bioorg. Chem.202211810548710.1016/j.bioorg.2021.105487
    [Google Scholar]
  3. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007
    [Google Scholar]
  4. MatiadisD. SagnouM. Pyrazoline hybrids as promising anticancer agents: An up-to-date overview.Int. J. Mol. Sci.20202115550710.3390/ijms21155507
    [Google Scholar]
  5. HarikrishnaN. IsloorA.M. AnandaK. ObaidA. FunH.K. Synthesis, and antitubercular and antimicrobial activity of 1′-(4-chlorophenyl)pyrazole containing 3,5-disubstituted pyrazoline derivatives.New J. Chem.2016401737610.1039/C5NJ02237A
    [Google Scholar]
  6. BashirR. OvaisS. YaseenS. HamidH. AlamM.S. SamimM. SinghS. JavedK. Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents.Bioorg. Med. Chem. Lett.201121144301430510.1016/j.bmcl.2011.05.061
    [Google Scholar]
  7. RayP.K. ShabanaK. Salahuddin KumarR. Synthetic strategies of thiazolidine-2,4-dione derivatives for the development of new anti-diabetic agents: Compressive review.Curr. Top. Med. Chem.2024241088592810.2174/0115680266284283240304071648
    [Google Scholar]
  8. RayP.K. MazumderA. Kumar1R AhsanM.J. Shahar YarM. Salahuddin Synthesis, anticonvulsant, and molecular docking studies of 2-(2-Benzyl-1H-benzo [d] imidazol-1-yl)-1-(3, 5-disubstituted phenyl)-4, 5-dihydro-1H-pyrazol-1-yl) ethan-1-ones.Indian J. Heterocycl. Chem.2022323321330
    [Google Scholar]
  9. AliI. WaniW.A. KhanA. HaqueA. AhmadA. SaleemK. ManzoorN. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals.Microb. Pathog.2012532667310.1016/j.micpath.2012.04.005
    [Google Scholar]
  10. RayP.K. SalahuddinS. MazumderA. KumarR. AhsanM.J. Shahar YarM. Synthesis, anticonvulsant, and molecular docking studies of (3,5-disubstituted-4,5-dihydro-1H-pyrazol-1-yl) (4-chlorophenyl) methanone derivatives.Indian J. Pharm. Sci.2023571202209[REMOVED HYPERLINK FIELD].10.5530/001954641727
    [Google Scholar]
  11. Abdel-WahabB.F. Abdel-AzizH.A. AhmedE.M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles.Eur. J. Med. Chem.20094462632263510.1016/j.ejmech.2008.09.029
    [Google Scholar]
  12. AcharyaB.N. SaraswatD. TiwariM. ShrivastavaA.K. GhorpadeR. BapnaS. KaushikM.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines.Eur. J. Med. Chem.201045243043810.1016/j.ejmech.2009.10.023
    [Google Scholar]
  13. RayP.K. Salahuddin MazumderA. KumarR. AhsanM.J. YarM.S. Synthetic strategies of pyrazoline derivatives for the development of new anticancer agents: Recent updates.Mini Rev. Org. Chem.20242119213210.2174/1570193X19666220324125350
    [Google Scholar]
  14. ChouiterM.I. BoulebdH. PereiraD.M. ValentãoP. AndradeP.B. BelfaitahA. SilvaA.M.S. New chalcone-type compounds and 2-pyrazoline derivatives: Synthesis and caspase dependent anticancer activity.Future Med. Chem.202012649350910.4155/fmc‑2019‑0342
    [Google Scholar]
  15. RayP.K. SalahuddinR.K. KumarA. Synthesis and pharmacological activity of pyrazoline bearing benzimidazole derivatives an-up-to-date-review.Turk J Physiother Rehabil2021323
    [Google Scholar]
  16. RanaM. ArifR. KhanF.I. MauryaV. SinghR. FaizanM.I. YasmeenS. DarS.H. AlamR. SahuA. AhmadT. Rahisuddin, Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies.Bioorg. Chem.202110810466510.1016/j.bioorg.2021.104665
    [Google Scholar]
  17. AcharyaS. DilnawazF. SahooS.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy.Biomaterials200930295737575010.1016/j.biomaterials.2009.07.008
    [Google Scholar]
  18. FakhryM.M. MattarA.A. AlsulaimanyM. Al-OlayanE.M. Al-RashoodS.T. Abdel-AzizH.A. New Thiazolyl-Pyrazoline derivatives as potential dual EGFR/HER2 inhibitors: Design, synthesis, anticancer activity evaluation and in silico study.Moles202328217455
    [Google Scholar]
  19. PatnaikA. RosenL.S. TolaneyS.M. TolcherA.W. GoldmanJ.W. GandhiL. PapadopoulosK.P. BeeramM. RascoD.W. HiltonJ.F. NasirA. BeckmannR.P. SchadeA.E. FulfordA.D. NguyenT.S. MartinezR. KulanthaivelP. LiL.Q. FrenzelM. CronierD.M. ChanE.M. FlahertyK.T. WenP.Y. ShapiroG.I. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors.Cancer Discov.20166774075310.1158/2159‑8290.CD‑16‑0095
    [Google Scholar]
  20. RydénL. StendahlM. JonssonH. EmdinS. BengtssonN.O. LandbergG. Tumor-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen response.Breast Cancer Res. Treat.20058913514310.1007/s10549‑004‑1655‑7
    [Google Scholar]
  21. Al-MuntaserS.M. Al-KarmalawyA.A. El-NaggarA.M. AliA.K. Abd El-SattarN.E. AbbassE.M. Novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives as potential antitumor candidates targeting both EGFR and VEGFR-2; design, synthesis, biological evaluations, and in silico studiesRSC advs202313181218412203
    [Google Scholar]
  22. VeikkolaT. KarkkainenM. Claesson-WelshL. AlitaloK. Regulation of angiogenesis via vascular endothelial growth factor receptors.Cancer Res.2000602203212
    [Google Scholar]
  23. AbolibdaT.Z. FathallaM. FaragB. ZakiM.E.A. GomhaS.M. Synthesis and molecular docking of some novel 3-thiazolyl-coumarins as inhibitors of VEGFR-2 kinase.Mols2023282689
