Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background and objective

Hepatic ischemia reperfusion injury (HIRI) is a common complication closely related to the prognosis of liver surgery, and effective treatment methods are still unavailable. SRT1720 has the characteristics of multifunction and multitarget which may cope with the multidirectional complex pathological process caused by HIRI. The present study aimed to explore the potential mechanism of SRT1720 in HIRI through a combination of network pharmacology, experiments and models.

Methods

Differentially expressed genes (DEGs) were identified based on the GSE15480 and Genecards database. Enrichment analyses were then conducted. SRT1720-targeted genes were obtained through databases such as Chembl, TTD, GtoPdb, and so on. All target genes were standardized by the Uniprot database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified by STRING. Shared KEGG pathways were identified using a Venn diagram among SRT1720-targeted pathways and HIRI. Furthermore, experimental techniques such as cell apoptosis assay and western blotting were used to confirm the most significant biological processes and the key pathway between SRT1720-targeted and HIRI.

Results

This study identified 118 HIRI-related DEGs, 69 shared KEGG pathways of SRT1720 and HIRI. In addition, the findings revealed that SRT1720 significantly reduced liver ischemia-reperfusion (I/R) injury. NF-κB signaling pathway and the expression of promoting apoptosis factors such as Bax and Caspase3 were inhibited, while antiapoptotic protein Bcl-2 was promoted in the SRT1720 group compared with the I/R group.

Conclusion

The findings indicate that SRT1720 may inhibit the development of HIRI by inhibiting the NF-κB signaling pathway and reducing cell apoptosis, acting as a treatment for HIRI.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322450241212070042
2025-01-21
2025-12-20
Loading full text...

Full text loading...

References

  1. CannistràM. RuggieroM. ZulloA. GallelliG. SerafiniS. MariaM. NasoA. GrandeR. SerraR. NardoB. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers.Int. J. Surg.201633Suppl. 1S57S7010.1016/j.ijsu.2016.05.050 27255130
    [Google Scholar]
  2. DingJ. WenjuanYang JiangY. JiJ. ZhangJ. WuL. FengJ. ZhengY. LiY. ChengZ. YuQ. WuJ. LiJ. ChenK. GuoC. Cordycepin protects against hepatic ischemia/reperfusion injury via inhibiting MAPK/NF-κB pathway.Mediators Inflamm.2022202211410.1155/2022/5676256 36518880
    [Google Scholar]
  3. ZhangL. LiuH. JiaL. LyuJ. SunY. YuH. LiH. LiuW. WengY. YuW. Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats.Oxid. Med. Cell. Longev.2019201911710.1155/2019/3753485 31814872
    [Google Scholar]
  4. KanC. UngelenkL. LuppA. DirschO. DahmenU. Ischemia-reperfusion injury in aged livers—the energy metabolism, inflammatory response, and autophagy.Transplantation2018102336837710.1097/TP.0000000000001999 29135887
    [Google Scholar]
  5. WuG. ChenM. WangX. KongE. YuW. SunY. WuF. Effect of remote ischemic preconditioning on hepatic ischemia-reperfusion injury in patients undergoing liver resection: A randomized controlled trial.Minerva Anestesiol.202086325226010.23736/S0375‑9393.19.13838‑2 31808659
    [Google Scholar]
  6. YounisN.S. AbdelnabyR.M. MohamedM.E. Hepatoprotective effects of linalool against liver ischemia-reperfusion: The role of Nrf2/HO-1/NQO1 and TLR4/RAGE/NFκB pathways.Eur. Rev. Med. Pharmacol. Sci.202327201009410111[J].37916380
    [Google Scholar]
  7. XinY. SuP. LiuY. GuS. anX. ZhangX. YanJ. GuoY. ZhouJ. YangG. Knock out hepatic Krüppel-like factor 16 (KLF16) improve myocardial damage and promoted myocardial protection of myocardial ischemia-reperfusion via anti-oxidative and anti-inflammation effects by TFAM/PPARβ signal passage.Bioengineered2021122102191023110.1080/21655979.2021.1982302 34823421
    [Google Scholar]
  8. ChenS. YuQ. SongY. CuiZ. LiM. MeiC. CuiH. CaoS. ZhuC. Inhibition of macrophage migration inhibitory factor (MIF) suppresses apoptosis signal-regulating kinase 1 to protect against liver ischemia/reperfusion injury.Front. Pharmacol.20221395190610.3389/fphar.2022.951906 36160453
    [Google Scholar]
  9. SalahA. KarimiM.H. SajedianfardJ. NazifiS. YaghobiR. Expression pattern of MicroRNA-21 during the liver ischemia/reperfusion.Iran. J. Allergy Asthma Immunol.2021201889710.18502/ijaai.v20i1.5415 33639635
    [Google Scholar]
  10. HouW. WeiB. LiuH.S. The protective effect of Panax notoginseng mixture on hepatic ischemia/reperfusion injury in mice via regulating NR3C2, SRC, and GAPDH.Front. Pharmacol.20211275625910.3389/fphar.2021.756259 34858181
    [Google Scholar]
  11. SuyavaranA. ThirunavukkarasuC. Preconditioning methods in the management of hepatic ischemia reperfusion‐induced injury: Update on molecular and future perspectives.Hepatol. Res.2017471314810.1111/hepr.12706
    [Google Scholar]
  12. HuH. LiY. ShiZ. ZhaoX. LanX. WuM. TaoB. ZhangY. HuangX. BuP. GuoY. TanX. QiC. ZhangY. Discovery of ergosterol derivative from Aspergillus sp. TJ507 that protects against hepatic ischemia/reperfusion injury.Bioorg. Chem.202313510653010.1016/j.bioorg.2023.106530 37054517
    [Google Scholar]
  13. AskinS. AskinH. DursunE. PalabiyikE. UguzH. CakmakÖ. KocK. The hepato-renal protective potential of walnut seed skin extract against acute renal ischemia/reperfusion damage.Cytokine202215315586110.1016/j.cyto.2022.155861 35306426
    [Google Scholar]
  14. DossiC.G. VargasR.G. ValenzuelaR. VidelaL.A. Beneficial effects of natural compounds on experimental liver ischemia-reperfusion injury.Food Funct.20211293787379810.1039/D1FO00289A 33977997
    [Google Scholar]
  15. ParkG. JeongJ.W. KimJ.E. SIRT1 deficiency attenuates MPP + -induced apoptosis in dopaminergic cells.FEBS Lett.2011585121922410.1016/j.febslet.2010.11.048 21130087
    [Google Scholar]
  16. XieJ. ZhangX. ZhangL. Negative regulation of inflammation by SIRT1.Pharmacol. Res.2013671606710.1016/j.phrs.2012.10.010 23098819
    [Google Scholar]
  17. MilneJ.C. LambertP.D. SchenkS. CarneyD.P. SmithJ.J. GagneD.J. JinL. BossO. PerniR.B. VuC.B. BemisJ.E. XieR. DischJ.S. NgP.Y. NunesJ.J. LynchA.V. YangH. GalonekH. IsraelianK. ChoyW. IfflandA. LavuS. MedvedikO. SinclairD.A. OlefskyJ.M. JirousekM.R. ElliottP.J. WestphalC.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.Nature2007450717071271610.1038/nature06261 18046409
    [Google Scholar]
  18. KhaderA. YangW.L. HansenL.W. RajayerS.R. PrinceJ.M. NicastroJ.M. CoppaG.F. WangP. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis.J. Surg. Res.201721928829510.1016/j.jss.2017.06.031 29078895
    [Google Scholar]
  19. ZhouD. YangF. LinL. TangL. LiL. YangY. LiuD. ZhangC. WuT. WeiH. ZhangX. ZhangL. The sirtuin 1 activator SRT1720 alleviated endotoxin-induced fulminant hepatitis in mice.Exp. Anim.202170330231010.1538/expanim.20‑0014 33678756
    [Google Scholar]
  20. KimJ.Y. JoJ. KimK. AnH.J. GwonM.G. GuH. KimH.J. YangA.Y. KimS.W. JeonE.J. Pharmacological activation of Sirt1 ameliorates cisplatin-induced acute kidney injury by suppressing apoptosis, oxidative stress, and inflammation in mice.Antioxidants20198832210.3390/antiox8080322 31431003
    [Google Scholar]
  21. BergerS.I. IyengarR. Network analyses in systems pharmacology.Bioinformatics200925192466247210.1093/bioinformatics/btp465 19648136
    [Google Scholar]
  22. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  23. DongQ. RenG. LiY. HaoD. Network pharmacology analysis and experimental validation to explore the mechanism of kaempferol in the treatment of osteoporosis.Sci. Rep.2024141708810.1038/s41598‑024‑57796‑3 38528143
    [Google Scholar]
  24. GiuffridaE. PlataniaC.B.M. LazzaraF. ContiF. MarcantonioN. DragoF. BucoloC. The identification of new pharmacological targets for the treatment of glaucoma: A network pharmacology approach.Pharmaceuticals (Basel)20241710133310.3390/ph17101333 39458974
    [Google Scholar]
  25. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: archive for functional genomics data sets - Update.Nucleic Acids Res.201341Database issueD991D995[J].23193258
    [Google Scholar]
  26. SafranM. DalahI. AlexanderJ. RosenN. SteinT.I. ShmoishM. NativN. BahirI. DonigerT. KrugH. GeneCards Version 3: The human gene integrator.Database20102010baq02010.1093/database/baq020
    [Google Scholar]
  27. JiangW. WangX. SuS. DuS. SongH. Identifying the shared genes and KEGG pathways of Resolvin D1-targeted network and osteoarthritis using bioinformatics.Bioengineered20221349839985410.1080/21655979.2022.2061288 35436417
    [Google Scholar]
  28. ZhaoY. ZhuS. LiY. NiuX. ShangG. ZhouX. YinJ. BaoB. CaoY. ChengF. LiZ. WangR. YaoW. Integrated component identification, network pharmacology, and experimental verification revealed mechanism of Dendrobium officinale Kimura et Migo against lung cancer.J. Pharm. Biomed. Anal.202424311607710.1016/j.jpba.2024.116077 38460276
    [Google Scholar]
  29. GriesenauerR.H. SchillebeeckxC. KinchM.S. Assessing the public landscape of clinical-stage pharmaceuticals through freely available online databases.Drug Discov. Today20192441010101610.1016/j.drudis.2019.01.010 30690196
    [Google Scholar]
  30. SouthanC. Retrieving GPCR data from public databases.Curr. Opin. Pharmacol.201630384310.1016/j.coph.2016.07.002 27472010
    [Google Scholar]
  31. OpreaT.I. BologaC. HolmesJ. MathiasS. MetzgerV.T. WallerA. YangJ.J. LeachA.R. JensenL.J. KelleherK.J. SheilsT.K. MathéE. AvramS. EdwardsJ.S. Overview of the knowledge management center for illuminating the druggable genome.Drug Discov. Today202429310388210.1016/j.drudis.2024.103882 38218214
    [Google Scholar]
  32. SongP. YakufujiangY. ZhouJ. GuS. WangW. HuoZ. Identification of important genes related to anoikis in acute myocardial infarction.J. Cell. Mol. Med.2024288e1826410.1111/jcmm.18264 38526027
    [Google Scholar]
  33. KanehisaM. Toward understanding the origin and evolution of cellular organisms.Protein Sci.201928111947195110.1002/pro.3715 31441146
    [Google Scholar]
  34. ChenL. YangA. LiY. LiuX. JiangW. HuK. Molecular mechanism of oroxyli semen against triple-negative breast cancer verified by bioinformatics and in vitro experiments.Medicine (Baltimore)202310237e3483510.1097/MD.0000000000034835 37713894
    [Google Scholar]
  35. GuoH. LiC. ZhaoJ. GuoT. ChenS. QinX. ZhuK. ZhangW. Mechanism of Gastrodin against neurotoxicity based on network pharmacology, molecular docking and experimental verification.Biomed. Pharmacother.202418011761110.1016/j.biopha.2024.117611
    [Google Scholar]
  36. LuoC. LiY. LiangX. ChenY. ZouQ. KongY. GuoZ. SunW. WangX. Special electromagnetic field-treated water and far-infrared radiation alleviates lipopolysaccharide-induced acute respiratory distress syndrome in rats by regulating haptoglobin.Bioengineered20211216808682010.1080/21655979.2021.1969201 34519633
    [Google Scholar]
  37. KillcoyneS. CarterG.W. SmithJ. BoyleJ. Cytoscape: A community-based framework for network modeling.Methods Mol. Biol.200956321923910.1007/978‑1‑60761‑175‑2_12 19597788
    [Google Scholar]
  38. ChinC.H. ChenS.H. WuH.H. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  39. ZhaoX. ZhaoR. WenJ. ZhangX. WuS. FangJ. MaJ. GaoL. HuY. Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment.Med. Oncol.20244159610.1007/s12032‑024‑02357‑x 38526604
    [Google Scholar]
  40. ChenY. ZhangJ. LiF. Inhibitory role of remifentanil in hepatic ischemia-reperfusion injury through activation of Fmol/Parkin signaling pathway: A study based on network pharmacology analysis and high-throughput sequencing.Phytomedicine202412815530010.1016/j.phymed.2023.155300 38518639
    [Google Scholar]
  41. WangZ. LiX. ChenH. HanL. JiX. WangQ. WeiL. MiaoY. WangJ. MaoJ. ZhangZ. Decreased HLF expression predicts poor survival in lung adenocarcinoma.Med. Sci. Monit.202127e92933310.12659/MSM.929333 33979320
    [Google Scholar]
  42. SansonA. KriegP. SchrammM.M. KellnerK. MaloumbyR. KlampflS.M. BruntonP.J. BoschO.J. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats.Neurobiol. Stress20243010063110.1016/j.ynstr.2024.100631 38601362
    [Google Scholar]
  43. AbeY. HinesI. ZibariG. PavlickK. GrayL. KitagawaY. GrishamM. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo.Free Radic. Biol. Med.20094611710.1016/j.freeradbiomed.2008.09.029 18955130
    [Google Scholar]
  44. ZhouL. KohH.W. BaeU.J. ParkB.H. Aggravation of post-ischemic liver injury by overexpression of insulin-like growth factor binding protein 3.Sci. Rep.2015511123110.1038/srep11231 26073647
    [Google Scholar]
  45. MaoY. LeeE. YangX. BaeE.J. JeonR. ParkB.H. Targeting p21-activated kinase 4 (PAK4) with pyrazolo[3,4-d]pyrimidine derivative SPA7012 attenuates hepatic ischaemia-reperfusion injury in mice.J. Enzyme Inhib. Med. Chem.20223712133214610.1080/14756366.2022.2106478 35920284
    [Google Scholar]
  46. WangC. DangY. LoewenR.T. WaxmanS. ShahP. XiaX. LoewenN.A. Impact of pigment dispersion on trabecular meshwork cells.Graefes Arch. Clin. Exp. Ophthalmol.201925761217123010.1007/s00417‑019‑04300‑7 30919079
    [Google Scholar]
  47. WuY. ChenY. XuY. NiW. LinC. ShaoX. ShenZ. HeX. WangC. FangJ. Proteomic analysis of the amygdala reveals dynamic changes in glutamate transporter-1 during progression of complete freund’s adjuvant-induced pain aversion.Mol. Neurobiol.202360127166718410.1007/s12035‑023‑03415‑7 37541967
    [Google Scholar]
  48. KanehisaM. SatoY. KEGG Mapper for inferring cellular functions from protein sequences.Protein Sci.2020291283510.1002/pro.3711 31423653
    [Google Scholar]
  49. KimM.W. KangJ.H. JungH.J. ParkS.Y. HwangJ.I. SeongJ.K. YoonY.S. OhS.H. Deficiency of Ninjurin1 attenuates LPS/D-galactosamine-induced acute liver failure by reducing TNF-α-induced apoptosis in hepatocytes.J. Cell. Mol. Med.202226205122513410.1111/jcmm.17538 36071453
    [Google Scholar]
  50. PatelA. AslamR. JamilM. AnsariA. KhanS. The effects of growth factors and cytokines on hepatic regeneration: A systematic review.Cureus2022144e2453910.7759/cureus.24539 35651436
    [Google Scholar]
  51. QuesnelleK.M. BystromP.V. Toledo-PereyraL.H. Molecular responses to ischemia and reperfusion in the liver.Arch. Toxicol.201589565165710.1007/s00204‑014‑1437‑x 25566829
    [Google Scholar]
  52. SunY. HuangJ. SongK. BET protein inhibition mitigates acute myocardial infarction damage in rats via the TLR4/TRAF6/NF-κB pathway.Exp. Ther. Med.20151062319232410.3892/etm.2015.2789 26668635
    [Google Scholar]
  53. HeX. ZhengY. LiuS. ShiS. LiuY. HeY. ZhangC. ZhouX. MiR‐146a protects small intestine against ischemia/reperfusion injury by down‐regulating TLR4/TRAF6/NF‐κB pathway.J. Cell. Physiol.201823332476248810.1002/jcp.26124 28771774
    [Google Scholar]
  54. MahmoudH.M. Elsayed AbouzedD.E. Abo-youssefA.M. HemeidaR.A.M. Zafirlukast protects against hepatic ischemia–reperfusion injury in rats via modulating Bcl-2/Bax and NF-κB/SMAD-4 pathways.Int. Immunopharmacol.202312211049810.1016/j.intimp.2023.110498 37418987
    [Google Scholar]
  55. FengJ. ZhangQ. MoW. WuL. LiS. LiJ. LiuT. XuS. FanX. GuoC. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia–reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice.Drug Des. Devel. Ther.2017111989200610.2147/DDDT.S136792 28721018
    [Google Scholar]
  56. BaoQ. WangZ. ChengS. ZhangJ. LiuQ. ZhangY. ChengD. GuoX. WangX. HanB. SunP. Peptidomic analysis reveals that novel peptide ldp2 protects against hepatic ischemia/reperfusion injury.J. Clin. Transl. Hepatol.2023112405415[J].36643038
    [Google Scholar]
  57. KonishiT. LentschA.B. Hepatic ischemia/reperfusion: Mechanisms of tissue injury, repair, and regeneration.Gene Expr.201717427728710.3727/105221617X15042750874156 28893351
    [Google Scholar]
  58. PiaoC. SangJ. KouZ. WangY. LiuT. LuX. JiaoZ. WangH. Effects of exosomes derived from adipose-derived mesenchymal stem cells on pyroptosis and regeneration of injured liver.Int. J. Mol. Sci.202223201206510.3390/ijms232012065 36292924
    [Google Scholar]
  59. ZhouG. DadaL.A. WuM. KellyA. TrejoH. ZhouQ. VargaJ. SznajderJ.I. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1.Am. J. Physiol. Lung Cell. Mol. Physiol.20092976L1120L113010.1152/ajplung.00007.2009 19801454
    [Google Scholar]
  60. LiJ. LiR.J. LvG.Y. LiuH.Q. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury.Eur. Rev. Med. Pharmacol. Sci.2015191120362047[J].26125267
    [Google Scholar]
  61. ChaoT.Y. HsiehC.C. HsuS.M. WanC.H. LianG.T. TsengY.H. KuoY.H. HsiehS.C. Ergostatrien-3β-ol (EK100) from antrodia camphorata attenuates oxidative stress, inflammation, and liver injury in vitro and in vivo.Prev. Nutr. Food Sci.2021261586610.3746/pnf.2021.26.1.58 33859960
    [Google Scholar]
  62. LiuQ. ZhuL. ChengC. HuY.Y. FengQ. Natural active compounds from plant food and chinese herbal medicine for nonalcoholic fatty liver disease.Curr. Pharm. Des.2017233451365162[J].28925892
    [Google Scholar]
  63. HuangZ. WuZ. ZhangJ. WangK. ZhaoQ. ChenM. YanS. GuoQ. MaY. JiL. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response.Cell Biol. Toxicol.20233963269328510.1007/s10565‑023‑09832‑7 37816928
    [Google Scholar]
  64. ChauhanD. BandiM. SinghA.V. RayA. RajeN. RichardsonP. AndersonK.C. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells.Br. J. Haematol.2011155558859810.1111/j.1365‑2141.2011.08888.x 21950728
    [Google Scholar]
  65. KozakoT. KatoN. OhsugiT. UchidaY. YoshimitsuM. IshitsukaK. HigakiY. SatoH. AikawaA. HondaS. SRT1720 induces SIRT1‐independent cell death in adult T‐cell leukemia/lymphoma.FEBS J.2022289123477348810.1111/febs.16353 35029032
    [Google Scholar]
  66. LvC. HuH.Y. ZhaoL. ZhengH. LuoX.Z. ZhangJ. Intrathecal SRT1720, a SIRT1 agonist, exerts anti-hyperalgesic and anti-inflammatory effects on chronic constriction injury-induced neuropathic pain in rats.Int. J. Clin. Exp. Med.20158571527159[J].26221253
    [Google Scholar]
  67. XuX. LaiY. HuaZ.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials.Biosci. Rep.2019391BSR2018099210.1042/BSR20180992 30530866
    [Google Scholar]
  68. HsuC.M. LinJ.J. SuJ.H. LiuC.I. 13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular carcinoma cells through mitochondrial dysfunction and suppression of the PI3K/AKT/mTOR/p70S6K signalling pathway.Pharm. Biol.20226012276228510.1080/13880209.2022.2145489 36416062
    [Google Scholar]
  69. YanY. ChenX. HuangJ. HuanC. LiC. H2O2-induced oxidative stress impairs meat quality by inducing apoptosis and autophagy via ROS/NF-κB signaling pathway in broiler thigh muscle.Poult. Sci.2022101410175910.1016/j.psj.2022.101759 35240354
    [Google Scholar]
  70. LiK. FengZ. WangL. MaX. WangL. LiuK. GengX. PengC. Chlorogenic acid alleviates hepatic ischemia–reperfusion injury by inhibiting oxidative stress, inflammation, and mitochondria-mediated apoptosis in vivo and in vitro.Inflammation20234631061107610.1007/s10753‑023‑01792‑8 36856879
    [Google Scholar]
  71. ZhuS.F. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury.Hepatobiliary Pancreat. Dis. Int.2023221455310.1016/j.hbpd.2022.07.008
    [Google Scholar]
  72. WangM.E. ChenY.C. ChenI.S. HsiehS.C. ChenS.S. ChiuC.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes.J. Nutr. Biochem.201223101352136610.1016/j.jnutbio.2011.08.004 22221674
    [Google Scholar]
  73. KamiikeW. FujikawaM. KosekiM. SumimuraJ. MiyataM. KawashimaY. WadaH. TagawaK. Different patterns of leakage of cytosolic and mitochondrial enzymes.Clinica Chimica Acta1989185326527010.1016/0009‑8981(89)90216‑7
    [Google Scholar]
  74. KamelE.O. HassaneinE.H.M. AhmedM.A. AliF.E.M. Perindopril ameliorates hepatic ischemia reperfusion injury via regulation of NF‐κB‐p65/TLR‐4, JAK1/STAT‐3, Nrf‐2, and PI3K/Akt/mTOR signaling pathways.Anat. Rec. (Hoboken)2020303719351949
    [Google Scholar]
  75. XiongH.Q. AbbruzzeseJ.L. LinE. WangL. ZhengL. XieK. NF‐κB activity blockade impairs the angiogenic potential of human pancreatic cancer cells.Int. J. Cancer2004108218118810.1002/ijc.11562 14639600
    [Google Scholar]
  76. YamanakaK. HoubenP. BrunsH. SchultzeD. HatanoE. SchemmerP. A systematic review of pharmacological treatment options used to reduce ischemia reperfusion injury in rat liver transplantation.PLoS One2015104e012221410.1371/journal.pone.0122214 25919110
    [Google Scholar]
  77. LiJ. WangF. XiaY. DaiW. ChenK. LiS. LiuT. ZhengY. WangJ. LuW. ZhouY. YinQ. LuJ. ZhouY. GuoC. Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice.Mar. Drugs20151363368338710.3390/md13063368 26023842
    [Google Scholar]
  78. MahmoudA.R. AliF.E.M. Abd-ElhamidT.H. HassaneinE.H.M. Coenzyme Q10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways.Tissue Cell20196011310.1016/j.tice.2019.07.007 31582012
    [Google Scholar]
  79. ElmoreS. Apoptosis: a review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  80. SherifI.O. Al-ShaalanN.H. Vildagliptin attenuates hepatic ischemia/reperfusion injury via the TLR4/NF‐κB signaling pathway.Oxid. Med. Cell. Longev.201820181350909110.1155/2018/3509091 30405876
    [Google Scholar]
  81. MaoA. QinQ. YangW. WeiC. Synergistic anticancer mechanisms of curcumol and paclitaxel in triple-negative breast cancer treatment may involve down-regulating ZBTB7A expression via the NF-B signaling pathway.Iran. J. Basic Med. Sci.2022255652658[J].35911648
    [Google Scholar]
  82. TangH. ZhangS. LuX. GengT. Effects of puerarin on the intervertebral disc degeneration and biological characteristics of nucleus pulposus cells.Pharm. Biol.2023611122210.1080/13880209.2022.2147548 36524765
    [Google Scholar]
  83. ChenL. ZhangX. ChenJ. ZhangX. FanH. LiS. XieP. NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis.Toxicon20148712013010.1016/j.toxicon.2014.06.002 24932741
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322450241212070042
Loading
/content/journals/ctmc/10.2174/0115680266322450241212070042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test