Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Diabetes mellitus, a metabolic disease characterized by high blood glucose levels, has increased dramatically in recent years, prompting the need for more affordable diagnoses and treatments.

Objective

This study aimed to conduct a brief historical and theoretical review on the development of insulin.

Methods

Scientific and technological data have been retrieved and analyzed with a focus on the development of the active pharmaceutical ingredient insulin and insulin-based medicines. Data have been retrieved from the PubMed database available the CAPES portal.

Results

Diabetes is one of the oldest diseases in the world. The year 2021 marked the 100th anniversary of the discovery of insulin, which transformed diabetes from a fatal disease into a chronic disease. The extraction and purification of insulin from bovine or porcine pancreases from slaughterhouses has enabled the pharmaceutical industry to produce insulin on a large scale. The introduction of insulin analogs in 1996 expanded the options. Currently, commercial insulin consists of human insulin and/or human insulin analogs.

Conclusion

The state-of-the-art and technological development of insulin over the last 100 years has been presented in this work. The development of new pharmaceutical technologies has led to the obtainment of improved versions of insulin, as well as the emergence of different types of insulin. Alongside the innovations in the development of the active ingredient and related medicines, new formulations, methods, and routes of administration have emerged based on the pharmacodynamic, pharmacokinetic, and pharmacotechnical modulations of the drug.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266315941241127092613
2025-01-10
2025-09-14
Loading full text...

Full text loading...

References

  1. Skills for innovation in the Brazilian pharmaceutical industry.Available from: https://www.cgee.org.br/-/competencias-para-inovar-na-industria-farmaceutica-brasileira 2017
  2. ZieglerA.G. DanneT. DanielC. BonifacioE. 100 Years of insulin: Lifesaver, immune target, and potential remedy for prevention.Med20212101120113710.1016/j.medj.2021.08.00334993499
    [Google Scholar]
  3. Foresight global health.Available from: https://foresightglobalhealth.com/addressing-the-unmet-needs-of-people-living-with-diabetes-100-years-after-the-discovery-of-insulin/(Accessed on: 3/7/2021).2021
  4. Overcoming key barriers to quality diabetes care around the world.Available from: https://www.ifpma.org/global-health-matters/overcoming-key-barriers-to-quality-diabetes-care-around-the-world/(Accessed on: 1/07/2021).2021
  5. 2023 annual report.Available from: https://diabetes.org/sites/default/files/2024-06/ADA_2023_AnnualReport.pdf(Accessed on: 30/09/2024).
  6. BeranD. MirzaZ. DongJ. Access to insulin: Applying the concept of security of supply to medicines.Bull. World Health Organ.201997535836410.2471/BLT.18.21761231551632
    [Google Scholar]
  7. RheaE.M. BanksW.A. A historical perspective on the interactions of insulin at the blood‐brain barrier.J. Neuroendocrinol.2021334e1292910.1111/jne.1292933433042
    [Google Scholar]
  8. BeranD. Lazo-PorrasM. MbaC.M. MbanyaJ.C. A global perspective on the issue of access to insulin.Diabetologia202164595496210.1007/s00125‑020‑05375‑233483763
    [Google Scholar]
  9. Classification of diabetes mellitus.Available from: https://www.who.int/publications/i/item/classification-of-diabetes-mellitus 2019
  10. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  11. Long-acting analogue insulins.Available from: https://www.gov.br/conitec/pt-br/midias/consultas/relatorios/2024/sociedade/relatorio-para-a-sociedade-no-489-insulinas-prolongada(Accessed on: 30/09/2024).
