Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Inflammatory Bowel Disease (IBD) is a chronic non-specific disease that affects the gastrointestinal tract, and Intestinal Mucosal Barrier (IMB) damage is closely related to its pathogenesis. The management of IBD often involves repairing the mechanical, chemical, immune, or biological barriers of the intestinal mucosa to alleviate symptoms. Currently, the treatment of IBD patients requires continuous medication or surgical interventions, which can cause irreversible damage to the patient's body over time. Natural flavonoids, commonly found in human diets, offer a safe, effective, and non-toxic alternative, presenting significant potential for promoting intestinal health and disease prevention. This article aimed to explore current research concerning the role of natural flavonoids in modulating the IMB in IBD, offering a new perspective for the prevention and management of IBD and highlighting new opportunities for the development and application of natural flavonoids.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337430241127112031
2025-01-15
2025-09-14
Loading full text...

Full text loading...

References

  1. Pallikkunnath JamesJ. RiisL.B. MalhamM. HøgdallE. LangholzE. NielsenB.S. P003 MicroRNAs as biomarkers in Inflammatory Bowel Disease unclassified (IBDU) patient samples may predict the development from IBDU to Crohn’s Disease or Ulcerative Colitis.J. Crohn’s Colitis202317Suppl. 1i171i17310.1093/ecco‑jcc/jjac190.0133
    [Google Scholar]
  2. ChenY. GaoH. ZhaoJ. RossR.P. StantonC. ZhangH. ChenW. YangB. Exploiting lactic acid bacteria for inflammatory bowel disease: A recent update.Trends Food Sci. Technol.202313812614010.1016/j.tifs.2023.06.007
    [Google Scholar]
  3. KayamaH. OkumuraR. TakedaK. Interaction between the microbiota, epithelia, and immune cells in the intestine.Annu. Rev. Immunol.2020381234810.1146/annurev‑immunol‑070119‑115104 32340570
    [Google Scholar]
  4. KarnerM. KocjanA. SteinJ. SchreiberS. von BoyenG. UebelP. SchmidtC. KupcinskasL. DinaI. ZuelchF. KeilhauerG. StremmelW. First multicenter study of modified release phosphatidylcholine “LT-02” in ulcerative colitis: A randomized, placebo-controlled trial in mesalazine-refractory courses.Am. J. Gastroenterol.201410971041105110.1038/ajg.2014.104 24796768
    [Google Scholar]
  5. BlonskiW. BuchnerA.M. AberraF. LichtensteinG. Teduglutide in Crohn’s disease.Expert Opin. Biol. Ther.20131381207121410.1517/14712598.2013.815721 23834252
    [Google Scholar]
  6. VezzaT. Rodríguez-NogalesA. AlgieriF. UtrillaM. Rodriguez-CabezasM. GalvezJ. Flavonoids in inflammatory bowel disease: A review.Nutrients20168421110.3390/nu8040211 27070642
    [Google Scholar]
  7. ShiS. JiangH. MaW. GuanZ. HanM. ManS. WuZ. HeS. Preclinical studies of natural flavonoids in inflammatory bowel disease based on macrophages: A systematic review with meta-analysis and network pharmacology.Naunyn Schmiedebergs Arch. Pharmacol.202410.1007/s00210‑024‑03501‑0 39422746
    [Google Scholar]
  8. BiedermannL. MwinyiJ. ScharlM. FreiP. ZeitzJ. Kullak-UblickG.A. VavrickaS.R. FriedM. WeberA. HumpfH.U. PeschkeS. JetterA. KrammerG. RoglerG. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis — An open pilot study.J. Crohn’s Colitis20137427127910.1016/j.crohns.2012.07.010 22883440
    [Google Scholar]
  9. JangJ.Y. ImE. KimN.D. Therapeutic potential of bioactive components from Scutellaria baicalensis georgi in inflammatory bowel disease and colorectal cancer: A Review.Int. J. Mol. Sci.2023243195410.3390/ijms24031954 36768278