    [Google Scholar]
  24. Al-WahaibiL.H. Abou-ZiedH.A. HishamM. BeshrE.A. YoussifB.G. BräseS. HayallahA.M. Abdel-AzizM. Design, synthesis, and biological evaluation of novel 3-Cyanopyridone/pyrazoline hybrids as potential apoptotic antiproliferative agents targeting EGFR/BRAFV600E inhibitory pathwaysMols202328186586
    [Google Scholar]
  25. AltıntopM.D. CantürkZ. ÖzdemirA. Design, synthesis, and evaluation of a new series of 2-Pyrazolines as potential antileukemic agents.ACS Omega2023845428674287710.1021/acsomega.3c05860
    [Google Scholar]
  26. MushtaqueM. RizviM.M.A. Molecular hybrids based on pyrazole and 4-Thiazolidinone cores: Synthesis, characterization, and anticancer studies.J. Mol. Struct.2023129413647010.1016/j.molstruc.2023.136470
    [Google Scholar]
  27. HalimP.A. SharkawiS.M.Z. LabibM.B. Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition.Bioorg. Chem.202313110627310.1016/j.bioorg.2022.106273
    [Google Scholar]
  28. ShakerA.M.M. ShahinM.I. AboulMagdA.M. Abdel-RahmanH.M. EllaD.A.A.E. Design, synthesis, and molecular docking of novel 1,3, 4-triaryl pyrazole derivatives bearing methylsulfonyl moiety with anticancer activity through dual targeting CDK2 and COX-2 enzymes.J. Mol. Struct.2024130113732310.1016/j.molstruc.2023.137323
    [Google Scholar]
  29. BilizY. HasdemirB. KüçükH.B. YıldırımS. KocabaşF. KartopR.A. Synthesis of new pyrazolidines by [3+2] cycloaddition: Anticancer, antioxidant activities, and molecular docking studies.J. Mol. Struct.2024129513681310.1016/j.molstruc.2023.136813
    [Google Scholar]
  30. Shekhar YadavC. AzadI. Rahman KhanA. NasibullahM. AhmadN. HansdaD. Nusrat AliS. ShrivastavK. AkilM. LohaniM.B. Recent advances in the synthesis of pyrazoline derivatives from chalcones as potent pharmacological agents: A comprehensive review.Results Chem.2024710132610.1016/j.rechem.2024.101326
    [Google Scholar]
  31. BhatA.A. SinghI. TandonN. TandonR. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review).Eur. J. Med. Chem.202324611495410.1016/j.ejmech.2022.114954
    [Google Scholar]
  32. Abdel-WahabB.F. KariukiB.M. MohamedH.A. BekheitM.S. AwadH.M. El-HitiG.A. Synthesis and anticancer activity of 3-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehydes.J. Mol. Struct.2023129413652810.1016/j.molstruc.2023.136528
    [Google Scholar]
  33. WiraswatiH. BashariM. AlfarafisaN. Ma’rufI. SholikhahE. WahyuningsihT. SatriyoP. MustofaM. SatriaD. DamayantiE. Pyrazoline B-Paclitaxel or Doxorubicin combination drugs show synergistic activity against cancer cells: In silico study.Adv. Appl. Bioinform. Chem.202417334610.2147/AABC.S452281
    [Google Scholar]
  34. RasganiaJ. GavadiaR. Varma-BasilM. ChauhanV. KumarS. MorS. SinghD. JakharK. Design and synthesis of isoniazid-based pyrazolines as potential inhibitors of Mycobacterium tuberculosis with promising radical scavenging action: In-vitro and in-silico evaluations.J. Mol. Struct.2024129513665710.1016/j.molstruc.2023.136657
    [Google Scholar]
  35. KassemA.F. AlthomaliR.H. AnwarM.M. El-SofanyW.I. Thiazole moiety: A promising scaffold for anticancer drug discovery.J. Mol. Struct.2024130313751010.1016/j.molstruc.2024.137510
    [Google Scholar]
  36. BaziyarL. AhmadiP. Zare GheshlaghiS. BehrouzM. EmamiM. saeediM. EbrahimiA. EmamiL. KhabnadidehS. Novel uracil derivatives as anti-cancer agents: Design, synthesis, biological evaluation and computational studies.J. Mol. Struct.2024130213743510.1016/j.molstruc.2023.137435
    [Google Scholar]
  37. AlizadehS.R. EbrahimzadehM.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini -Rev. Mini Rev. Med. Chem.202121172584261110.2174/1389557521666210126143558
    [Google Scholar]
  38. RassokhinaI.V. VolkovaY.A. KozlovA.S. ScherbakovA.M. AndreevaO.E. ShirinianV.Z. ZavarzinI.V. Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-a]pyridines.Steroids2016113293710.1016/j.steroids.2016.06.001
    [Google Scholar]
  39. BrzozowskiZ. SączewskiF. GdaniecM. Synthesis, structural characterization and antitumor activity of novel 2,4-diamino-1,3,5-triazine derivatives.Eur. J. Med. Chem.200035121053106410.1016/S0223‑5234(00)01194‑6
    [Google Scholar]
  40. MorenoL.M. QuirogaJ. AboniaR. Ramírez-PradaJ. InsuastyB. Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agentsMoles20182381956
    [Google Scholar]
  41. MorenoL.M. QuirogaJ. AboniaR. LauriaA. MartoranaA. InsuastyH. InsuastyB. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents.RSC Advances202010563411434129
    [Google Scholar]
  42. BagnoliniG. MilanoD. ManerbaM. SchipaniF. OrtegaJ.A. GioiaD. FalchiF. BalboniA. FarabegoliF. De FrancoF. RobertsonJ. PellicciariR. PallaviciniI. PeriS. MinucciS. GirottoS. Di StefanoG. RobertiM. CavalliA. Synthetic lethality in pancreatic cancer: Discovery of a new RAD51-BRCA2 small molecule disruptor that inhibits homologous recombination and synergizes with olaparib.J. Med. Chem.202063525882619