  12. Clinical protocol and therapeutic guidelines.Available from: https://www.gov.br/conitec/pt-br/midias/relatorios/2024/RRPCDTDM2_Final.pdf(Accessed on: 27/09/2024).2024
  13. KosmasC.E. BousvarouM.D. KostaraC.E. PapakonstantinouE.J. SalamouE. GuzmanE. Insulin resistance and cardiovascular disease.J. Int. Med. Res.20235130300060523116454810.1177/0300060523116454836994866
    [Google Scholar]
  14. New WHA Resolution to bring much needed boost to diabetes prevention and control efforts.Available from: https://www.who.int/news/item/27-05-2021-new-wha-resolution-to-bring-much-needed-boost-to-diabetes-prevention-and-control-efforts(Accessed on: 27/09/2024).2021
  15. ConteC. CipponeriE. RodenM. Diabetes mellitus, energy metabolism, and COVID-19.Endocr. Rev.2023452bnad03210.1210/endrev/bnad03237934800
    [Google Scholar]
  16. LimS. BaeJ.H. KwonH.S. NauckM.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management.Nat. Rev. Endocrinol.2021171113010.1038/s41574‑020‑00435‑433188364
    [Google Scholar]
  17. SchwartzS.S. EpsteinS. CorkeyB.E. GrantS.F.A. GavinJ.R. AguilarR.B. The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema.Diabetes Care201639217918610.2337/dc15‑158526798148
    [Google Scholar]
  18. SkylerJ.S. BakrisG.L. BonifacioE. DarsowT. EckelR.H. GroopL. GroopP.H. HandelsmanY. InselR.A. MathieuC. McElvaineA.T. PalmerJ.P. PuglieseA. SchatzD.A. SosenkoJ.M. WildingJ.P.H. RatnerR.E. Differentiation of diabetes by pathophysiology, natural history, and prognosis.Diabetes201766224125510.2337/db16‑080627980006
    [Google Scholar]
  19. WhiteM.F. KahnC.R. Insulin action at a molecular level – 100 years of progress.Mol. Metab.20215210130410.1016/j.molmet.2021.10130434274528
    [Google Scholar]
  20. BuseJ.B. DaviesM.J. FrierB.M. Philis-TsimikasA. 100 years on: The impact of the discovery of insulin on clinical outcomes.BMJ Open Diabetes Res. Care202191e00237310.1136/bmjdrc‑2021‑00237334400466
    [Google Scholar]
  21. ForstT. ChoudharyP. SchneiderD. LinetzkyB. PozzilliP. A practical approach to the clinical challenges in initiation of basal insulin therapy in people with type 2 diabetes.Diabetes Metab. Res. Rev.2021376e341810.1002/dmrr.341833098260
    [Google Scholar]
  22. RydénL. LindstenJ. The history of the Nobel prize for the discovery of insulin.Diabetes Res. Clin. Pract.202117510881910.1016/j.diabres.2021.10881933865917
    [Google Scholar]
  23. DuprasT.L. WilliamsL.J. WillemsH. PeetersC. Pathological skeletal remains from ancient Egypt: The earliest case of diabetes mellitus?Pract. Diabetes Int.2010278358363a10.1002/pdi.1523
    [Google Scholar]
  24. MohamedA.H. AbbassiM.M. SabryN.A. Knowledge, attitude, and practice of insulin among diabetic patients and pharmacists in Egypt: “Cross-sectional observational study”.BMC Med. Educ.202424139010.1186/s12909‑024‑05367‑538594659
    [Google Scholar]
  25. KingK.M. RubinG. A history of diabetes: From antiquity to discovering insulin.Br. J. Nurs.200312181091109510.12968/bjon.2003.12.18.1177514581842
    [Google Scholar]
  26. SrivastavaP.K. SrivastavaS. SinghA.K. DwivediK.N. Role of Ayurveda in management of diabetes mellitus.Int. Res. J. Pharm.2015618910.7897/2230‑8407.0613
    [Google Scholar]
  27. LaiosK. KaramanouM. SaridakiZ. AndroutsosG. Aretaeus of Cappadocia and the first description of diabetes.Hormones (Athens)201211110911310.1007/BF0340154522450352
    [Google Scholar]
  28. GullW. The Family Physician: A Manual of Domestic MedicineLondonCassell188310.5962/bhl.title.27886
    [Google Scholar]
  29. EknoyanG. NagyJ. A history of diabetes mellitus or how a disease of the kidneys evolved into a kidney disease.Adv. Chronic Kidney Dis.200512222322910.1053/j.ackd.2005.01.00215822058
    [Google Scholar]
  30. MasierekM. NabrdalikK. JanotaO. KwiendaczH. MacherskiM. GumprechtJ. The review of insulin pens - Past, present, and look to the future.Front. Endocrinol. (Lausanne)20221382748410.3389/fendo.2022.82748435355552
    [Google Scholar]
  31. National museum of American history.Available from: https://americanhistory.si.edu/(Accessed on: 6 July 2021).
  32. BlissM. The Discovery of InsulinChicagoUniversity of Chicago Press198210.1007/978‑1‑349‑09612‑1_9
    [Google Scholar]
  33. LeungP.S. The Renin-Angiotensin System: Current Research Progress in The PancreasDordrechtSpringer2010
    [Google Scholar]
  34. RemediM.S. EmfingerC. Pancreatic β‐cell identity in diabetes.Diabetes Obes. Metab.201618Suppl 111011610.1111/dom.1272727615139
    [Google Scholar]
  35. MurrayI. Paulesco and the isolation of insulin.J. Hist. Med. Allied Sci.1971XXVI215015710.1093/jhmas/XXVI.2.1504930788
    [Google Scholar]
  36. BantingF.G. BestC.H. The internal secretion of the pancreas. 1922.Indian J. Med. Res.2007125325126617582843
    [Google Scholar]
  37. LewisG.F. BrubakerP.L. The discovery of insulin revisited: Lessons for the modern era.J. Clin. Invest.20211311e14223910.1172/JCI14223933393501
    [Google Scholar]
  38. LerouxM. Boutchueng-DjidjouM. FaureR. Insulin’s discovery: New insights on its hundredth birthday: From insulin action and clearance to sweet networks.Int. J. Mol. Sci.2021223103010.3390/ijms2203103033494161
    [Google Scholar]
  39. MacleodJ.J.R. The metabolism of the carbohydrates.Recent advances in physiology and biochemistry.LondonEdward Arnold HillL. 1906312386
    [Google Scholar]
  40. FlierJ.S. KahnC.R. Insulin: A pacesetter for the shape of modern biomedical science and the Nobel Prize.Mol. Metab.20215210119410.1016/j.molmet.2021.10119433610859
    [Google Scholar]
  41. MinotG.R. MurphyW.P. Treatment of pernicious anemia by a special diet.JAMA192687747047610.1001/jama.1926.026800700160056358569
    [Google Scholar]
  42. FlierJ.S. Starvation in the midst of plenty: Reflections on the history and biology of insulin and leptin.Endocr. Rev.201940111610.1210/er.2018‑0017930357355
    [Google Scholar]
  43. ŠakićZ. RudežK.D. Radoš KajićA. Klobučar MajanovićS. RahelićD. Celebrating 100 years of insulin use.Acta Clin. Croat.202261348248710.20471/acc.2022.61.03.1337492355
    [Google Scholar]
  44. SangerF. The chemistry of insulin.Available from: https://www.nobelprize.org/uploads/2018/06/sanger-lecture.pdf 1958
  45. BilousR. DonnellyR. Handbook of DiabetesWiley-Blackwell201010.1002/9781444391374
    [Google Scholar]
  46. LapollaA. DalfràM.G. Hundred years of insulin therapy: Purified early insulins.Am. J. Ther.2020271e24e2910.1097/MJT.000000000000108131703008
    [Google Scholar]
  47. ChoiE. BaiX.C. The activation mechanism of the insulin receptor: A structural perspective.Annu. Rev. Biochem.202392124727210.1146/annurev‑biochem‑052521‑03325037001136
    [Google Scholar]
  48. TokarzV.L. MacDonaldP.E. KlipA. The cell biology of systemic insulin function.J. Cell Biol.201821772273228910.1083/jcb.20180209529622564
    [Google Scholar]
  49. GoraiB. VashisthH. Progress in simulation studies of insulin structure and function.Front. Endocrinol. (Lausanne)20221390872410.3389/fendo.2022.90872435795141
    [Google Scholar]
  50. WeissM.A. LawrenceM.C. A thing of beauty: Structure and function of insulin's “aromatic triplet”.Diabetes Obes. Metab.201820Suppl 2516310.1111/dom.1340230230175
    [Google Scholar]
  51. MayerJ.P. ZhangF. DiMarchiR.D. Insulin structure and function.Biopolymers200788568771310.1002/bip.2073417410596
    [Google Scholar]
  52. RahmanM.S. HossainK.S. DasS. KunduS. AdegokeE.O. RahmanM.A. HannanM.A. UddinM.J. PangM.G. Role of insulin in health and disease: An update.Int. J. Mol. Sci.20212212640310.3390/ijms2212640334203830
    [Google Scholar]
  53. YudhaniR.D. SariY. NugrahaningsihD.A.A. SholikhahE.N. RochmantiM. PurbaA.K.R. KhotimahH. NugrahennyD. MustofaM. In vitro insulin resistance model: A recent update.J. Obes.2023202311310.1155/2023/196473236714242
    [Google Scholar]
  54. WalkerJ.T. SaundersD.C. BrissovaM. PowersA.C. The human islet: Mini-organ with mega-impact.Endocr. Rev.202142560565710.1210/endrev/bnab01033844836
    [Google Scholar]
  55. AndraliS.S. SampleyM.L. VanderfordN.L. ÖzcanS. Glucose regulation of insulin gene expression in pancreatic β-cells.Biochem. J.2008415111010.1042/BJ2008102918778246
    [Google Scholar]
  56. GaoT. McKennaB. LiC. ReichertM. NguyenJ. SinghT. YangC. PannikarA. DolibaN. ZhangT. StoffersD.A. EdlundH. MatschinskyF. SteinR. StangerB.Z. Pdx1 maintains β cell identity and function by repressing an α cell program.Cell Metab.201419225927110.1016/j.cmet.2013.12.00224506867
    [Google Scholar]
  57. HermanR. SikonjaJ. JensterleM. JanezA. DolzanV. Insulin metabolism in polycystic ovary syndrome: Secretion, signaling, and clearance.Int. J. Mol. Sci.2023244314010.3390/ijms2404314036834549
    [Google Scholar]
  58. HaberE.P. CuriR. CarvalhoC.R.O. CarpinelliA.R. Secreção da insulina: efeito autócrino da insulina e modulação por ácidos graxos.Arq. Bras. Endocrinol. Metabol200145321922710.1590/S0004‑27302001000300003
    [Google Scholar]
  59. PetersenM.C. ShulmanG.I. Mechanisms of insulin action and insulin resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.201730067154
    [Google Scholar]
  60. KebedeM.A. OlerA.T. GreggT. BalloonA.J. JohnsonA. MitokK. RabagliaM. SchuelerK. StapletonD. ThorstensonC. WrightonL. FloydB.J. RichardsO. RainesS. EliceiriK. SeidahN.G. RhodesC. KellerM.P. CoonJ.L. AudhyaA. AttieA.D. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells.J. Clin. Invest.2014124104240425610.1172/JCI7407225157818
    [Google Scholar]
  61. DuW. ZhouM. ZhaoW. ChengD. WangL. LuJ. SongE. FengW. XueY. XuP. XuT. HID-1 is required for homotypic fusion of immature secretory granules during maturation.eLife20165e1813410.7554/eLife.1813427751232
    [Google Scholar]
  62. van GerwenJ. Shun-ShionA.S. FazakerleyD.J. Insulin signalling and GLUT4 trafficking in insulin resistance.Biochem. Soc. Trans.20235131057106910.1042/BST2022106637248992
    [Google Scholar]
  63. OriáR.B. BritoG.A.C. Digestive System: Basic-Clinical IntegrationSão PauloBlucher2016
    [Google Scholar]
  64. RegeN.K. LiuM. YangY. DhayalanB. WickramasingheN.P. ChenY.S. RahimiL. GuoH. HaatajaL. SunJ. Ismail-BeigiF. PhillipsN.B. ArvanP. WeissM.A. Evolution of insulin at the edge of foldability and its medical implications.Proc. Natl. Acad. Sci. USA202011747296182962810.1073/pnas.201090811733154160
    [Google Scholar]
  65. Canadian intellectual property office.Available from: https://ised-isde.canada.ca/site/canadian-intellectual-property-office/en(Accessed on: 15/08/2021).
  66. DunlopD.D. Diabetes mellitus.Thesis, University of Edinburgh Pfizer Medical Monographs1966
    [Google Scholar]
  67. BolliG.B. ChengA.Y.Y. OwensD.R. Insulin: Evolution of insulin formulations and their application in clinical practice over 100 years.Acta Diabetol.20225991129114410.1007/s00592‑022‑01938‑435854185
    [Google Scholar]
  68. AttieA.D. TangQ.Q. BornfeldtK.E. The insulin centennial - 100 years of milestones in biochemistry.J. Lipid Res.20216210013210.1016/j.jlr.2021.10013234717951
    [Google Scholar]
  69. RodbardH.W. RodbardD. Biosynthetic human insulin and insulin analogs.Am. J. Ther.2020271e42e5110.1097/MJT.000000000000108931876563
    [Google Scholar]
  70. The discovery of insulin.Available from: https://revistapesquisa.fapesp.br/wp-content/uploads/2021/03/090-093_memoria_302.pdf(Accessed on: 18/08/2021).2021
  71. PiresA.C. ChacraA.R. The evolution of insulin therapy in type 1 diabetes mellitus.Arq. Bras. Endocrinol. Metabol200852226827810.1590/S0004‑2730200800020001418438537
    [Google Scholar]
  72. SindingC. Making the unit of insulin: Standards, clinical work, and industry, 1920-1925.Bull. Hist. Med.200276223127010.1353/bhm.2002.009712060790
    [Google Scholar]
  73. Cristália featured in the media.Available from: https://www.cristalia.com.br/midia/a-descoberta-da-insulina(Accessed on: 10/07/2021).
  74. FerreiraB. Public Insulin ProductionFarmanguinhos Notebooks2007
    [Google Scholar]
  75. AttieA.D. TangQ.Q. BornfeldtK.E. The insulin centennial - 100 years of milestones in biochemistry.J. Biol. Chem.2021297510127810.1016/j.jbc.2021.10127834717954
    [Google Scholar]
  76. SimsE.K. CarrA.L.J. OramR.A. DiMeglioL.A. Evans-MolinaC. 100 years of insulin: Celebrating the past, present and future of diabetes therapy.Nat. Med.20212771154116410.1038/s41591‑021‑01418‑234267380
    [Google Scholar]
  77. JuniorP. OlivieraD. Pharmaceutical scenario for insulin production in Brazil.Thesis, Institute of Pharmaceutical Technology, Rio de Janeiro2015
    [Google Scholar]
  78. PhillipM. NimriR. BergenstalR.M. Barnard-KellyK. DanneT. HovorkaR. KovatchevB.P. MesserL.H. ParkinC.G. Ambler-OsbornL. AmielS.A. BallyL. BeckR.W. BiesterS. BiesterT. BlanchetteJ.E. BosiE. BoughtonC.K. BretonM.D. BrownS.A. BuckinghamB.A. CaiA. CarlsonA.L. CastleJ.R. ChoudharyP. CloseK.L. CobelliC. CriegoA.B. DavisE. de BeaufortC. de BockM.I. DeSalvoD.J. DeVriesJ.H. DovcK. DoyleF.J. EkhlaspourL. ShvalbN.F. ForlenzaG.P. GallenG. GargS.K. GershenoffD.C. Gonder-FrederickL.A. HaidarA. HartnellS. HeinemannL. HellerS. HirschI.B. HoodK.K. IsaacsD. KlonoffD.C. KordonouriO. KowalskiA. LaffelL. LawtonJ. LalR.A. LeelarathnaL. MaahsD.M. MurphyH.R. NørgaardK. O’NealD. OserS. OserT. RenardE. RiddellM.C. RodbardD. RussellS.J. SchatzD.A. ShahV.N. SherrJ.L. SimonsonG.D. WadwaR.P. WardC. WeinzimerS.A. WilmotE.G. BattelinoT. Consensus recommendations for the use of automated insulin delivery technologies in clinical practice.Endocr. Rev.202344225428010.1210/endrev/bnac02236066457
    [Google Scholar]
  79. PsomaS.D. KanthouC. Wearable insulin biosensors for diabetes management: Advances and challenges.Biosensors (Basel)202313771910.3390/bios1307071937504117
    [Google Scholar]
  80. AlvesF.M. Research optimizes extraction of pre-insulin from genetically modified corn endosperm.Available from: https://unicamp.br/unicamp/unicamp_hoje/jornalPDF/ju274pag09.pdf 2004
  81. PereiraA.J. Biotechnology in DebateFortalezaEdUECE2015
    [Google Scholar]
  82. MoloneyM. Cheaper insulin from transgenic plants.Available from: http://www.cib.org.br/entrevista.php?id=46(Accessed in: June 2023)2023
  83. Final report: National innovation initiative. Prospective study: Future vision and INI agenda.Biotechnol.2007
    [Google Scholar]
  84. FerreiraS.B. KaiserC.R. JuniorF.P.S. GelvesL.G.V. SengerM.R. Synthesis of novel 1,2,3-triazoles derived from bergenin, compositions and use as inhibitors of glycosidase enzymes.BR Patent 102013002260-8A22022
  85. National Health Surveillance Agency - Anvisa.Available from: https://www.gov.br/planalto/pt-br/acompanh e-o-planalto/noticias/2024/04/presidente-acompanha-retomada-da-producao-de-insulina-no-brasil-em-nova-lima-mg(Acessed on: 25/09/2024).
  86. HoyS.M. MYL1501D insulin glargine: A review in diabetes mellitus.BioDrugs202034224525110.1007/s40259‑020‑00418‑x32215829
    [Google Scholar]
  87. GradelA.K.J. PorsgaardT. LykkesfeldtJ. SeestedT. Gram-NielsenS. KristensenN.R. RefsgaardH.H.F. Factors affecting the absorption of subcutaneously administered insulin: Effect on variability.J. Diabetes Res.2018201811710.1155/2018/120512130116732
    [Google Scholar]
  88. HubálekF. RefsgaardH.H.F. Gram-NielsenS. MadsenP. NishimuraE. MünzelM. BrandC.L. StidsenC.E. ClaussenC.H. WulffE.M. PridalL. RibelU. KildegaardJ. PorsgaardT. JohanssonE. SteensgaardD.B. HovgaardL. GlendorfT. HansenB.F. JensenM.K. NielsenP.K. LudvigsenS. RughS. GaribayP.W. MooreM.C. CherringtonA.D. KjeldsenT. Molecular engineering of safe and efficacious oral basal insulin.Nat. Commun.2020111374610.1038/s41467‑020‑17487‑932719315
    [Google Scholar]
  89. OngS.C. BelgiA. van LieropB. DelaineC. AndrikopoulosS. MacRaildC.A. NortonR.S. HaworthN.L. RobinsonA.J. ForbesB.E. Probing the correlation between insulin activity and structural stability through introduction of the rigid A6-A11 bond.J. Biol. Chem.201829330119281194310.1074/jbc.RA118.00248629899115
    [Google Scholar]
  90. ZhangY. YuJ. KahkoskaA.R. WangJ. BuseJ.B. GuZ. Advances in transdermal insulin delivery.Adv. Drug Deliv. Rev.2019139517010.1016/j.addr.2018.12.00630528729
    [Google Scholar]
  91. JarosinskiM.A. ChenY.S. VarasN. DhayalanB. ChatterjeeD. WeissM.A. New horizons: Next-generation insulin analogues: Structural principles and clinical goals.J. Clin. Endocrinol. Metab.2022107490992810.1210/clinem/dgab84934850005
    [Google Scholar]
  92. LawrenceM.C. Understanding insulin and its receptor from their three-dimensional structures.Mol. Metab.20215210125510.1016/j.molmet.2021.10125533992784
