Skip to content
2000
Volume 25, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

As one of the common malignant tumors nowadays, liver cancer has more risk factors for its development and is characterized by a high recurrence rate, high mortality rate, and poor prognosis, which poses a great threat to people's health. The specific efficacy of traditional Chinese medicine is based on clinical practice, which is a high degree of generalization of the characteristics and scope of the clinical effects of prescription medicines and a special form of expression of the medical effects of the human body within the scope of traditional Chinese medicine. Because of its multi-ingredient, multi-target, and multi-pathway characteristics, it has a great advantage in the treatment of liver cancer. Still, at present, its specific molecular mechanism of action has not yet been clarified.

Aim

This study reviews the current status and characteristics of network pharmacology research in the treatment of liver cancer, aiming to provide new ideas and methods for traditional Chinese medicine treatment of the disease.

Methods

This study was searched on the Web of Science and PubMed using keywords, such as “traditional Chinese medicine”, “liver cancer,” and “network pharmacology.” The citation dates of the literature cited in this review are from 2000 to 2024.

Results

The discovery of the key molecular mechanisms of traditional Chinese medicine in the treatment of liver cancer through the network pharmacology approach and the in-depth study of the related signaling pathways are conducive to a more in-depth exploration of traditional Chinese medicine.

Conclusion

Network pharmacology research plays a key role in the treatment and prevention of liver cancer and deserves deeper exploration in the future.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266336478241118065659
2025-01-09
2025-12-25
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/26/CTMC-25-26-05.html?itemId=/content/journals/ctmc/10.2174/0115680266336478241118065659&mimeType=html&fmt=ahah

References

  1. StarleyB.Q. CalcagnoC.J. HarrisonS.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection.Hepatology20105151820183210.1002/hep.23594 20432259
    [Google Scholar]
  2. CenterM.M. JemalA. International trends in liver cancer incidence rates.Cancer Epidemiol. Biomarkers Prev.201120112362236810.1158/1055‑9965.EPI‑11‑0643 21921256
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.21551 30620402
    [Google Scholar]
  4. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  5. AkinyemijuT. AberaS. AhmedM. AlamN. AlemayohuM.A. AllenC. Al-RaddadiR. Alvis-GuzmanN. AmoakoY. ArtamanA. AyeleT.A. BaracA. BensenorI. BerhaneA. BhuttaZ. Castillo-RivasJ. ChitheerA. ChoiJ.Y. CowieB. DandonaL. DandonaR. DeyS. DickerD. PhucH. EkwuemeD.U. ZakiM.E.S. FischerF. FürstT. HancockJ. HayS.I. HotezP. JeeS.H. KasaeianA. KhaderY. KhangY.H. KumarG.A. KutzM. LarsonH. LopezA. LuneviciusR. MalekzadehR. McAlindenC. MeierT. MendozaW. MokdadA. Moradi-LakehM. NagelG. NguyenQ. NguyenG. OgboF. PattonG. PereiraD.M. PourmalekF. QorbaniM. RadfarA. RoshandelG. SalomonJ.A. SanabriaJ. SartoriusB. SatpathyM. SawhneyM. SepanlouS. ShackelfordK. ShoreH. SunJ. MengistuD.T. Topór-MadryR. TranB. UkwajaK.N. VlassovV. VollsetS.E. VosT. WakayoT. WeiderpassE. WerdeckerA. YonemotoN. YounisM. YuC. ZaidiZ. ZhuL. MurrayC.J.L. NaghaviM. FitzmauriceC. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level.JAMA Oncol.20173121683169110.1001/jamaoncol.2017.3055 28983565