    [Google Scholar]
  10. TurnerJ.R. Intestinal mucosal barrier function in health and disease.Nat. Rev. Immunol.200991179980910.1038/nri2653 19855405
    [Google Scholar]
  11. Di TommasoN. GasbarriniA. PonzianiF.R. Intestinal barrier in human health and disease.Int. J. Environ. Res. Public Health202118231283610.3390/ijerph182312836 34886561
    [Google Scholar]
  12. RathinamV.A.K. ChanF.K.M. Inflammasome, inflammation, and tissue homeostasis.Trends Mol. Med.201824330431810.1016/j.molmed.2018.01.004 29433944
    [Google Scholar]
  13. NoahT.K. DonahueB. ShroyerN.F. Intestinal development and differentiation.Exp. Cell Res.2011317192702271010.1016/j.yexcr.2011.09.006 21978911
    [Google Scholar]
  14. VancamelbekeM. VermeireS. The intestinal barrier: A fundamental role in health and disease.Expert Rev. Gastroenterol. Hepatol.201711982183410.1080/17474124.2017.1343143 28650209
    [Google Scholar]
  15. GroschwitzK.R. HoganS.P. Intestinal barrier function: Molecular regulation and disease pathogenesis.J. Allergy Clin. Immunol.2009124132010.1016/j.jaci.2009.05.038 19560575
    [Google Scholar]
  16. RenZ. GuoC. YuS. ZhuL. WangY. HuH. DengJ. Progress in mycotoxins affecting intestinal mucosal barrier function.Int. J. Mol. Sci.20192011277710.3390/ijms20112777 31174254
    [Google Scholar]
  17. WangK. WuL. DouC. GuanX. WuH. LiuH. Research advance in intestinal mucosal barrier and pathogenesis of Crohn’s disease.Gastroenterol. Res. Pract.201620161610.1155/2016/9686238 27651792
    [Google Scholar]
  18. KakodkarS. MutluE.A. Diet as a therapeutic option for adult inflammatory bowel disease.Gastroenterol. Clin. North Am.201746474576710.1016/j.gtc.2017.08.016 29173519
    [Google Scholar]
  19. TurnbaughP.J. RidauraV.K. FaithJ.J. ReyF.E. KnightR. GordonJ.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice.Sci. Transl. Med.2009166ra1410.1126/scitranslmed.3000322 20368178
    [Google Scholar]
  20. De FilippoC. CavalieriD. Di PaolaM. RamazzottiM. PoulletJ.B. MassartS. ColliniS. PieracciniG. LionettiP. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Proc. Natl. Acad. Sci. USA201010733146911469610.1073/pnas.1005963107 20679230
    [Google Scholar]
  21. ZhangJ. ZhuS. MaN. JohnstonL.J. WuC. MaX. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.Med. Res. Rev.20214121061108810.1002/med.21752 33174230
    [Google Scholar]
  22. De SantisS. CavalcantiE. MastronardiM. JirilloE. ChieppaM. Nutritional keys for intestinal barrier modulation.Front. Immunol.2015661210.3389/fimmu.2015.00612 26697008
    [Google Scholar]
  23. HollonJ. PuppaE. GreenwaldB. GoldbergE. GuerrerioA. FasanoA. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity.Nutrients2015731565157610.3390/nu7031565 25734566
    [Google Scholar]
  24. ShaoY. WolfP.G. GuoS. GuoY. GaskinsH.R. ZhangB. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.J. Nutr. Biochem.201743182610.1016/j.jnutbio.2017.01.013 28193579
    [Google Scholar]
  25. LiangL. XiongQ. KongJ. TianC. MiaoL. ZhangX. DuH. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function.Biomed. Pharmacother.202114411225310.1016/j.biopha.2021.112253 34607106
    [Google Scholar]
  26. LinH. ChenD. DuQ. PanT. TuH. XuY. TengT. TuJ. LiJ. LinZ. WangX. XuL. ChenY.P. Dietary copper plays an important role in maintaining intestinal barrier integrity during alcohol-induced liver disease through regulation of the intestinal HIF-1α signaling pathway and oxidative stress.Front. Physiol.20201136910.3389/fphys.2020.00369 32457642
    [Google Scholar]