    [Google Scholar]
  43. SolomonV.R. PundirS. LeeH. Examination of novel 4-aminoquinoline derivatives designed and synthesized by a hybrid pharmacophore approach to enhance their anticancer activities.Sci. Rep.201991631510.1038/s41598‑019‑42816‑4
    [Google Scholar]
  44. AkhtarJ. KhanA.A. AliZ. HaiderR. Shahar YarM. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur. J. Med. Chem.201712514318910.1016/j.ejmech.2016.09.023
    [Google Scholar]
  45. YangM.N. YanD.M. ZhaoQ.Q. ChenJ.R. XiaoW.J. Synthesis of dihydropyrazoles via ligand-free Pd-catalyzed alkene aminoarylation of unsaturated hydrazones with diaryliodonium salts.Org. Lett.201719195208521110.1021/acs.orglett.7b02480
    [Google Scholar]
  46. YusufM. JainP. Synthetic and biological studies of pyrazolines and related heterocyclic compounds.Arab. J. Chem.20147555359610.1016/j.arabjc.2011.09.013
    [Google Scholar]
  47. JuY. VarmaR.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives.J. Org. Chem.200671113514110.1021/jo051878h
    [Google Scholar]
  48. AlexK. TillackA. SchwarzN. BellerM. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination.Org. Lett.200810122377237910.1021/ol800592s
    [Google Scholar]
  49. LellekV. ChenC. YangW. LiuJ. JiX. FaesslerR. An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride.Synlett20182981071107510.1055/s‑0036‑1591941
    [Google Scholar]
  50. GembusV. BonnetJ.J. JaninF. BohnP. LevacherV. BrièreJ.F. Synthesis of pyrazolines by a site isolated resin-bound reagents methodology.Org. Biomol. Chem.20108143287329310.1039/c004704j
    [Google Scholar]
  51. WaldoJ.P. MehtaS. LarockR.C. Room temperature ICl-induced dehydration/iodination of 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles. a selective route to substituted 1-acyl-4-iodo-1H-pyrazoles.J. Org. Chem.200873176666667010.1021/jo800789p
    [Google Scholar]
  52. CuiS.L. WangJ. WangY.G. Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines.Org. Lett.2008101131610.1021/ol7022888
    [Google Scholar]
  53. ChenM. WangL.J. RenP.X. HouX.Y. FangZ. HanM.N. LiW. Copper-catalyzed diamination of alkenes of unsaturated ketohydrazones with amines.Org. Lett.201820351051310.1021/acs.orglett.7b03401
    [Google Scholar]
  54. WangZ. YangY. GaoF. WangZ. LuoQ. FangL. Synthesis of 5-(Trifluoromethyl)pyrazolines by formal [4 + 1]-Annulation of fluorinated sulfur ylides and azoalkenes.Org. Lett.201820493493710.1021/acs.orglett.7b03811
    [Google Scholar]
  55. Abdel-AzizM. AlyO.M. KhanS.S. MukherjeeK. BaneS. Synthesis, cytotoxic properties and tubulin polymerization inhibitory activity of novel 2-pyrazoline derivativesArch. Pharm. (Weinheim)2012345753554810.1002/ardp.201100471
    [Google Scholar]
  56. HavrylyukD. ZimenkovskyB. VasylenkoO. ZaprutkoL. GzellaA. LesykR. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity.Eur. J. Med. Chem.20094441396140410.1016/j.ejmech.2008.09.032
    [Google Scholar]
  57. DawoodD.H. NossierE.S. AliM.M. MahmoudA.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase.Bioorg. Chem.202010110391610.1016/j.bioorg.2020.103916
    [Google Scholar]
  58. DofeV.S. SarkateA.P. TiwariS.V. LokwaniD.K. KarnikK.S. KaleI.A. DodamaniS. JalalpureS.S. BurraP.V.L.S. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization.Bioorg. Med. Chem. Lett.2020302212759210.1016/j.bmcl.2020.127592
    [Google Scholar]
  59. GeorgeR.F. SamirE.M. AbdelhamedM.N. Abdel-AzizH.A. AbbasS.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors.Bioorg. Chem.20198318619710.1016/j.bioorg.2018.10.038
    [Google Scholar]
  60. HavrylyukD. KovachN. ZimenkovskyB. VasylenkoO. LesykR. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates.Arch. Pharm. (Weinheim)2011344851452210.1002/ardp.201100055
    [Google Scholar]
  61. BandayA.H. MirB.P. LoneI.H. SuriK.A. KumarH.M.S. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents.Steroids2010751280580910.1016/j.steroids.2010.02.014
    [Google Scholar]
  62. MansourE. NassarI.F. MekaweyA.A.I. MekaweyA.A. Safaa I. Elewa Synthesis of some new pyrazoline-based thiazole derivatives and evaluation of their antimicrobial, ies.Russ. J. Bioorganic Chem.202046338239210.1134/S1068162020030061
    [Google Scholar]
  63. LinZ. WangZ. ZhouX. ZhangM. GaoD. ZhangL. WangP. ChenY. LinY. ZhaoB. MiaoJ. KongF. Discovery of new fluorescent thiazole–pyrazoline derivatives as autophagy inducers by inhibiting mTOR activity in A549 human lung cancer cells.Cell Death Dis.202011755110.1038/s41419‑020‑02746‑w
    [Google Scholar]
  64. AhmadP. WooH. JunK.Y. KadiA.A. Abdel-AzizH.A. KwonY. RahmanA.F.M.M. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure–activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor.Bioorg. Med. Chem.20162481898190810.1016/j.bmc.2016.03.017
    [Google Scholar]
  65. Romero-LópezA. Montiel-SmithS. Meza-ReyesS. Merino-MontielP. Vega-BaezJ.L. Synthesis of steroidal derivatives containing substituted, fused and spiro pyrazolines.Steroids201487869210.1016/j.steroids.2014.05.013
    [Google Scholar]
  66. SchmittF. DrautH. BiersackB. SchobertR. Halogenated naphthochalcones and structurally related naphthopyrazolines with antitumor activity.Bioorg. Med. Chem. Lett.201626215168517110.1016/j.bmcl.2016.09.076
    [Google Scholar]
  67. EdreesM.M. MelhaS.A. SaadA.M. KhederN.A. GomhaS.M. MuhammadZ.A. Eco-friendly Synthesis, characterization and biological evaluation of some novel pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents.Molecules20182311297010.3390/molecules23112970
    [Google Scholar]
  68. JaineyP.J. BhatI.K. Antitumor, analgesie, and anti-inflammatory activities of synthesized pyrazolines.J. Young Pharm.201242828710.4103/0975‑1483.96621
    [Google Scholar]
  69. DemirayakS. KayagilI. YurttasL. AslanR. Synthesis of some imidazolyl-thioacetyl-pyrazolinone derivatives and their antinociceptive and anticancer activities.J. Enzyme Inhib. Med. Chem.2010251747910.3109/14756360903016751
    [Google Scholar]
  70. FarghalyT.A. HassaneenH.M.E. ElzahabiH.S.A. Eco-friendly synthesis and 2D-QSAR study of novel pyrazolines as potential anticolon cancer agents.Med. Chem. Res.201524265266810.1007/s00044‑014‑1175‑x
    [Google Scholar]
  71. SableP.M. Ali SayyadN.B. Synthesis and QSAR studies of novel pyrazoline derivatives as antiproliferative agent.ndian J. Pharm. Educ. Res.2020543ss610s61910.5530/ijper.54.3s.161
    [Google Scholar]
  72. YangW. HuY. YangY.S. ZhangF. ZhangY.B. WangX.L. TangJ.F. ZhongW.Q. ZhuH.L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents.Bioorg. Med. Chem.20132151050106310.1016/j.bmc.2013.01.013
    [Google Scholar]
  73. Shamsuzzaman KhanamH. DarA.M. SiddiquiN. RehmanS. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines.J. Saudi Chem. Soc.201620171210.1016/j.jscs.2012.05.004
    [Google Scholar]
  74. BanoS. JavedK. AhmadS. RathishI.G. SinghS. AlamM.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents.Eur. J. Med. Chem.201146125763576810.1016/j.ejmech.2011.08.015
    [Google Scholar]
  75. ElmeligieS. KhalilN.A. AhmedE.M. EmamS.H. ZaitoneS.A.B. Synthesis of new N1-substituted-5-aryl-3-(3, 4, 5-trimethoxyphenyl)-2-pyrazoline derivatives as anti-tumor agents targeting the colchicine site on tubulin.Biol. Pharm. Bull.201639101611162210.1248/bpb.b16‑00277
    [Google Scholar]
  76. NawazF. AlamO. PerwezA. RizviM.A. NaimM.J. SiddiquiN. PottooF.H. JhaM. 3′‐(4‐(Benzyloxy)phenyl)‐1′‐phenyl‐5‐(heteroaryl/aryl)‐3,4‐dihydro‐1′ H, 2 H ‐[3,4′‐bipyrazole]‐2‐carboxamides as EGFR kinase inhibitors: Synthesis, anticancer evaluation, and molecular docking studies.Arch. Pharm. (Weinheim)20203534190026210.1002/ardp.201900262
    [Google Scholar]
  77. SayedA.R. GomhaS.M. AbdelrazekF.M. FarghalyM.S. HassanS.A. MetzP. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents.BMC Chem.201913111610.1186/s13065‑019‑0632‑5
    [Google Scholar]
  78. Abdel LatifN.A. BatranR.Z. KhedrM.A. AbdallaM.M. 3-Substituted-4-hydroxycoumarin as a new scaffold with potent CDK inhibition and promising anticancer effect: Synthesis, molecular modeling and QSAR studies.Bioorg. Chem.20166711612910.1016/j.bioorg.2016.06.005
    [Google Scholar]
  79. AhmedM.F. SantaliE.Y. Mohi El-DeenE.M. NaguibI.A. El-HaggarR. Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies.Bioorg. Chem.202110610447310.1016/j.bioorg.2020.104473
    [Google Scholar]
  80. Iqbal ChoudharyM. Shahab AlamM. Atta-ur-Rahman YousufS. WuY-C. LinA-S. ShaheenF. Pregnenolone derivatives as potential anticancer agents.Steroids201176141554155910.1016/j.steroids.2011.09.006
    [Google Scholar]
  81. KadasiS. YerrojuR. GaddamS. PullanagiriN. CharyM. PingiliD. RajS. RaghavendraN.M. Discovery of N ‐pyridoyl‐Δ 2 ‐pyrazolines as Hsp90 inhibitors.Arch. Pharm. (Weinheim)20203532190019210.1002/ardp.201900192
    [Google Scholar]
  82. GarazdY. GarazdM. LesykR. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives.Saudi Pharm. J.201725221422310.1016/j.jsps.2016.05.005
    [Google Scholar]
  83. AlmansourB.S. BinjubairF.A. Abdel-AzizA.A.M. Al-RashoodS.T. Synthesis and in vitro anticancer activity of novel 4-aryl-3-(4-methoxyphenyl)-1-phenyl-1h-pyrazolo[3,4-b]pyridines arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and/or CDK9.Molecules20232817642810.3390/molecules28176428
    [Google Scholar]
  84. KumarA.D. VagishC.B. LokeshwariD.M. SowmyaR. KumarK.A. Design, synthesis, characterization, evaluation for anticancer and cytotoxic properties of new pyrazole carbothioamides.Asian J. Org. Med. Chem.202361535810.14233/ajomc.2021.AJOMC‑P291
    [Google Scholar]
  85. SharmaM. SharmaS. BuddhirajaA. SaxenaA.K. NepaliK. BediP.M.S. Synthesis and cytotoxicity studies of 3,5-diaryl N-acetyl pyrazoline—isatin hybrids.Med. Chem. Res.201423104337434410.1007/s00044‑014‑1001‑5
    [Google Scholar]
  86. StefanesN.M. ToigoJ. MaioralM.F. JacquesA.V. Chiaradia-DelatorreL.D. PerondiD.M. RibeiroA.A.B. BigolinÁ. PirathI.M.S. DuarteB.F. NunesR.J. Santos-SilvaM.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity.Bioorg. Med. Chem.201927237538210.1016/j.bmc.2018.12.012
    [Google Scholar]
  87. DineshaV.S. VivekaS. NaikP. NagarajaG.K. Synthesis, characterization of new imidazoquinonyl chalcones and pyrazolines as potential anticancer and antioxidant agents.Med. Chem. Res.20142394189419710.1007/s00044‑014‑0998‑9
    [Google Scholar]
  88. Ramírez-PradaJ. RobledoS.M. VélezI.D. CrespoM.P. QuirogaJ. AboniaR. MontoyaA. SvetazL. ZacchinoS. InsuastyB. Synthesis of novel quinoline–based 4,5–dihydro–1 H –pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents.Eur. J. Med. Chem.201713123725410.1016/j.ejmech.2017.03.016
    [Google Scholar]
  89. XuW. PanY. WangH. LiH. PengQ. WeiD. ChenC. ZhengJ. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents in HepG-2 Cell Line.Molecules201722346710.3390/molecules22030467
    [Google Scholar]
  90. Dinesha VivekaS. PriyaB.K. PaiK.S.R. NaveenS. LokanathN.K. NagarajaG.K. Synthesis and pharmacological evaluation of some new fluorine containing hydroxypyrazolines as potential anticancer and antioxidant agents.Eur. J. Med. Chem.2015104253210.1016/j.ejmech.2015.09.029
    [Google Scholar]
  91. KatariN.K. BalaM.D. ShaikB.B. SeboletsweP. GundlaR. KushwahaN.D. KumarV. SinghP. KarpoormathR. Recent literature review on coumarin hybrids as potential anticancer agents.Anticancer. Agents Med. Chem.202323214216310.2174/1871520622666220418143438
    [Google Scholar]
  92. GeorgeR.F. FouadM.A. GomaaI.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers.Eur. J. Med. Chem.2016112485910.1016/j.ejmech.2016.01.048
    [Google Scholar]
  93. InsuastyB. MontoyaA. BecerraD. QuirogaJ. AboniaR. RobledoS. VélezI.D. UpeguiY. NoguerasM. CoboJ. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents.Eur. J. Med. Chem.20136725226210.1016/j.ejmech.2013.06.049
    [Google Scholar]
  94. GangarapuK. ThummaG. MandaS. JallapallyA. JarapulaR. RekulapallyS. Design, synthesis and molecular docking of novel structural hybrids of substituted isatin based pyrazoline and thiadiazoline as antitumor agents.Med. Chem. Res.201726481982910.1007/s00044‑017‑1781‑5
    [Google Scholar]
  95. SaleemK. WaniW.A. HaqueA. LoneM.N. HsiehM.F. JairajpuriM.A. AliI. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand.Future Med. Chem.20135213514610.4155/fmc.12.201
    [Google Scholar]
  96. FahmyH. KhalifaN. IsmailM. El-SahrawyH. NossierE. Biological validation of novel polysubstituted pyrazole candidates with in vitro anticancer activities.Molecules201621327110.3390/molecules21030271
    [Google Scholar]
  97. WangH. ZhengJ. XuW. ChenC. WeiD. NiW. PanY. A new series of cytotoxic pyrazoline derivatives as potential anticancer agents that induce cell cycle arrest and Apoptosis.Molecules20172210163510.3390/molecules22101635
    [Google Scholar]
  98. KhalilN.A. AhmedE.M. El-NassanH.B. Synthesis, characterization, and biological evaluation of certain 1,3-thiazolone derivatives bearing pyrazoline moiety as potential anti-breast cancer agents.Med. Chem. Res.20132221021102710.1007/s00044‑012‑0098‑7
    [Google Scholar]
  99. KarabacakM. AltıntopM. İbrahim ÇiftçiH. KogaR. OtsukaM. FujitaM. ÖzdemirA. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents.Molecules20152010190661908410.3390/molecules201019066
    [Google Scholar]
  100. TajT. KambleR.R. GireeshT.M. HunnurR.K. MargankopS.B. One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities.Eur. J. Med. Chem.20114694366437310.1016/j.ejmech.2011.07.007
    [Google Scholar]
  101. KumarN. BhatnagarA. DudheR. Synthesis of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl)-2H-chromen-2-one derivatives and evaluation of their anticancer activity.Arab. J. Chem.201710S2443S245210.1016/j.arabjc.2013.09.008
    [Google Scholar]
  102. SeverB. AltıntopM.D. RadwanM.O. ÖzdemirA. OtsukaM. FujitaM. CiftciH.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors.Eur. J. Med. Chem.201918211164810.1016/j.ejmech.2019.111648
    [Google Scholar]
  103. LeeY. KimB.S. AhnS. KohD. LeeY.H. ShinS.Y. LimY. Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone.Bioorg. Chem.20166816617610.1016/j.bioorg.2016.08.003
    [Google Scholar]
  104. ChenS. WuH. LiA. PeiJ. ZhaoL. Synthesis and biological evaluation of hydrazone and pyrazoline derivatives derived from androstenedione.Res. Chem. Intermed.201844117029704610.1007/s11164‑018‑3539‑1
    [Google Scholar]
  105. HavrylyukD. ZimenkovskyB. VasylenkoO. GzellaA. LesykR. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising anti-tumor activity.J. Med. Chem.201255208630864110.1021/jm300789g
    [Google Scholar]
  106. HavrylyukD. ZimenkovskyB. VasylenkoO. DayC.W. SmeeD.F. GrellierP. LesykR. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones.Eur. J. Med. Chem.20136622823710.1016/j.ejmech.2013.05.044
    [Google Scholar]
  107. PyrihA. JaskolskiM. GzellaA.K. LesykR. Synthesis, structure and evaluation of anticancer activity of 4-amino-1,3-thiazolinone/pyrazoline hybrids.J. Mol. Struct.2021122412905910.1016/j.molstruc.2020.129059
    [Google Scholar]
  108. SongY. FengS. FengJ. DongJ. YangK. LiuZ. QiaoX. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II.Eur. J. Med. Chem.202020011245910.1016/j.ejmech.2020.112459
    [Google Scholar]
  109. JamesJ.P. BhatK.I. MoreU.A. JoshiS.D. Design, synthesis, molecular modeling, and ADMET studies of some pyrazoline derivatives as shikimate kinase inhibitors.Med. Chem. Res.201827254655910.1007/s00044‑017‑2081‑9
    [Google Scholar]
  110. AminK.M. EissaA.A.M. Abou-SeriS.M. AwadallahF.M. HassanG.S. Synthesis and biological evaluation of novel coumarin–pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents.Eur. J. Med. Chem.20136018719810.1016/j.ejmech.2012.12.004
    [Google Scholar]
  111. MansourE. AboelnagaA. NassarE.M. ElewaS.I. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities.Synth. Commun.202050336837910.1080/00397911.2019.1695839
    [Google Scholar]
  112. RavulaP. VamarajuH.B. PaturiM. BodigeS. GulipalliK.C. Narendra Sharath ChandraJ.N. Design, synthesis, and docking studies of novel dimethyl triazene incorporated thiazolyl pyrazolines for anticancer activity.J. Heterocycl. Chem.20185561313132310.1002/jhet.3163
    [Google Scholar]
  113. KuthyalaS. HanumanthappaM. Madan KumarS. SheikS. Gundibasappa KarikannarN. PrabhuA. Crystal, Hirshfeld, ADMET, drug-like and anticancer study of some newly synthesized imidazopyridine containing pyrazoline derivatives.J. Mol. Struct.20191197657210.1016/j.molstruc.2019.07.031
    [Google Scholar]
  114. TokF. İrem AbasB. ÇevikÖ. Koçyiğit-KaymakçıoğluB. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents.Bioorg. Chem.202010210406310.1016/j.bioorg.2020.104063
    [Google Scholar]
  115. Ozmen OzgunD. GulH.I. YamaliC. SakagamiH. GulcinI. SukurogluM. SupuranC.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity.Bioorg. Chem.20198451151710.1016/j.bioorg.2018.12.028
    [Google Scholar]
  116. AkhtarM.J. KhanA.A. AliZ. DewanganR.P. RafiM. HassanM.Q. AkhtarM.S. SiddiquiA.A. PartapS. PashaS. YarM.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors.Bioorg. Chem.20187815816910.1016/j.bioorg.2018.03.002
    [Google Scholar]
  117. GürdereM.B. GümüşO. YagliogluA.S. BudakY. CeylanM. Synthesis and anticancer activities of 1,4-phenylene-bis-N-acetyl- and N-phenylpyrazoline derivatives.Res. Chem. Intermed.20174331277128910.1007/s11164‑016‑2697‑2
    [Google Scholar]
  118. ShaharyarM. AbdullahM.M. BakhtM.A. MajeedJ. Pyrazoline bearing benzimidazoles: Search for anticancer agent.Eur. J. Med. Chem.201045111411910.1016/j.ejmech.2009.09.032
    [Google Scholar]
  119. WangH.H. QiuK.M. CuiH.E. YangY.S. Yin-Luo XingM. QiuX-Y. BaiL-F. ZhuH-L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents.Bioorg. Med. Chem.201321244845510.1016/j.bmc.2012.11.020
    [Google Scholar]
  120. Al-AbdullahE.S. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives.Molecules20111643410341910.3390/molecules16043410
    [Google Scholar]
  121. LvP.C. LiD.D. LiQ.S. LuX. XiaoZ.P. ZhuH.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents.Bioorg. Med. Chem. Lett.201121185374537710.1016/j.bmcl.2011.07.010
    [Google Scholar]
  122. RostomS.A.F. BadrM.H. Abd El RazikH.A. AshourH.M.A. Abdel WahabA.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents.Arch. Pharm. (Weinheim)2011344957258710.1002/ardp.201100077
    [Google Scholar]
  123. AltıntopM.D. ÖzdemirA. Turan-ZitouniG. IlgınS. AtlıÖ. DemirelR. KaplancıklıZ.A. A novel series of thiazolyl–pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity.Eur. J. Med. Chem.20159234235210.1016/j.ejmech.2014.12.055
    [Google Scholar]
  124. KocyigitU.M. BudakY. GürdereM.B. DürüN. TaslimiP. Gülçinİ. CeylanM. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR,4S,7R,7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-diones.Monatsh. Chem.2019150472173110.1007/s00706‑019‑2350‑z
    [Google Scholar]
  125. KharbandaC. AlamM.S. HamidH. JavedK. DhulapA. BanoS. AliY. Antidiabetic effect of novel benzenesulfonylureas as PPAR-γ agonists and their anticancer effect.Bioorg. Med. Chem. Lett.201525204601460510.1016/j.bmcl.2015.08.062
    [Google Scholar]
  126. ZhangY.L. QinY.J. TangD.J. YangM.R. LiB.Y. WangY.T. CaiH.Y. WangB.Z. ZhuH.L. Synthesis and biological evaluation of 1‐Methyl‐1 H ‐indole–pyrazoline hybrids as potential tubulin polymerization inhibitors.Med Chem201611131446145810.1002/cmdc.201600137
    [Google Scholar]
  127. BhandareR.R. MunikrishnappaC.S. KumarG.S. KonidalaS.K. SigalapalliD.K. VaishnavY. ChinnamS. YasinH. Al-karmalawyA.A. ShaikA.B. Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents.J. Saudi Chem. Soc.202226310144710.1016/j.jscs.2022.101447
    [Google Scholar]
  128. RanaM. HungyoH. ParasharP. AhmadS. MehandiR. TandonV. RazaK. AssiriM.A. AliT.E. El-BahyZ.M. Rahisuddin, Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole–pyrazoline hybrid derivatives.RSC Advances20231338267662677910.1039/D3RA04873J
    [Google Scholar]
  129. FakhryM.M. MahmoudK. NafieM.S. NoorA.O. HareeriR.H. SalamaI. KishkS.M. Rational design, synthesis and biological evaluation of novel pyrazoline-based antiproliferative agents in MCF-7 cancer cells.Pharmaceuticals 20221510124510.3390/ph15101245
    [Google Scholar]
  130. AbdelsalamE.A. Abd El-HafeezA.A. EldehnaW.M. El HassabM.A. MarzoukH.M.M. ElaasserM.M. Abou TalebN.A. AminK.M. Abdel-AzizH.A. GhoshP. HammadS.F. Discovery of novel thiazolyl-pyrazolines as dual EGFR and VEGFR-2 inhibitors endowed with in vitro antitumor activity towards non-small lung cancer.J. Enzyme Inhib. Med. Chem.20223712265228210.1080/14756366.2022.2104841
    [Google Scholar]
  131. KhalilullahH. AgarwalD.K. AhsanM.J. JadavS.S. MohammedH.A. KhanM.A. MohammedS.A.A. KhanR. Synthesis and anti-cancer activity of new pyrazolinyl-indole derivatives: Pharmacophoric interactions and docking studies for identifying new EGFR inhibitors.Int. J. Mol. Sci.20222312654810.3390/ijms23126548
    [Google Scholar]
  132. SeragM.I. TawfikS.S. BadrS.M.I. EisaH.M. New oxadiazole and pyrazoline derivatives as anti-proliferative agents targeting EGFR-TK: design, synthesis, biological evaluation and molecular docking study.Sci. Rep.2024141547410.1038/s41598‑024‑55046‑0
    [Google Scholar]
  133. LuanS. ZhongH. ZhaoX. YangJ. JingY. LiuD. ZhaoL. Synthesis, anticancer evaluation and pharmacokinetic study of novel 10-O-phenyl ethers of dihydroartemisinin.Eur. J. Med. Chem.201714158459510.1016/j.ejmech.2017.10.023
    [Google Scholar]
  134. Adamus-GrabickaA.A. Markowicz-PiaseckaM. CieślakM. Królewska-GolińskaK. HikiszP. KuszJ. MałeckaM. BudziszE. Biological evaluation of 3-benzylidenechromanones and their spiropyrazolines-based analogues.Molecules2020257161310.3390/molecules25071613
    [Google Scholar]
  135. LiuX.H. LiuH.F. ChenJ. YangY. SongB.A. BaiL.S. LiuJ-X. ZhuH-L. QiX-B. Synthesis and molecular docking study of novel coumarin derivatives containing 4,5-dihydropyrazole moiety as potential antitumor agents.Bioorg. Med. Chem. Lett.201020195705570810.1016/j.bmcl.2010.08.017
    [Google Scholar]
  136. WuX.Q. HuangC. JiaY.M. SongB.A. LiJ. LiuX-H. Novel coumarin-dihydropyrazole thio-ethanone derivatives: Design, synthesis and anticancer activity.Eur. J. Med. Chem.20147471772510.1016/j.ejmech.2013.06.014
    [Google Scholar]
  137. WeiQ. NingJ.Y. DaiX. GaoY.D. SuL. ZhaoB.X. MiaoJ.Y. Discovery of novel HSP90 inhibitors that induced apoptosis and impaired autophagic flux in A549 lung cancer cells.Eur. J. Med. Chem.201814555155810.1016/j.ejmech.2018.01.024
    [Google Scholar]
  138. ShaikA. BhandareR.R. PalleapatiK. NissankararaoS. KancharlapalliV. ShaikS. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives.Molecules2020255104710.3390/molecules25051047
    [Google Scholar]
  139. SchöffskiP. CrestaS. MayerI.A. WildiersH. DamianS. GendreauS. RooneyI. MorrisseyK.M. SpoerkeJ.M. NgV.W. SingelS.M. WinerE. A phase Ib study of pictilisib (GDC-0941) in combination with paclitaxel, with and without bevacizumab or trastuzumab, and with letrozole in advanced breast cancer.Breast Cancer Res.201820110910.1186/s13058‑018‑1015‑x
    [Google Scholar]
  140. RamaswamyB. MrozekE. KueblerJ.P. Bekaii-SaabT. KrautE.H. Phase II trial of pyrazoloacridine (NSC#366140) in patients with metastatic breast cancer.Invest. New Drugs201129234735110.1007/s10637‑009‑9338‑1
    [Google Scholar]
  141. ChangL.C. LinH.Y. TsaiM.T. ChouR.H. LeeF.Y. TengC.M. HsiehM.T. HungH.Y. HuangL.J. YuY.L. KuoS.C. YC ‐1 inhibits proliferation of breast cancer cells by down‐regulating EZH 2 expression via activation of c‐ C bl and ERK.Br. J. Pharmacol.2014171174010402510.1111/bph.12708
    [Google Scholar]
  142. IñiguezM.A. PunzónC. Cacheiro-LlagunoC. Díaz-MuñozM.D. DuqueJ. CuberesR. AlvarezI. AndrésE.M. BuxensJ. BuschmannH. VelaJ.M. FresnoM. Cyclooxygenase-independent inhibitory effects on T cell activation of novel 4,5-dihydro-3 trifluoromethyl pyrazole cyclooxygenase-2 inhibitors.Int. Immunopharmacol.201010101295130410.1016/j.intimp.2010.07.013
    [Google Scholar]
  143. de BruinN.M.W.J. PrickaertsJ. LangeJ.H.M. AkkermanS. AndriambelosonE. de HaanM. WijnenJ. van DrimmelenM. HissinkE. HeijinkL. KruseC.G. SLV330, a cannabinoid CB1 receptor antagonist, ameliorates deficits in the T-maze, object recognition and Social Recognition Tasks in rodents.Neurobiol. Learn. Mem.201093452253110.1016/j.nlm.2010.01.010
    [Google Scholar]
  144. MahmudS. RosenN. History of NSAID use in the treatment of headaches pre and post-industrial revolution in the United States: The rise and fall of antipyrine, salicylic acid, and acetanilide.Curr. Pain Headache Rep.2019231610.1007/s11916‑019‑0744‑6
    [Google Scholar]
  145. MurtazaS. AkhtarM.S. KanwalF. AbbasA. AshiqS. ShamimS. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent.J. Saudi Chem. Soc.201721S359S37210.1016/j.jscs.2014.04.003
    [Google Scholar]
  146. KamogawaE. SueishiY. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.Bioorg. Med. Chem. Lett.20142451376137910.1016/j.bmcl.2014.01.045
    [Google Scholar]
  147. Al-BadrAA El-ObeidHA Oxyphenbutazone.Analytical Profiles of Drug SubstancesAcademic Press198433336010.1016/S0099‑5428(08)60196‑3
    [Google Scholar]
  148. LutzM. Metamizole (dipyrone) and the liver: A review of the literature.J. Clin. Pharmacol.201959111433144210.1002/jcph.1512
    [Google Scholar]
  149. KumariA. SinghR.K. Pharmacophore modulating morpholine: Pharmacokinetic properties of anticancer leads.Key Heterocyclic Cores for Smart Anticancer Drug–DesignBentham Books202213710.2174/9789815040043122020008
    [Google Scholar]
  150. KhalilN.A. AhmedE.M. MohamedK.O. NissanY.M. ZaitoneS.A.B. Synthesis and biological evaluation of new pyrazolone–pyridazine conjugates as anti-inflammatory and analgesic agents.Bioorg. Med. Chem.20142272080208910.1016/j.bmc.2014.02.042
    [Google Scholar]
  151. NehraB. RulhaniaS. JaswalS. KumarB. SinghG. MongaV. Recent advancements in the development of bioactive pyrazoline derivatives.Eur. J. Med. Chem.202020511266610.1016/j.ejmech.2020.112666
    [Google Scholar]
  152. YangM.L. HuangT.S. LeeY. LuF.J. Free radical scavenging properties of sulfinpyrazone.Free Radic. Res.200236668569310.1080/1071576029009137
    [Google Scholar]
  153. LiuX.J. Xu-Liu PangX-J. -Ying YuanX. YuG-X. LiY-R. GuanY-F. ZhangY-B. SongJ. ZhangQ.R. ZhangS-Y. Progress in the development of small molecular inhibitors of the Bruton’s tyrosine kinase (BTK) as a promising cancer therapy.Bioorg. Med. Chem.20214711635810.1016/j.bmc.2021.116358
    [Google Scholar]
  154. IyerM.R. 4, 5-Dihydro-1H-pyrazole/3, 4-Diarylpyrazoline class of cannabinoid-1 (CB1R) receptor antagonists and their potential in medicinal applications.Cannabis Use, Neurobiology, Psychology, and Treatment.Academic Press202323725010.1016/B978‑0‑323‑89862‑1.00041‑6
    [Google Scholar]
  155. AhsanM.J. AliA. AliA. ThiriveedhiA. BakhtM.A. YusufM. Salahuddin AfzalO. AltamimiA.S.A. Pyrazoline containing compounds as therapeutic targets for neurodegenerative disorders.ACS Omega2022743382073824510.1021/acsomega.2c05339
    [Google Scholar]
  156. HaiderK. ShafeequeM. YahyaS. YarM.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents.Eur. J. Med. Chem. Rep.2022510004210.1016/j.ejmcr.2022.100042
    [Google Scholar]
  157. WalA. ChakraborthyG. SharmaA. KoseyS. SamadA. SachanK. PandeyP. A novel semisynthetic derivate as a potential anti TB agent.Inter. Pat.202120212021104193
    [Google Scholar]
  158. Cambrige Enterpeise Limited Polydopamine co-polymer nanoparticlesWO Patent 2023194414A12023
  159. Bolt BiothreapeuticsAsymmetric Bis-Benzimidazole sting agonist immunocojugates and uses thereof.2023WO Patent 2023059544A1
  160. ShermanD.W. SharkinG.D. VillaR.E. DoyleT.C. The invention provides novel pyrazoline derivatives which are useful as optical brighteners.US Patent 39562801976
  161. AlbertT. AlbertT. MeyersD. RichardE. JosephJ. 1,3-Diaryl-2-pyrazoline derivatives.US Patent 40038891977
  162. Genentech, Inc.(4-Hydroxypyrrolidin-2-yl)-Hetero-cyclic compound and method of use thereof.US Patent 11242344B22022
  163. Lantheus Medical Imaging, Inc.Contrast agents for myocardial perfusion imaging.US Patent 10889550B22021
  164. The Research Foundation of State University of New York Stapled peptides and method of synthesisUS Patent 8586707B22013
  165. ArthurP.D. EdwardM.C. JohnJ.P. Cationic fluorescent whitening agent.US Patent 42634311981
  166. Immunnoconjugates to treat diffuse large B-cell lymphoma.WO Patent 2023019092A12023
  167. AlanL.R. SchwartzR.A. Pyrazoline compounds.US Patent 41872261980
  168. TovarJ. AlmaulaP.I Quaternized 1-(Pyrazolinylphenylsulphonyl)-piperazinesUS Patent 4151163A1979
  169. Magenta Therapeutics Methods and composition for anti-CD117 antibody drug conjugate (ABC) treatment. WO Patent 2023002415A22023
  170. AlbertT.M. RobinsonD.W. SharkinG.D. VilaR.E. JosephJ. 1,3-Diaryl-2-pyrazoline derivatives.US Patent 40851011978
  171. Bolt BiotherapeuticsBIS-Benzimidazole sting agonist immunoconjugates, and uses thereofWO Patent 2022/272039 A12022
  172. AltisenR.C. Del VallesS.C. AltisenR.C. ConstansaJ.F. BarcelonaE. BafalluyR.M. RigalI.C. Pyrazoline derivatives useful for the treatment of cancer.US Patent 20070066651A12007
  173. SeidleckJ.J RajguruU.K. HardingK.A. GravesB.J. Polyester/platelet particle composition displaying improved dispersion.US Patent 6359052B12002
  174. The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University-32502Application of compound in preparation of HDAC2 gene activator.LU Patent 504076 2023
/content/journals/ctmc/10.2174/0115680266339816241212081205
Loading
/content/journals/ctmc/10.2174/0115680266339816241212081205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test