    [Google Scholar]
  93. HirschI.B. JunejaR. BealsJ.M. AntalisC.J. WrightE.E. The evolution of insulin and how it informs therapy and treatment choices.Endocr. Rev.202041573375510.1210/endrev/bnaa01532396624
    [Google Scholar]
  94. Long-acting insulin analogues for treatment of type 2 diabetes mellitus.Available from: https://www.gov.br/conitec/pt-br/midias/consultas/relatorios/2024/relatorio-preliminar_analogos_acao_prolongada_dm2_cp63(Acessed on: 26/09/2024).2024
  95. Therapeutic management in type 2 diabetes: SBD algorithm.Available from: https://www.diabetes.org.br/profissionais/images/2018/posicionamento-oficial-sbd-tratamento-do-dm2-versao-final-e-definitiva-10-mai-2018.pdf(Acessed on: 17/07/2020).2020
  96. DuckworthW. AbrairaC. MoritzT. RedaD. EmanueleN. ReavenP.D. ZieveF.J. MarksJ. DavisS.N. HaywardR. WarrenS.R. GoldmanS. McCarrenM. VitekM.E. HendersonW.G. HuangG.D. Glucose control and vascular complications in veterans with type 2 diabetes.N. Engl. J. Med.2009360212913910.1056/NEJMoa080843119092145
    [Google Scholar]
  97. FrierB.M. SchernthanerG. HellerS.R. Hypoglycemia and cardiovascular risks.Diabetes Care201134Suppl 2S132S13710.2337/dc11‑s22021525444
    [Google Scholar]
  98. DonnerT. MuñozM. Update on insulin therapy for type 2 diabetes.J. Clin. Endocrinol. Metab.20129751405141310.1210/jc.2011‑220222442275
    [Google Scholar]
  99. JanghorbaniM. DehghaniM. Salehi-MarzijaraniM. Systematic review and meta-analysis of insulin therapy and risk of cancer.Horm. Cancer20123413714610.1007/s12672‑012‑0112‑z22528451
    [Google Scholar]
  100. GersteinH.C. BoschJ. DagenaisG.R. DíazR. JungH. MaggioniA.P. PogueJ. ProbstfieldJ. RamachandranA. RiddleM.C. RydénL.E. YusufS. Basal insulin and cardiovascular and other outcomes in dysglycemia.N. Engl. J. Med.2012367431932810.1056/NEJMoa120385822686416
    [Google Scholar]
  101. CryerP.E. Mechanisms of hypoglycemia-associated autonomic failure in diabetes.N. Engl. J. Med.2013369436237210.1056/NEJMra121522823883381
    [Google Scholar]
  102. American Diabetes Association6. Glycemic targets: Standards of medical care in diabetes - 2018.Diabetes Care201841Suppl. 1S55S6410.2337/dc18‑S00629222377
    [Google Scholar]
  103. Brazilian diabetes association.Available from: https://www.diabetes.org.br/publico/diabetes/insulina(Acessed on: 25/07/2021).2021
  104. DonnerT. SarkarS. Insulin- Pharmacology, Therapeutic Regimens and Principles of Intensive Insulin TherapySouth Dartmouth (MA)MDText.com, Inc.200025905175
    [Google Scholar]
  105. HalbergI.B. LybyK. WassermannK. HeiseT. ZijlstraE. Plum-MörschelL. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: A randomised, double-blind, phase 2 trial.Lancet Diabetes Endocrinol.20197317918810.1016/S2213‑8587(18)30372‑330679095
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266315941241127092613
Loading
/content/journals/ctmc/10.2174/0115680266315941241127092613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test