Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

This review explores the transformative impact of AI on drug development and delivery in pharmaceutical sciences, spanning formulation design, real-time monitoring, targeted delivery, and future prospects. The rational design of smart drug carriers, such as AI-optimized liposomes for cancer therapy, optimizes formulations for individual patient needs. AI-driven sensors, exemplified by glucose-monitoring biosensors for diabetics, enable adaptive drug administration, enhancing precision. Despite promises, challenges like biocompatibility, regulations, and ethics persist. Interdisciplinary collaboration and transparent communication are crucial for responsible AI adoption. Anticipated trends include personalized dosage optimization and intelligent nanocarriers. The review underscores AI's potential in reshaping pharmaceuticals for patient-centric care while addressing challenges for widespread adoption.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266324522240725053634
2024-08-12
2025-10-29
Loading full text...

Full text loading...

References

  1. AlharbiHF BhupathyraajM MohandossK ChackoL RaniKRV An overview of artificial intelligence-driven pharmaceutical functionality.AI2024183810.1201/9781003343981‑2
    [Google Scholar]
  2. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916
    [Google Scholar]
  3. SchorkNJ Artificial intelligence and personalized medicine.Cancer Treat Res201917826528310.1007/978‑3‑030‑16391‑4_11
    [Google Scholar]
  4. MozafariN. MozafariN. DehshahriA. AzadiA. Knowledge gaps in generating cell-based drug delivery systems and a possible meeting with artificial intelligence.Mol. Pharm.20232083757377810.1021/acs.molpharmaceut.3c00162
    [Google Scholar]
  5. HeS. LeanseL.G. FengY. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.Adv. Drug Deliv. Rev.202117811392210.1016/j.addr.2021.113922
    [Google Scholar]
  6. XuY. LiuX. CaoX. HuangC. LiuE. QianS. Artificial intelligence: A powerful paradigm for scientific research.Innovation.202124
    [Google Scholar]
  7. MasriN. SultanY.A. AkkilaA.N. AlmasriA. AhmedA. MahmoudA.Y. Survey of rule-based systems.International Journal of Academic Information Systems Research201937123
    [Google Scholar]
  8. GrosanC AbrahamA GrosanC AbrahamA. Rule-based expert systems.Intell. Syst. Ref. LibrSpringerBerlin,Heidelberg201110.1007/978‑3‑642‑21004‑4_7
    [Google Scholar]
  9. AndricopuloA. GuidoR. OlivaG. Virtual screening and its integration with modern drug design technologies.Curr. Med. Chem.2008151374610.2174/092986708783330683
    [Google Scholar]
  10. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.2021121
    [Google Scholar]
  11. ShiammalaP.N. DuraimutharasanN.K.B. VaseeharanB. AlothaimA.S. Al-MalkiE.S. SnekaaB. SafiS.Z. SinghS.K. VelmuruganD. SelvarajC. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors.Methods2023219829410.1016/j.ymeth.2023.09.010
    [Google Scholar]
  12. HudsonI.L. Data integration using advances in machine learning in drug discovery and molecular biology.Artificial Neural Networks202116718410.1007/978‑1‑0716‑0826‑5_7
    [Google Scholar]
  13. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w
    [Google Scholar]
  14. StasevychM. ZvarychV. Innovative robotic technologies and artificial intelligence in pharmacy and medicine: Paving the way for the future of health care—a review.Big Data and Cognitive Computing20237314710.3390/bdcc7030147
    [Google Scholar]
  15. SarkerIH Machine learning: Algorithms, real-world applications and research directions.SN computer science202123160
    [Google Scholar]
  16. MuhammadI YanZ. Supervised machine learning approaches: A survey.ICTACT Journal on Soft Computing20155310.21917/ijsc.2015.0133
    [Google Scholar]
  17. CunninghamP. CordM. DelanyS.J. Supervised learning. Machine learning techniques for multimedia: Case studies on organization and retrieval.Springer2008214910.1007/978‑3‑540‑75171‑7_2
    [Google Scholar]
  18. SchwenkerF. TrentinE. Pattern classification and clustering: A review of partially supervised learning approaches.Pattern Recognit. Lett.20143741410.1016/j.patrec.2013.10.017
    [Google Scholar]
  19. SarkerI.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions.SN Computer Science20212642010.1007/s42979‑021‑00815‑1
    [Google Scholar]
  20. CastiglioniI. RundoL. CodariM. Di LeoG. SalvatoreC. InterlenghiM. GallivanoneF. CozziA. D’AmicoN.C. SardanelliF. AI applications to medical images: From machine learning to deep learning.Phys. Med.20218392410.1016/j.ejmp.2021.02.006
    [Google Scholar]
  21. IbrahimI. AbdulazeezA. The role of machine learning algorithms for diagnosing diseases.Journal of Applied Science and Technology Trends202121101910.38094/jastt20179
    [Google Scholar]
  22. SinghA. NM. LakshmiganthanR. Impact of different data types on classifier performance of random forest, naive bayes, and k-nearest neighbors algorithms.Int. J. Adv. Comput. Sci. Appl.201781210.14569/IJACSA.2017.081201
    [Google Scholar]
  23. ZhangZ. CuiP. ZhuW. Deep learning on graphs: A survey.IEEE Trans. Knowl. Data Eng.202234124927010.1109/TKDE.2020.2981333
    [Google Scholar]