  27. ShulzhenkoN. MorgunA. HsiaoW. BattleM. YaoM. GavrilovaO. OrandleM. MayerL. MacphersonA.J. McCoyK.D. Fraser-LiggettC. MatzingerP. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut.Nat. Med.201117121585159310.1038/nm.2505 22101768
    [Google Scholar]
  28. GarberJ.J. MallickE.M. ScanlonK.M. TurnerJ.R. DonnenbergM.S. LeongJ.M. SnapperS.B. Attaching-and-effacing pathogens exploit junction regulatory activities of N-WASP and SNX9 to disrupt the intestinal barrier.Cell. Mol. Gastroenterol. Hepatol.20185327328810.1016/j.jcmgh.2017.11.015 29675452
    [Google Scholar]
  29. FrantzA.L. RogierE.W. WeberC.R. ShenL. CohenD.A. FentonL.A. BrunoM.E.C. KaetzelC.S. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides.Mucosal Immunol.20125550151210.1038/mi.2012.23 22491177
    [Google Scholar]
  30. KaplanG.G. WindsorJ.W. The four epidemiological stages in the global evolution of inflammatory bowel disease.Nat. Rev. Gastroenterol. Hepatol.2021181566610.1038/s41575‑020‑00360‑x 33033392
    [Google Scholar]
  31. HartwigO. Shetab BoushehriM.A. ShalabyK.S. LoretzB. LamprechtA. LehrC.M. Drug delivery to the inflamed intestinal mucosa – targeting technologies and human cell culture models for better therapies of IBD.Adv. Drug Deliv. Rev.202117511382810.1016/j.addr.2021.113828 34157320
    [Google Scholar]
  32. TurpinW. GoethelA. BedraniL. Croitoru MdcmK. Determinants of IBD heritability: Genes, bugs, and more.Inflamm. Bowel Dis.20182461133114810.1093/ibd/izy085 29701818
    [Google Scholar]
  33. AnanthakrishnanA.N. Epidemiology and risk factors for IBD.Nat. Rev. Gastroenterol. Hepatol.201512420521710.1038/nrgastro.2015.34 25732745
    [Google Scholar]
  34. PasvolT.J. BloomS. SegalA.W. RaitG. HorsfallL. Use of contraceptives and risk of inflammatory bowel disease: A nested case–control study.Aliment. Pharmacol. Ther.202255331832610.1111/apt.16647 34662440
    [Google Scholar]
  35. KvasnovskyC.L. AujlaU. BjarnasonI. Nonsteroidal anti-inflammatory drugs and exacerbations of inflammatory bowel disease.Scand. J. Gastroenterol.201550325526310.3109/00365521.2014.966753 25314574
    [Google Scholar]
  36. LochheadP. KhaliliH. SachsM.C. ChanA.T. OlénO. LudvigssonJ.F. Statin use and risk of inflammatory bowel diseases: Authors’ reply.J. Crohn’s Colitis20211581403140410.1093/ecco‑jcc/jjab015 33474560
    [Google Scholar]
  37. MentellaM.C. ScaldaferriF. PizzoferratoM. GasbarriniA. MiggianoG.A.D. Nutrition, IBD and gut microbiota: A review.Nutrients202012494410.3390/nu12040944 32235316
    [Google Scholar]
  38. MehandruS. ColombelJ.F. The intestinal barrier, an arbitrator turned provocateur in IBD.Nat. Rev. Gastroenterol. Hepatol.2021182838410.1038/s41575‑020‑00399‑w 33318680
    [Google Scholar]
  39. JägerS. StangeE.F. WehkampJ. Inflammatory bowel disease: An impaired barrier disease.Langenbecks Arch. Surg.2013398111210.1007/s00423‑012‑1030‑9 23160753
    [Google Scholar]
  40. WangL. GaoM. KangG. HuangH. The potential role of phytonutrients flavonoids influencing gut microbiota in the prophylaxis and treatment of inflammatory bowel disease.Front. Nutr.2021879803810.3389/fnut.2021.798038 34970585
    [Google Scholar]
  41. KimH.P. SonK.H. ChangH.W. KangS.S. Anti-inflammatory plant flavonoids and cellular action mechanisms.J. Pharmacol. Sci.200496322924510.1254/jphs.CRJ04003X 15539763
    [Google Scholar]
  42. JingS. ChenH. LiuE. ZhangM. ZengF. ShenH. FangY. MuhitdinovB. HuangY. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease.Carbohydr. Polym.202331612102510.1016/j.carbpol.2023.121025 37321723
    [Google Scholar]
  43. LiuD. PengR. ChenZ. YuH. WangS. DongS. LiW. ShaoW. DaiJ. LiF. JiangQ. SunW. The protective effects of apigenin against radiation‐induced intestinal injury.Dose Response20222031559325822111379110.1177/15593258221113791 35859853
    [Google Scholar]
  44. LiY. WangX. SuY. WangQ. HuangS. PanZ. ChenY. LiangJ. ZhangM. XieX. WuZ. ChenJ. ZhouL. LuoX. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s.Acta Pharmacol. Sin.20224361495150710.1038/s41401‑021‑00781‑7 34671110
    [Google Scholar]
  45. LiuY. HuangW. JiS. WangJ. LuoJ. LuB. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota.Food Chem.202239313339510.1016/j.foodchem.2022.133395 35691061
    [Google Scholar]
  46. LissnerD. SchumannM. BatraA. KredelL.I. KühlA.A. ErbenU. MayC. SchulzkeJ.D. SiegmundB. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD.Inflamm. Bowel Dis.20152161297130510.1097/MIB.0000000000000384 25901973
    [Google Scholar]
  47. LiJ. ZhangL. LiY. WuY. WuT. FengH. XuZ. LiuY. RuanZ. ZhouS. Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier.J. Funct. Foods20207510424610.1016/j.jff.2020.104246
    [Google Scholar]
  48. MuJ. XuJ. WangL. ChenC. ChenP. Anti-inflammatory effects of purple sweet potato anthocyanin extract in DSS-induced colitis: Modulation of commensal bacteria and attenuated bacterial intestinal infection.Food Funct.20211222115031151410.1039/D1FO02454J 34700334
    [Google Scholar]
  49. WangW. XiaT. YuX. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro.Inflamm. Res.201564642343110.1007/s00011‑015‑0822‑0 25917044
    [Google Scholar]
  50. SuzukiT. HaraH. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells.J. Nutr.2009139596597410.3945/jn.108.100867 19297429
    [Google Scholar]
  51. BianY. DongY. SunJ. SunM. HouQ. LaiY. ZhangB. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells.J. Agric. Food Chem.202068116016710.1021/acs.jafc.9b06294 31825618
    [Google Scholar]
  52. LiC. WangL. ZhaoJ. WeiY. ZhaiS. TanM. GuanK. HuangZ. ChenC. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway.Phytomedicine202210415428410.1016/j.phymed.2022.154284 35777121
    [Google Scholar]
  53. AzumaT. ShigeshiroM. KodamaM. TanabeS. SuzukiT. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice.J. Nutr.2013143682783410.3945/jn.113.174508 23596159
    [Google Scholar]
  54. ShigeshiroM. TanabeS. SuzukiT. Dietary polyphenols modulate intestinal barrier defects and inflammation in a murine model of colitis.J. Funct. Foods20135294995510.1016/j.jff.2013.02.008
    [Google Scholar]
  55. KimS.E. KawaguchiK. HayashiH. FurushoK. MaruyamaM. Remission effects of dietary soybean isoflavones on DSS-induced murine colitis and an LPS-activated macrophage cell line.Nutrients2019118174610.3390/nu11081746 31362418
    [Google Scholar]
  56. SalaritabarA. DarvishiB. HadjiakhoondiF. ManayiA. SuredaA. NabaviS.F. FitzpatrickL.R. NabaviS.M. BishayeeA. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review.World J. Gastroenterol.201723285097511410.3748/wjg.v23.i28.5097 28811706
    [Google Scholar]
  57. WuW. LiuL. ZhuY. NiJ. LuJ. WangX. MaL. JiangY. Zinc-rutin particles ameliorate DSS-induced acute and chronic colitis via anti-inflammatory and antioxidant protection of the intestinal epithelial barrier.J. Agric. Food Chem.20237134127151272910.1021/acs.jafc.3c03195 37581468
    [Google Scholar]
  58. NunesC. AlmeidaL. BarbosaR.M. LaranjinhaJ. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation.Food Funct.20178138739610.1039/C6FO01529H 28067377
    [Google Scholar]
  59. DamianoS. SassoA. De FeliceB. Di GregorioI. La RosaG. LupoliG.A. BelfioreA. MondolaP. SantilloM. Quercetin increases MUC2 and MUC5AC gene expression and secretion in intestinal goblet cell-like LS174T via PLC/PKCα/ERK1-2 pathway.Front. Physiol.2018935710.3389/fphys.2018.00357 29681865
    [Google Scholar]
  60. CaoH. LiuJ. ShenP. CaiJ. HanY. ZhuK. FuY. ZhangN. ZhangZ. CaoY. Protective effect of naringin on DSS-induced ulcerative colitis in mice.J. Agric. Food Chem.20186650131331314010.1021/acs.jafc.8b03942 30472831
    [Google Scholar]
  61. LuoD. HuangZ. JiaG. ZhaoH. LiuG. ChenX. Naringin mitigates LPS-induced intestinal barrier injury in mice.Food Funct.20231431617162610.1039/D2FO03586C 36688440
    [Google Scholar]
  62. ZhangJ. LeiH. HuX. DongW. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling.Eur. J. Pharmacol.202087317299210.1016/j.ejphar.2020.172992 32035144
    [Google Scholar]
  63. ParkH.Y. YuJ.H. Hesperidin enhances intestinal barrier function in Caco‐2 cell monolayers via AMPK‐mediated tight junction‐related proteins.FEBS Open Bio202313353254410.1002/2211‑5463.13564 36700348
    [Google Scholar]
  64. HeW. LiuM. LiY. YuH. WangD. ChenQ. ChenY. ZhangY. WangT. Flavonoids from Citrus aurantium ameliorate TNBS-induced ulcerative colitis through protecting colonic mucus layer integrity.Eur. J. Pharmacol.201985717245610.1016/j.ejphar.2019.172456 31220438
    [Google Scholar]
  65. PierreJ.F. HeneghanA.F. FelicianoR.P. ShanmuganayagamD. KruegerC.G. ReedJ.D. KudskK.A. Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition.JPEN J. Parenter. Enteral Nutr.201438110711410.1177/0148607112473654 23359014
    [Google Scholar]
  66. WuL.H. XuZ.L. DongD. HeS.A. YuH. Protective effect of anthocyanins extract from blueberry on TNBS‐Induced IBD model of mice.Evid. Based Complement. Alternat. Med.20112011152546210.1093/ecam/neq040 21785630
    [Google Scholar]
  67. GaoJ. YuW. ZhangC. LiuH. FanJ. WeiJ. The protective effect and mechanism of Aornia melanocarpa Elliot anthocyanins on IBD model mice.Food Biosci.20214110107510.1016/j.fbio.2021.101075
    [Google Scholar]
  68. WuB. BhatnagarR. IndukuriV.V. ChopraS. MarchK. CorderoN. ChopraS. ReddivariL. Intestinal mucosal barrier function restoration in mice by maize diet containing enriched flavan-4-ols.Nutrients202012489610.3390/nu12040896 32218287
    [Google Scholar]
  69. ContrerasT.C. RicciardiE. CremoniniE. OteizaP.I. (−)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity.Arch. Biochem. Biophys.2015573849110.1016/j.abb.2015.01.024 25795020
    [Google Scholar]
  70. LiuF. ZhangX. JiY. Total flavonoid extract from hawthorn (Crataegus pinnatifida) improves inflammatory cytokines-evoked epithelial barrier deficit.Med. Sci. Monit.202026e92017010.12659/MSM.920170 32065826
    [Google Scholar]
  71. SharmaD. KannegantiT.D. Inflammatory cell death in intestinal pathologies.Immunol. Rev.20172801577310.1111/imr.12602 29027223
    [Google Scholar]
  72. StioM. ReticoL. AnneseV. BonanomiA.G. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis.Scand. J. Gastroenterol.201651101193119910.1080/00365521.2016.1185463 27207502
    [Google Scholar]
  73. EdelblumK.L. TurnerJ.R. The tight junction in inflammatory disease: Communication breakdown.Curr. Opin. Pharmacol.20099671572010.1016/j.coph.2009.06.022 19632896
    [Google Scholar]
  74. NodaS. TanabeS. SuzukiT. Differential effects of flavonoids on barrier integrity in human intestinal Caco-2 cells.J. Agric. Food Chem.201260184628463310.1021/jf300382h 22506771
    [Google Scholar]
  75. SuzukiT. TanabeS. HaraH. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells.J. Nutr.20111411879410.3945/jn.110.125633 21068182
    [Google Scholar]
  76. TanY. ZhengC. Effects of alpinetin on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium-induced ulcerative colitis mice.Am. J. Med. Sci.2018355437738610.1016/j.amjms.2018.01.002 29661352
    [Google Scholar]
  77. WanM.L.Y. CoV.A. El-NezamiH. Dietary polyphenol impact on gut health and microbiota.Crit. Rev. Food Sci. Nutr.202161469071110.1080/10408398.2020.1744512 32208932
    [Google Scholar]
  78. FilosaS. Di MeoF. CrispiS. Polyphenols-gut microbiota interplay and brain neuromodulation.Neural Regen. Res.201813122055205910.4103/1673‑5374.241429 30323120
    [Google Scholar]
  79. Van der SluisM. De KoningB.A.E. De BruijnA.C.J.M. VelcichA. MeijerinkJ.P.P. Van GoudoeverJ.B. BüllerH.A. DekkerJ. Van SeuningenI. RenesI.B. EinerhandA.W.C. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection.Gastroenterology2006131111712910.1053/j.gastro.2006.04.020 16831596
    [Google Scholar]
  80. MengW. ChenL. OuyangK. LinS. ZhangY. HeJ. WangW. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice.Food Sci. Hum. Wellness20231262440245010.1016/j.fshw.2023.03.011
    [Google Scholar]
  81. ArsenescuR. BrunoM.E.C. RogierE.W. StefkaA.T. McMahanA.E. WrightT.B. NasserM.S. de VilliersW.J.S. KaetzelC.S. Signature biomarkers in Crohn’s disease: toward a molecular classification.Mucosal Immunol.20081539941110.1038/mi.2008.32 19079204
    [Google Scholar]
  82. ZhangM. KouJ. WuY. WangM. ZhouX. YangY. WuZ. Dietary genistein supplementation improves intestinal mucosal barrier function in Escherichia coli O78-challenged broilers.J. Nutr. Biochem.20207710826710.1016/j.jnutbio.2019.108267 32000135
    [Google Scholar]
  83. da SilvaL.M. PezziniB.C. SomensiL.B. Bolda MarianoL.N. MariottM. BoeingT. dos SantosA.C. LongoB. Cechinel-FilhoV. de SouzaP. de AndradeS.F. Hesperidin, a citrus flavanone glycoside, accelerates the gastric healing process of acetic acid-induced ulcer in rats.Chem. Biol. Interact.2019308455010.1016/j.cbi.2019.05.011 31095933
    [Google Scholar]
  84. ZhouK. ChengR. LiuB. WangL. XieH. ZhangC. Eupatilin ameliorates dextran sulphate sodium-induced colitis in mice partly through promoting AMPK activation.Phytomedicine201846465610.1016/j.phymed.2018.04.033 30097122
    [Google Scholar]
  85. Gil-CardosoK. GinésI. PinentM. ArdévolA. ArolaL. BlayM. TerraX. Chronic supplementation with dietary proanthocyanidins protects from diet‐induced intestinal alterations in obese rats.Mol. Nutr. Food Res.2017618160103910.1002/mnfr.201601039 28218448
    [Google Scholar]
  86. HaoN.B. LüM.H. FanY.H. CaoY.L. ZhangZ.R. YangS.M. Macrophages in tumor microenvironments and the progression of tumors.Clin. Dev. Immunol.2012201211110.1155/2012/948098 22778768
    [Google Scholar]
  87. AbronJ.D. SinghN.P. PriceR.L. NagarkattiM. NagarkattiP.S. SinghU.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis.PLoS One2018137e019963110.1371/journal.pone.0199631 30024891
    [Google Scholar]
  88. YanJ. LuoM. ChenZ. HeB. TianJ. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease.J. Immunol. Res.202020201810.1155/2020/8813558 33381606
    [Google Scholar]
  89. ParkarS.G. StevensonD.E. SkinnerM.A. The potential influence of fruit polyphenols on colonic microflora and human gut health.Int. J. Food Microbiol.2008124329529810.1016/j.ijfoodmicro.2008.03.017 18456359
    [Google Scholar]
  90. LyuY.L. ZhouH.F. YangJ. WangF.X. SunF. LiJ.Y. Biological activities underlying the therapeutic effect of quercetin on inflammatory bowel disease.Mediators Inflamm.20222022566577810.1155/2022/5665778 35915741
    [Google Scholar]
  91. SteinmannJ. BuerJ. PietschmannT. SteinmannE. Anti‐infective properties of epigallocatechin‐3‐gallate (EGCG), a component of green tea.Br. J. Pharmacol.201316851059107310.1111/bph.12009 23072320
    [Google Scholar]
  92. WuJ. ZhaoY. WangX. KongL. JohnstonL.J. LuL. MaX. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications.Crit. Rev. Food Sci. Nutr.202262378379710.1080/10408398.2020.1828813 33043708
    [Google Scholar]
  93. ShaoB.Z. YaoY. ZhaiJ.S. ZhuJ.H. LiJ.P. WuK. The role of autophagy in inflammatory bowel disease.Front. Physiol.20211262113210.3389/fphys.2021.621132 33633585
    [Google Scholar]
  94. XiongY. DengZ. LiuJ. QiuJ. GuoL. FengP. SuiJ. ChenD. GuoH. Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis.Pharmacol. Res.201914810446110.1016/j.phrs.2019.104461 31542404
    [Google Scholar]
  95. ZhouH. JiangF. LengY. Propofol ameliorates ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway: A novel therapeutic strategy in atherosclerosis.Front. Mol. Biosci.2021869533610.3389/fmolb.2021.695336 34250023
    [Google Scholar]
  96. ChenS. JiangJ. ChaoG. HongX. CaoH. ZhangS. Pure total flavonoids from citrus protect against nonsteroidal anti-inflammatory drug-induced small intestine injury by promoting autophagy in vivo and in vitro.Front. Pharmacol.20211262274410.3389/fphar.2021.622744 33953669
    [Google Scholar]
  97. LvQ. XingY. LiuJ. DongD. LiuY. QiaoH. ZhangY. HuL. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation.Acta Pharm. Sin. B20211192880289910.1016/j.apsb.2021.03.011 34589402
    [Google Scholar]
  98. NaamaM. TelpazS. AwadA. Ben-SimonS. Harshuk-ShabsoS. ModilevskyS. RubinE. SawaedJ. ZelikL. ZigdonM. AsulinN. TurjemanS. WerbnerM. WongkunaS. FeeneyR. SchroederB.O. NyskaA. Nuriel-OhayonM. BelS. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress.Cell Host Microbe2023313433446.e410.1016/j.chom.2023.01.006 36738733
    [Google Scholar]
  99. GloverL.E. LeeJ.S. ColganS.P. Oxygen metabolism and barrier regulation in the intestinal mucosa.J. Clin. Invest.2016126103680368810.1172/JCI84429 27500494
    [Google Scholar]
  100. GrishamM. Oxidants and free radicals in inflammatory bowel disease.Lancet1994344892685986110.1016/S0140‑6736(94)92831‑2 7916405
    [Google Scholar]
  101. Al-RejaieS.S. AbuohashishH.M. Al-EnaziM.M. Al-AssafA.H. ParmarM.Y. AhmedM.M. Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats.World J. Gastroenterol.201319345633564410.3748/wjg.v19.i34.5633 24039355
    [Google Scholar]
  102. SinghD.P. BorseS.P. NivsarkarM. Overcoming the exacerbating effects of ranitidine on NSAID-induced small intestinal toxicity with quercetin: Providing a complete GI solution.Chem. Biol. Interact.2017272536410.1016/j.cbi.2017.04.006 28400101
    [Google Scholar]
  103. XiaoH. WenB. ShenX. BianZ. Potential of plant-sourced phenols for inflammatory bowel disease.Curr. Med. Chem.201925385191521710.2174/0929867324666171009100900 28990509
    [Google Scholar]
  104. XiongY. ChenD. YuC. LvB. PengJ. WangJ. LinY. Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function.Mol. Nutr. Food Res.201559582984210.1002/mnfr.201400614 25655748
    [Google Scholar]
  105. WangK. JinX. ChenY. SongZ. JiangX. HuF. ConlonM. ToppingD. Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling.Nutrients20168527210.3390/nu8050272 27164138
    [Google Scholar]
  106. WatsonJ.L. AnsariS. CameronH. WangA. AkhtarM. McKayD.M. Green tea polyphenol (−)-epigallocatechin gallate blocks epithelial barrier dysfunction provoked by IFN-γ but not by IL-4.Am. J. Physiol. Gastrointest. Liver Physiol.20042875G954G96110.1152/ajpgi.00302.2003 15231486
    [Google Scholar]
  107. HämäläinenM. NieminenR. VuorelaP. HeinonenM. MoilanenE. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.Mediators Inflamm.200720074567310.1155/2007/45673 18274639
    [Google Scholar]
  108. WellsC.L. JechorekR.P. KinnebergK.M. DebolS.M. ErlandsenS.L. The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes.J. Nutr.1999129363464010.1093/jn/129.3.634 10082767
    [Google Scholar]
  109. MaH. ZhangB. HuY. WangJ. LiuJ. QinR. LvS. WangS. Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice.J. Agric. Food Chem.201967267325733510.1021/acs.jafc.9b02211 31184120
    [Google Scholar]
  110. LanH. WangH. ChenC. HuW. AiC. ChenL. TengH. Flavonoids and gastrointestinal health: single molecule for multiple roles.Crit. Rev. Food Sci. Nutr.2023643011910.1080/10408398.2023.2230501 37409462
    [Google Scholar]
  111. AndresS. PevnyS. ZiegenhagenR. BakhiyaN. SchäferB. Hirsch-ErnstK.I. LampenA. Safety aspects of the use of quercetin as a dietary supplement.Mol. Nutr. Food Res.2018621170044710.1002/mnfr.201700447 29127724
    [Google Scholar]
  112. WangX. GuoX.Y. XuL. LiuB. ZhouL.L. WangX.F. WangD. SunT. Studies on the competitive binding of cleviprex and flavonoids to plasma protein by multi-spectroscopic methods: A prediction of food-drug interaction.J. Photochem. Photobiol. B201717519219910.1016/j.jphotobiol.2017.08.037 28892755
    [Google Scholar]
  113. LvF. ZhangY. PengQ. ZhaoX. HuD. WenJ. LiuK. LiR. WangK. SunJ. Apigenin-Mn(II) loaded hyaluronic acid nanoparticles for ulcerative colitis therapy in mice.Front Chem.20221096996210.3389/fchem.2022.969962 35936086
    [Google Scholar]
  114. Stevens BarrónJ.C. Chapa GonzálezC. Álvarez ParrillaE. De la RosaL.A. Nanoparticle-mediated delivery of flavonoids: Impact on proinflammatory cytokine production: A systematic review.Biomolecules2023137115810.3390/biom13071158 37509193
    [Google Scholar]
  115. RanjbarS. EmamjomehA. SharifiF. ZarepourA. AghaabbasiK. DehshahriA. SepahvandA.M. ZarrabiA. BeyzaeiH. ZahediM.M. MohammadinejadR. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles.Pharmaceutics2023157194410.3390/pharmaceutics15071944 37514130
    [Google Scholar]
  116. CaddeoC. Díez-SalesO. PonsR. CarboneC. EnnasG. PuglisiG. FaddaA.M. ManconiM. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin.J. Colloid Interface Sci.2016461697810.1016/j.jcis.2015.09.013 26397912
    [Google Scholar]
  117. YamasakiM. MurakiY. NishimotoY. MurakawaY. MatsuoT. Fluorescence-labeled liposome accumulation in injured colon of a mouse model of T-cell transfer-mediated inflammatory bowel disease.Biochem. Biophys. Res. Commun.20174941-218819310.1016/j.bbrc.2017.10.058 29037813
    [Google Scholar]
  118. LiM. WeigmannB. Effect of a flavonoid combination of apigenin and epigallocatechin-3-gallate on alleviating intestinal inflammation in experimental colitis models.Int. J. Mol. Sci.202324221603110.3390/ijms242216031 38003220
    [Google Scholar]
  119. YeonN.R. ChoJ.S. YooH.S. JeonS.H. YiC.M. JungM.J. LeeY.S. ShinE.B. KimN. KimH. SeongJ. KimN.J. LeeJ.K. InnK.S. Dextran sodium sulfate (DSS)-induced colitis is alleviated in mice after administration of flavone-derived NRF2-activating molecules.Life Sci.202434012242410.1016/j.lfs.2024.122424 38242497
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266337430241127112031
Loading
/content/journals/ctmc/10.2174/0115680266337430241127112031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test