    [Google Scholar]
  6. KanwalF. KramerJ. AschS.M. ChayanupatkulM. CaoY. El-SeragH.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents.Gastroenterology201715349961005.e110.1053/j.gastro.2017.06.012 28642197
    [Google Scholar]
  7. LlovetJ.M. Zucman-RossiJ. PikarskyE. SangroB. SchwartzM. ShermanM. GoresG. Hepatocellular carcinoma.Nat. Rev. Dis. Primers2016211601810.1038/nrdp.2016.18 27158749
    [Google Scholar]
  8. CaoW. ChenH.D. YuY.W. LiN. ChenW.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020.Chin. Med. J. (Engl.)2021134778379110.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  9. VillanuevaA. Hepatocellular Carcinoma.N. Engl. J. Med.2019380151450146210.1056/NEJMra1713263 30970190
    [Google Scholar]
  10. El-KhoueiryA.B. SangroB. YauT. CrocenziT.S. KudoM. HsuC. KimT.Y. ChooS.P. TrojanJ. WellingT.H. MeyerT. KangY.K. YeoW. ChopraA. AndersonJ. dela CruzC. LangL. NeelyJ. TangH. DastaniH.B. MeleroI. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial.Lancet2017389100882492250210.1016/S0140‑6736(17)31046‑2 28434648
    [Google Scholar]
  11. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  12. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  13. LiS. FanT.P. JiaW. LuA. ZhangW. Network pharmacology in traditional chinese medicine.Evid. Based Complement. Alternat. Med.20142014113846010.1155/2014/138460 24707305
    [Google Scholar]
  14. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  15. ZhengS. XueC. LiS. ZaoX. LiX. LiuQ. CaoX. WangW. QiW. ZhangP. YeY. Chinese medicine in the treatment of non-alcoholic fatty liver disease based on network pharmacology: A review.Front. Pharmacol.202415138171210.3389/fphar.2024.1381712 38694920
    [Google Scholar]
  16. HaoD.C. XiaoP.G. Network pharmacology: a Rosetta Stone for traditional Chinese medicine.Drug Dev. Res.201475529931210.1002/ddr.21214 25160070
    [Google Scholar]
  17. ZhengS. LiangY. XueT. WangW. LiS. ZhangP. LiX. CaoX. LiuQ. QiW. YeY. ZaoX. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases.Front. Pharmacol.202415141299710.3389/fphar.2024.1412997 39086391
    [Google Scholar]
  18. ZhouZ. ChenB. ChenS. LinM. ChenY. JinS. ChenW. ZhangY. Applications of network pharmacology in traditional chinese medicine research.Evid. Based Complement. Alternat. Med.202020201164690510.1155/2020/1646905 32148533
    [Google Scholar]
  19. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  20. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  21. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. The GeneCards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics5420161.30.11.30.3310.1002/cpbi.527322403
    [Google Scholar]
  22. GongL. Whirl-CarrilloM. KleinT.E. PharmGKB, an integrated resource of pharmacogenomic knowledge.Curr. Protoc.202118e22610.1002/cpz1.226 34387941
    [Google Scholar]
  23. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  24. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  25. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. JiZ.L. ZhouH. WangJ.F. HanL.Y. ZhengC.J. ChenY.Z. Traditional Chinese medicine information database.J. Ethnopharmacol.2006103350110.1016/j.jep.2005.11.003 16376038
    [Google Scholar]
  27. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  28. LiuZ. GuoF. WangY. LiC. ZhangX. LiH. DiaoL. GuJ. WangW. LiD. HeF. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine.Sci. Rep.2016612114610.1038/srep21146 26879404