  24. SreeramanS. KannanM.P. Singh KushwahR.B. SundaramV. VeluchamyA. ThirunavukarasouA. SaravananK.M. Drug design and disease diagnosis: The potential of deep learning models in biology.Curr. Bioinform.202318320822010.2174/1574893618666230227105703
    [Google Scholar]
  25. FebrianM.E. FerdinanF.X. SendaniG.P. SuryanigrumK.M. YunandaR. Diabetes prediction using supervised machine learning.Procedia Comput. Sci.2023216213010.1016/j.procs.2022.12.107
    [Google Scholar]
  26. PriyaS. TripathiG. SinghD.B. JainP. KumarA. Machine learning approaches and their applications in drug discovery and design.Chem. Biol. Drug Des.2022100113615310.1111/cbdd.14057
    [Google Scholar]
  27. PatelL. ShuklaT. HuangX. UsseryD.W. WangS. Machine learning methods in drug discovery.Molecules20202522527710.3390/molecules25225277
    [Google Scholar]
  28. PliakosK. VensC. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.BMC Bioinformatics20202114910.1186/s12859‑020‑3379‑z
    [Google Scholar]
  29. BanniganP. AldeghiM. BaoZ. HäseF. Aspuru-GuzikA. AllenC. Machine learning directed drug formulation development.Adv. Drug Deliv. Rev.202117511380610.1016/j.addr.2021.05.016
    [Google Scholar]
  30. RédaC. KaufmannE. Delahaye-DuriezA. Machine learning applications in drug development.Comput. Struct. Biotechnol. J.20201824125210.1016/j.csbj.2019.12.006
    [Google Scholar]
  31. Rodríguez-PérezR. BajorathJ. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery.J. Comput. Aided Mol. Des.202236535536210.1007/s10822‑022‑00442‑9
    [Google Scholar]
  32. TripathiS. AugustinA.I. DunlopA. SukumaranR. DheerS. ZavalnyA. HaslamO. AustinT. DonchezJ. TripathiP.K. KimE. Recent advances and application of generative adversarial networks in drug discovery, development, and targeting.Artificial Intelligence in the Life Sciences2022210004510.1016/j.ailsci.2022.100045
    [Google Scholar]
  33. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions.Med. Res. Rev.20214131427147310.1002/med.21764
    [Google Scholar]
  34. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3
    [Google Scholar]
  35. XiongJ. XiongZ. ChenK. JiangH. ZhengM. Graph neural networks for automated de novo drug design.Drug Discov. Today20212661382139310.1016/j.drudis.2021.02.011
    [Google Scholar]
  36. DhallD. KaurR. JunejaM. Machine learning: A review of the algorithms and its applications.Proceedings of ICRIC 2019: Recent innovations in computing2020476310.1007/978‑3‑030‑29407‑6_5
    [Google Scholar]
  37. LydiaE.L. KannanS. SumanRajestS. SatyanarayanaS. Correlative study and analysis for hidden patterns in text analytics unstructured data using supervised and unsupervised learning techniques.Int. J. Cloud Comput.202092/315016210.1504/IJCC.2020.109373
    [Google Scholar]
  38. SharmaR. Cluster analysis to identify prominent patterns of anti-hypertensives: A three-tiered unsupervised learning approach.Informatics in Medicine Unlocked20201910030310.1016/j.imu.2020.100303
    [Google Scholar]
  39. BhattacharjeeS. SahaB. SahaS. Symptom-based drug prediction of lifestyle-related chronic diseases using unsupervised machine learning techniques.Comput. Biol. Med.202417410841310.1016/j.compbiomed.2024.108413
    [Google Scholar]
  40. TangY. ChenD. LiX. Dimensionality reduction methods for brain imaging data analysis.ACM Comput. Surv.2022544136[CSUR].10.1145/3448302
    [Google Scholar]
  41. DertingerS.D. BriggsE. HussienY. BryceS.M. AvlasevichS.L. ConradA. JohnsonG.E. WilliamsA. BemisJ.C. Visualization strategies to aid interpretation of high-dimensional genotoxicity data.Environ. Mol. Mutagen.202465515617810.1002/em.22604
    [Google Scholar]
  42. BelkadiA. KenoucheS. MelkemiN. DaoudI. DjebailiR. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents.Struct. Chem.20213262235224910.1007/s11224‑021‑01796‑w
    [Google Scholar]
  43. TaleviA. MoralesJ.F. HatherG. PodichettyJ.T. KimS. BloomingdaleP.C. KimS. BurtonJ. BrownJ.D. WintersteinA.G. SchmidtS. WhiteJ.K. ConradoD.J. Machine learning in drug discovery and development part 1: A primer.CPT Pharmacometrics Syst. Pharmacol.20209312914210.1002/psp4.12491
    [Google Scholar]
  44. SadeghiS. LuJ. NgomA. A network-based drug repurposing method via non-negative matrix factorization.Bioinformatics20223851369137710.1093/bioinformatics/btab826
    [Google Scholar]
  45. TongX. LiuX. TanX. LiX. JiangJ. XiongZ. XuT. JiangH. QiaoN. ZhengM. Generative models for de novo drug design.J. Med. Chem.20216419140111402710.1021/acs.jmedchem.1c00927
    [Google Scholar]
  46. NollmannC. MoskorzW. WimmenauerC. JägerP.S. CadedduR.P. TimmJ. HeinzelT. HaasR. Characterization of CD34+ cells from patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) using a t-distributed stochastic neighbor embedding (t-SNE) protocol.Cancers2024167132010.3390/cancers16071320
    [Google Scholar]
  47. BerdigaliyevN. AljofanM. An overview of drug discovery and development.Future Med. Chem.2020121093994710.4155/fmc‑2019‑0307
    [Google Scholar]
  48. HusnainA. RasoolS. SaeedA. HussainH.K. Revolutionizing pharmaceutical research: Harnessing machine learning for a paradigm shift in drug discovery.International Journal of Multidisciplinary Sciences and Arts20232214915710.47709/ijmdsa.v2i2.2897
    [Google Scholar]
  49. SchaduangratN. LampaS. SimeonS. GleesonM.P. SpjuthO. NantasenamatC. