Skip to content
2000
Volume 25, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Oral squamous cell carcinoma (OSCC) is a prevalent malignant condition. This study aimed to investigate the role of mTORC1 signaling and develop a prognostic model for OSCC.

Materials and Methods

The single-sample gene set enrichment analysis (ssGSEA) algorithm was utilized to calculate the Z-Score of Hallmarks in OSCC, followed by univariate Cox regression analysis to identify processes associated with prognosis. Weighted gene co-expression network analysis (WGCNA) was performed using transcriptomic data from the cancer genome atlas (TCGA) cohort to identify genes correlated with mTORC1 signaling. A six-gene prognostic model was constructed using multifactorial Cox regression analysis and validated using an external dataset.

Results

The study uncovered a strong linkage between mTORC1, glycolysis, hypoxia, and the prognosis of OSCC. mTORC1 signaling emerged as the most significant risk factor, negatively impacting patient survival. Additionally, a six-gene prognostic risk score model was developed which provided a quantitative measure of patients' survival probabilities. Interestingly, within the context of these findings, TP53 gene mutations were predominantly observed in the high-risk group, potentially underlining the genetic complexity of this patient subgroup. Additionally, differential immune cell infiltration and an integrated nomogram were also reported.

Conclusion

This study highlights the importance of mTORC1 signaling in OSCC prognosis and presents a robust prognostic model for predicting patient outcomes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266335055240828061128
2024-09-05
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/26/CTMC-25-26-06.html?itemId=/content/journals/ctmc/10.2174/0115680266335055240828061128&mimeType=html&fmt=ahah

References

  1. TanY. WangZ. XuM. LiB. HuangZ. QinS. NiceE.C. TangJ. HuangC. Oral squamous cell carcinomas: state of the field and emerging directions.Int. J. Oral Sci.20231514410.1038/s41368‑023‑00249‑w 37736748
    [Google Scholar]
  2. LissoniA. AgliardiE. PeriA. MarchioniR. AbatiS. Oral microbiome and mucosal trauma as risk factors for oral cancer: beyond alcohol and tobacco. A literature review.J. Biol. Regul. Homeost. Agents2020346Suppl. 31118 33386052
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. AlmangushA. MäkitieA.A. TriantafyllouA. de BreeR. StrojanP. RinaldoA. Hernandez-PreraJ.C. SuárezC. KowalskiL.P. FerlitoA. LeivoI. Staging and grading of oral squamous cell carcinoma: An update.Oral Oncol.202010710710479910.1016/j.oraloncology.2020.104799 32446214
    [Google Scholar]
  5. GauthierJ. VincentA.T. CharetteS.J. DeromeN. A brief history of bioinformatics.Brief. Bioinform.20192061981199610.1093/bib/bby063 30084940
    [Google Scholar]
  6. ChiH. XieX. YanY. PengG. StrohmerD.F. LaiG. ZhaoS. XiaZ. TianG. Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of HNSCC.Front. Immunol.20221313101868510.3389/fimmu.2022.1018685 36263048
    [Google Scholar]
  7. LiuG.M. ZengH.D. ZhangC.Y. XuJ.W. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma.Cancer Cell Int.201919113810.1186/s12935‑019‑0858‑2 31139015
    [Google Scholar]
  8. LiW. GaoY. JinX. WangH. LanT. WeiM. YanW. WangG. LiZ. ZhaoZ. JiangX. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer.Mol. Ther. Nucleic Acids20212727598610 35070494
    [Google Scholar]
  9. SzwedA. KimE. JacintoE. Regulation and metabolic functions of mTORC1 and mTORC2.Physiol. Rev.202110131371142610.1152/physrev.00026.2020 33599151
    [Google Scholar]
  10. ZhuJ. WangH. JiangX. mTORC1 beyond anabolic metabolism: Regulation of cell death.J. Cell Biol.20222022221
    [Google Scholar]
  11. JiaoL. LiuY. YuX.Y. PanX. ZhangY. TuJ. SongY.H. LiY. Ribosome biogenesis in disease: new players and therapeutic targets.Signal Transduct. Target. Ther.2023811510.1038/s41392‑022‑01285‑4 36617563
    [Google Scholar]
  12. GrzmilM. WiesmannF. SchibliR. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer.Cancers20221511710.3390/cancers15010017
    [Google Scholar]
  13. IeronymakiE. DaskalakiM.G. LyroniK. TsatsanisC. Insulin signaling and insulin resistance facilitate trained immunity in macrophages through metabolic and epigenetic changes.Front. Immunol.20191010133010.3389/fimmu.2019.01330 31244863
    [Google Scholar]
  14. MaoB. ZhangQ. MaL. Overview of Research into mTOR Inhibitors.Molecules20222716529510.3390/molecules27165295
    [Google Scholar]
  15. ZhangS. RenX. WangC. ChenX. CaoR. LiuQ. PanX. ZhouJ. ZhangW. TangX.R. ChengB. WuT. Comprehensive Characterization of Immune Landscape Based on Epithelial-Mesenchymal Transition Signature in OSCC: Implication for Prognosis and Immunotherapy.Front. Oncol.2021111158786210.3389/fonc.2021.587862 34277389
    [Google Scholar]
  16. YangJ. FengZ. YuanX. HanZ. A Novel Immune-Associated Gene Signature for Overall Survival Prediction in Patients with Oral Squamous Cell Carcinoma.Evid. Based Complement. Alternat. Med.2022202211310.1155/2022/1063130 35463065
    [Google Scholar]
  17. HuangK. GuX. XuH. Prognostic Value of Necroptosis-Related Genes Signature in Oral Squamous Cell Carcinoma.Cancers20231518453910.3390/cancers15184539
    [Google Scholar]
  18. RangelR. PickeringC.R. SikoraA.G. SpiottoM.T. Genetic changes driving immunosuppressive microenvironments in oral premalignancy.Front. Immunol.2022131384092310.3389/fimmu.2022.840923 35154165
    [Google Scholar]
  19. HuangZ. LuY. WangW. Prognostic value of tumor-infiltrating immune cells in clinical early-stage oral squamous cell carcinoma.J. Oral Pathol. Med.202352537238010.1111/jop.13357
    [Google Scholar]
  20. WangP. ZhaoJ. YangX. GuanS. FengH. HanD. LuJ. OuB. JinR. SunJ. ZongY. FengB. MaJ. LuA. ZhengM. PFDN1, an indicator for colorectal cancer prognosis, enhances tumor cell proliferation and motility through cytoskeletal reorganization.Med. Oncol.2015321226410.1007/s12032‑015‑0710‑z 26553318
    [Google Scholar]
  21. YesseyevaG. AikemuB. HongH. Prefoldin subunits (PFDN1-6) serve as poor prognostic markers in gastric cancer.Biosci. Rep.2020402BSR20192712
    [Google Scholar]
  22. WangD. ShiW. TangY. LiuY. HeK. HuY. LiJ. YangY. SongJ. Prefoldin 1 promotes EMT and lung cancer progression by suppressing cyclin A expression.Oncogene201736788589810.1038/onc.2016.257 27694898
    [Google Scholar]
  23. KeS. LuS. WangC. XuY. BaiM. YuH. FengZ. YinB. LiZ. HuangJ. LiX. QianB. HuaY. PanS. WuY. MaY. Comprehensive analysis of the prognostic value and functions of prefoldins in hepatocellular carcinoma.Front. Mol. Biosci.20229995700110.3389/fmolb.2022.957001 36438659
    [Google Scholar]
  24. FangQ. LinJ. GaoL. PanR. ZhengX. Targeting mitochondrial tyrosyl-tRNA synthetase YARS2 suppresses colorectal cancer progression.Cancer Biol. Ther.20222311810.1080/15384047.2022.2127603 36154909
    [Google Scholar]
  25. ZhangX. DongW. ZhangJ. LiuW. YinJ. ShiD. MaW. A novel mitochondrial-related nuclear gene signature predicts overall survival of lung Adenocarcinoma Patients.Front. Cell Dev. Biol.20219974048710.3389/fcell.2021.740487 34760888
    [Google Scholar]
  26. WangJ. GuoC. LiuS. Annexin A11 in disease.Clin. Chim. Acta.43116416810.1016/j.cca.2014.01.031
    [Google Scholar]
  27. ZhangD. WangF. PangY. ZhaoE. ZhuS. ChenF. CuiH. ALG2 regulates glioblastoma cell proliferation, migration and tumorigenicity.Biochem. Biophys. Res. Commun.2017486230030610.1016/j.bbrc.2017.03.032 28300556
    [Google Scholar]
  28. ZhangK. WangJ. ZhuY. LiuX. LiJ. ShiZ. CaoM. LiY. Identification of Hub Genes Associated With the Development of Stomach Adenocarcinoma by Integrated Bioinformatics Analysis.Front. Oncol.2022121284499010.3389/fonc.2022.844990 35686089
    [Google Scholar]
  29. LvW. ZhaoC. TanY. HuW. YuH. ZengN. ZhangQ. WuY. Identification of an Aging-Related Gene Signature in Predicting Prognosis and Indicating Tumor Immune Microenvironment in Breast Cancer.Front. Oncol.2021111179655510.3389/fonc.2021.796555 34976839
    [Google Scholar]
  30. DongL. LiY. XueD. LiuY. PCMT1 is an unfavorable predictor and functions as an oncogene in bladder cancer.IUBMB Life201870429129910.1002/iub.1717 29517839
    [Google Scholar]
  31. LiuJ. LiuB. LiY. MiZ. TanH. RongP. PCMT1 is a potential target related to tumor progression and immune infiltration in liver cancer.Eur. J. Med. Res.202328128910.1186/s40001‑023‑01216‑1 37596654
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266335055240828061128
Loading
/content/journals/ctmc/10.2174/0115680266335055240828061128
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Gene mutation; mTORC1; OSCC; Risk signature; ssGSEA; TCGA; WGCNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test