    [Google Scholar]
  29. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  30. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  31. DennisG. ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  32. ZhaoT. TangH. XieL. ZhengY. MaZ. SunQ. LiX. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J. Pharm. Pharmacol.20197191353136910.1111/jphp.13129 31236960
    [Google Scholar]
  33. WangQ. LiangY. PengC. JiangP. Network pharmacology‐based study on the mechanism of Scutellariae Radix for hepatocellular carcinoma treatment.Evid. Based Complement. Alternat. Med.202020201889791810.1155/2020/8897918 33163086
    [Google Scholar]
  34. MaC. XuT. SunX. ZhangS. LiuS. FanS. LeiC. TangF. ZhaiC. LiC. LuoJ. WangQ. WeiW. WangX. ChengF. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of baicalein in hepatocellular carcinoma.Evid. Based Complement. Alternat. Med.2019201911510.1155/2019/7518374 30891079
    [Google Scholar]
  35. GongB. KaoY. ZhangC. SunF. ZhaoH. Systematic investigation of Scutellariae barbatae herba for treating hepatocellular carcinoma based on network pharmacology.Evid. Based Complement. Alternat. Med.201820181436573910.1155/2018/4365739 30584453
    [Google Scholar]
  36. HuangL. XuH. WuT. LiG. Hedyotis diffusa Willd. Suppresses Hepatocellular Carcinoma via Downregulating AKT/mTOR Pathways.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/5210152 34527062
    [Google Scholar]
  37. WuH. ZhangL. WangC. LiF. QiL. XiaoL. ZhangM. ZhangH. ZhangG. QinY. Network Pharmacology Analysis and Experimental Verification on Antiangiogenesis Mechanism of Hedyotis diffusa Willd in Liver Cancer.Evid. Based Complement. Alternat. Med.202320231141684110.1155/2023/1416841 36647454
    [Google Scholar]
  38. LiY. HeX.L. ZhouL.P. HuangX.Z. LiS. GuanS. LiJ. ZhangL. Asiatic acid alleviates liver fibrosis via multiple signaling pathways based on integrated network pharmacology and lipidomics.Eur. J. Pharmacol.202293117519310.1016/j.ejphar.2022.175193 35963324
    [Google Scholar]
  39. YangA.Y. LiuH.L. YangY.F. Study on the mechanism of action of Scutellaria barbata on hepatocellular carcinoma based on network pharmacology and bioinformatics.Front. Pharmacol.202313107254710.3389/fphar.2022.1072547 36699068
    [Google Scholar]
  40. HuangJ. ZhangJ. SunC. YangR. ShengM. HuJ. KaiG. HanB. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, healthpromotion effect and mechanisms.J. Ethnopharmacol. 318(PtB)2024,10.1016/j.jep.2023.117022
    [Google Scholar]
  41. JiaY. YaoD. BiH. DuanJ. LiangW. JingZ. LiuM. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics.Phytomedicine202412815552110.1016/j.phymed.2024.155521 38489891
    [Google Scholar]
  42. WangX. YangY. LiuX. GaoX. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza.Adv. Pharmacol.202087437010.1016/bs.apha.2019.10.001 32089238
    [Google Scholar]
  43. MaL. JiangH. XuX. ZhangC. NiuY. WangZ. TaoY. LiY. CaiF. ZhangX. WangX. YuY. Tanshinone IIA mediates SMAD7-YAP interaction to inhibit liver cancer growth by inactivating the transforming growth factor beta signaling pathway.Aging (Albany NY)201911219719973710.18632/aging.102420 31711043
    [Google Scholar]
  44. LuoY. SongL. WangX. HuangY. LiuY. WangQ. HongM. YuanZ. Uncovering the Mechanisms of Cryptotanshinone as a Therapeutic Agent Against Hepatocellular Carcinoma.Front. Pharmacol.202011126410.3389/fphar.2020.01264 32903546
    [Google Scholar]
  45. HuangX. RehmanH.M. SzöllősiA.G. ZhouS. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma.Genes (Basel)202213465310.3390/genes13040653 35456457
    [Google Scholar]
  46. ChenY. LiQ. RenS. ChenT. ZhaiB. ChengJ. ShiX. SongL. FanY. GuoD. Investigation and experimental validation of curcumin-related mechanisms against hepatocellular carcinoma based on network pharmacology.J. Zhejiang Univ. Sci. B202223868269810.1631/jzus.B2200038 35953761
    [Google Scholar]
  47. ZhaoY. TaoJ. ChenZ. LiS. LiuZ. LinL. ZhaiL. Functional drug–target–disease network analysis of gene–phenotype connectivity for curcumin in hepatocellular carcinoma.PeerJ20219e1233910.7717/peerj.12339 34754622
    [Google Scholar]
  48. JinQ. JiaoW. LianY. ChitrakarB. SangY. WangX. Study on antihepatocellular carcinoma effect of 6-shogaol and curcumin through network-based pharmacological and cellular assay.Front. Pharmacol.202415136741710.3389/fphar.2024.1367417 39224778
    [Google Scholar]
  49. WangS. WuW. LiuY. XingE. JiaoJ. LiL. LiJ. WangD. Curcumin Induces Apoptosis by Suppressing XRCC4 Expression in Hepatocellular Carcinoma.Nutr. Cancer202375101958196710.1080/01635581.2023.2274132 37899756
    [Google Scholar]
  50. ZhangJ. LiuY. WangX. WangZ. XingE. LiJ. WangD. Curcumin inhibits proliferation of hepatocellular carcinoma cells by blocking PTPN1 and PTPN11 expression.Oncol. Lett.202326130710.3892/ol.2023.13893 37332329
    [Google Scholar]
  51. GuoL. LiH. FanT. MaY. WangL. Synergistic efficacy of curcumin and anti-programmed cell death-1 in hepatocellular carcinoma.Life Sci.202127911935910.1016/j.lfs.2021.119359 33753114
    [Google Scholar]
  52. LiH. QinY. HuangY. WangJ. RenB. SPAG5, the upstream protein of Wnt and the target of curcumin, inhibits hepatocellular carcinoma.Oncol. Rep.202350317210.3892/or.2023.8609 37539742
    [Google Scholar]
  53. SuJ. LiuX. ZhaoX. MaH. JiangY. WangX. WangP. ZhaoM. HuX. Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling.Recent Patents Anticancer Drug Discov.2024102174 38243928
    [Google Scholar]
  54. IparV.S. DsouzaA. DevarajanP.V. Enhancing Curcumin Oral Bioavailability Through Nanoformulations.Eur. J. Drug Metab. Pharmacokinet.201944445948010.1007/s13318‑019‑00545‑z 30771095
    [Google Scholar]
  55. WenM. ChenQ. ChenW. YangJ. ZhouX. ZhangC. WuA. LaiJ. ChenJ. MeiQ. YangS. LanC. WuJ. HuangF. WangL. A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications.Front. Pharmacol.20221396539010.3389/fphar.2022.965390 36160419
    [Google Scholar]
  56. XiongY. YangY. XiongW. YaoY. WuH. ZhangM. Network pharmacology‐based research on the active component and mechanism of the antihepatoma effect of Rubia cordifolia L.J. Cell. Biochem.20191208124611247210.1002/jcb.28513 30816612
    [Google Scholar]
  57. RoyA. Plumbagin: A Potential Anti-cancer Compound.Mini Rev. Med. Chem.202121673173710.2174/18755607MTEx2NTM02 33200707
    [Google Scholar]
  58. ZhouR. WuK. SuM. LiR. Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma.Environ. Toxicol. Pharmacol.20197010320010.1016/j.etap.2019.103200 31158732
    [Google Scholar]
  59. GanesanN. BaskaranR. VelmuruganB.K. ThanhN.C. Antrodia cinnamomea —An updated minireview of its bioactive components and biological activity.J. Food Biochem.2019438e1293610.1111/jfbc.12936 31368557
    [Google Scholar]
  60. ZhangY. LvP. MaJ. ChenN. GuoH. ChenY. GanX. WangR. LiuX. FanS. CongB. KangW. Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo.Acta Pharm. Sin. B202212289090610.1016/j.apsb.2021.07.010 35256953
    [Google Scholar]
  61. LuoC. AiJ. RenE. LiJ. FengC. LiX. LuoX. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti cancer activity and bioavailability (Review).Exp. Ther. Med.2021225132710.3892/etm.2021.10762 34630681
    [Google Scholar]
  62. ChenP.Y. HanL.T. Study on the molecular mechanism of anti-liver cancer effect of Evodiae fructus by network pharmacology and QSAR model.Front Chem.202310106050010.3389/fchem.2022.1060500 36700075
    [Google Scholar]
  63. FuJ. WangZ. HuangL. ZhengS. WangD. ChenS. ZhangH. YangS. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi).Phytother. Res.20142891275128310.1002/ptr.5188 25087616
    [Google Scholar]
  64. LiuZ. MaH. LaiZ. Revealing the potential mechanism of Astragalus membranaceus improving prognosis of hepatocellular carcinoma by combining transcriptomics and network pharmacology.BMC Complementary Medicine and Therapies202121126310.1186/s12906‑021‑03425‑9 34663301
    [Google Scholar]
  65. MancusoC. SantangeloR. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology.Food Chem. Toxicol.2017107Part A36237210.1016/j.fct.2017.07.019
    [Google Scholar]
  66. ChenC. LvQ. LiY. JinY.H. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells.Molecules20212613392610.3390/molecules26133926 34199025
    [Google Scholar]
  67. YuB. WangM. XuH. GaoR. ZhuY. NingH. DaiX. Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis.BioMed Res. Int.2022202211510.1155/2022/5975223 35872841
    [Google Scholar]
  68. ZhouR. WangX.W. SunQ. YeZ.J. LiuJ. ZhouD.H. TangY. Anticancer Effects of Emodin on HepG2 Cell: Evidence from Bioinformatic Analysis.BioMed Res. Int.2019201911410.1155/2019/3065818 31236404
    [Google Scholar]
  69. LiX. HeY. ZengP. LiuY. ZhangM. HaoC. WangH. LvZ. ZhangL. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China.J. Cell. Mol. Med.201923142010.1111/jcmm.13564 30444050
    [Google Scholar]
  70. QinL. HuangD. HuangJ. QinF. HuangH. Integrated Analysis and Finding Reveal Anti–Liver Cancer Targets and Mechanisms of Pachyman (Poria cocos Polysaccharides).Front. Pharmacol.20211274234910.3389/fphar.2021.742349 34603055
    [Google Scholar]
  71. JiangJ. YangZ. HouG. YaoX. JiangJ. The potential mechanism of Chebulae Fructus in the treatment of hepatocellular carcinoma on the basis of network pharmacology.Ann. Hepatol.202227410070110.1016/j.aohep.2022.100701 35351639
    [Google Scholar]
  72. LiR. SongY. JiZ. LiL. ZhouL. Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectal cancer: Network and experimental analyses.Biofactors202046115816710.1002/biof.1583 31647596
    [Google Scholar]
  73. ZhaoF. QinJ. LiangY. ZhouR. Exploring anti-liver cancer targets and mechanisms of oxyresveratrol: in silico and verified findings.Bioengineered20211229939994810.1080/21655979.2021.1985328 34592904
    [Google Scholar]
  74. JiJ. ZhangZ. PengQ. HaoL. GuoY. XueY. LiuY. LiC. ShiX. The effects of qinghao-kushen and its active compounds on the biological characteristics of liver cancer cells.Evid. Based Complement. Alternat. Med.2022202211910.1155/2022/8763510 35722140
    [Google Scholar]
  75. QingL. PanB. HeY. LiuY. ZhaoM. NiuB. GaoX. Exploring the mechanisms underlying the therapeutic effect of the Radix Bupleuri-Rhizoma Cyperi herb pair on hepatocellular carcinoma using multilevel data integration and molecular docking.Aging (Albany NY)202214229103912710.18632/aging.204388 36403263
    [Google Scholar]
  76. YuS. GaoW. ZengP. ChenC. ZhangZ. LiuZ. LiuJ. Exploring the effect of Gupi Xiaoji Prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments.Biomed. Pharmacother.202113911161210.1016/j.biopha.2021.111612 33915505
    [Google Scholar]
  77. WuR. LiX.Y. WangW.H. CaiF.F. ChenX.L. YangM.D. PanQ.S. ChenQ.L. ZhouR.Y. SuS.B. Network Pharmacology-Based Study on the Mechanism of Bushen-Jianpi Decoction in Liver Cancer Treatment.Evid. Based Complement. Alternat. Med.2019201911310.1155/2019/3242989 31015849
    [Google Scholar]
  78. WuZ. KangJ. TanW. WeiC. HeL. JiangX. PengL. In silico and in vitro studies on the mechanisms of chinese medicine formula (Yiqi Jianpi Jiedu Formula) in the treatment of hepatocellular carcinoma.Comput. Math. Methods Med.2022202213010.1155/2022/8669993 36345477
    [Google Scholar]
  79. YuQ. ChenZ. LiuM. MengY. LiX. LiB. DuJ. Exploring the potential targets of Sanshimao formula for hepatocellular carcinoma treatment by a method of network pharmacology combined with molecular biology.J. Ethnopharmacol.202229711553110.1016/j.jep.2022.115531 35840058
    [Google Scholar]
  80. ChenC. LiangT. WuQ. ZhouZ. ZhangM. FengD. TaoJ. SiT. CaiM. Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma.Comput. Math. Methods Med.2022202211510.1155/2022/2940654 36578460
    [Google Scholar]
  81. LiuL.H. WangT. ZhouG. Experience of Professor WEI Zhong-min in Treating Internal Diseases by Application of Xuanfuhua Decoction.Zhongguo Zhongyiyao Xinxi Zazhi201724101103
    [Google Scholar]
  82. XiongL. Laboratory study on antiliver fibrosis and antisinusoid capillarization of Xuanfuhua decoction.Chinese Journal of Traditional Medical Science and Technology.199962021
    [Google Scholar]
  83. LuoW.Z. DangZ.Q. WuX.X. ShangY.W. MengD.H. ChenY.L. ZhangQ.S. Transcriptomic and network pharmacology approaches revealed possible mechanisms underlying the 5-fluorouracil (5-FU)-sensitizing effect of Xuan-Fu-Hua decoction treatment on liver cancer cells.Transl. Cancer Res.20221172398240710.21037/tcr‑22‑1814 35966306
    [Google Scholar]
  84. SunJ. HanT. YangT. ChenY. HuangJ. Interpreting the Molecular Mechanisms of Yinchenhao Decoction on Hepatocellular Carcinoma through Absorbed Components Based on Network Pharmacology.BioMed Res. Int.2021202112210.1155/2021/6616908 34104649
    [Google Scholar]
  85. ZhengX. ZhangM. WangJ. Study of qualitative and quantitative methods for Xihuang pills.Yaowu Fenxi Zazhi201114101413
    [Google Scholar]
  86. LiX. SuL. JiangY. GaoW. XuC. ZengC. SongJ. XuY. WengW. LiangW. The Antitumor Effect of Xihuang Pill on Treg Cells Decreased in Tumor Microenvironment of 4T1 Breast Tumor‐Bearing Mice by PI3K/AKT~AP‐1 Signaling Pathway.Evid. Based Complement. Alternat. Med.201820181671482910.1155/2018/6714829 29849718
    [Google Scholar]
  87. ZhaoX. HaoJ. ChenS. Network Pharmacology‐Based Strategy for Predicting Therapy Targets of Traditional Chinese Medicine Xihuang Pill on Liver Cancer.Evid. Based Complement. Alternat. Med.202020201607657210.1155/2020/6076572 32256653
    [Google Scholar]
  88. WuR. ZhouT. XiongJ. ZhangZ. TianS. WangY. ChenJ. TianX. Quercetin, the Ingredient of Xihuang Pills, Inhibits Hepatocellular Carcinoma by Regulating Autophagy and Macrophage Polarization.Frontiers in Bioscience-Landmark2022271232310.31083/j.fbl2712323 36624942
    [Google Scholar]
  89. ChenT.T. DuS.L. WangS.J. WuL. YinL. Dahuang Zhechong pills inhibit liver cancer growth in a mouse model by reversing Treg/Th1 balance.Chin. J. Nat. Med.202220210211010.1016/S1875‑5364(22)60160‑2 35279237
    [Google Scholar]
  90. CaoX. LiangY. LiuR. ZaoX. ZhangJ. ChenG. LiuR. ChenH. HeY. ZhangJ. YeY. Uncovering the Pharmacological Mechanisms of Gexia-Zhuyu Formula (GXZY) in Treating Liver Cirrhosis by an Integrative Pharmacology Strategy.Front. Pharmacol.20221379388810.3389/fphar.2022.793888 35330838
    [Google Scholar]
  91. HuangJ. GuoW. CheungF. TanH.Y. WangN. FengY. Integrating Network Pharmacology and Experimental Models to Investigate the Efficacy of Coptidis and Scutellaria Containing Huanglian Jiedu Decoction on Hepatocellular Carcinoma.Am. J. Chin. Med.202048116118210.1142/S0192415X20500093 31964157
    [Google Scholar]
  92. ChenH. YaoX. LiT. LamC.W.K. ZhangH. WangJ. ZhangW. LeungE.L.H. WuQ. Compound Kushen injection plus platinum-based chemotherapy for stage IIIB/IV non-small cell lung cancer.Medicine (Baltimore)20199852e1855210.1097/MD.0000000000018552 31876753
    [Google Scholar]
  93. YanjuB. YangL. HuaB. HouW. ShiZ. LiW. LiC. ChenC. LiuR. QinY. LvW. A systematic review and meta-analysis on the use of traditional Chinese medicine compound kushen injection for bone cancer pain.Support. Care Cancer201422382583610.1007/s00520‑013‑2063‑5 24276956
    [Google Scholar]
  94. YangY. SunM. YaoW. WangF. LiX. WangW. LiJ. GaoZ. QiuL. YouR. YangC. BaQ. WangH. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib.J. Immunother. Cancer202081e00031710.1136/jitc‑2019‑000317 32179631
    [Google Scholar]
  95. LuS. MengZ. TanY. WuC. HuangZ. HuangJ. FuC. StalinA. GuoS. LiuX. YouL. LiX. ZhangJ. ZhouW. ZhangX. WangM. WuJ. An advanced network pharmacology study to explore the novel molecular mechanism of Compound Kushen Injection for treating hepatocellular carcinoma by bioinformatics and experimental verification.BMC Complementary Medicine and Therapies20222215410.1186/s12906‑022‑03530‑3 35236335
    [Google Scholar]
  96. WeiJ. MaL. LiuW. WangY. ShenC. ZhaoX. ZhaoC. Identification of the molecular targets and mechanisms of compound mylabris capsules for hepatocellular carcinoma treatment through network pharmacology and bioinformatics analysis.J. Ethnopharmacol.202127611417410.1016/j.jep.2021.114174 33932512
    [Google Scholar]
  97. CaoX. ChenH. LiZ. LiX. YangX. JinQ. LiangY. ZhangJ. ZhouM. ZhangN. ChenG. DuH. ZaoX. YeY. Network pharmacology and in vitro experiments-based strategy to investigate the mechanisms of KangXianYiAi formula for hepatitis B virus-related hepatocellular carcinoma.Front. Pharmacol.20221398508410.3389/fphar.2022.985084 36133813
    [Google Scholar]
  98. WuJ. ZhangD. NiM. XueJ. WangK. DuanX. LiuS. Effectiveness of Huachansu injection combined with chemotherapy for treatment of gastric cancer in China: a systematic review and Meta-analysis.J. Tradit. Chin. Med.2020405749757 33000575
    [Google Scholar]
  99. HuangC. ChengY. LiW. HuangY. LuoH. ZhongC. LiuF. Examining the Mechanisms of Huachansu Injection on Liver Cancer through Integrated Bioinformatics Analysis.Recent Patents Anticancer Drug Discov.202318340842510.2174/1574892817666220511162046 35546757
    [Google Scholar]
  100. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: a narrative review.J. Tradit. Chin. Med.2022423479486 35610020
    [Google Scholar]
  101. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266336478241118065659
Loading
/content/journals/ctmc/10.2174/0115680266336478241118065659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test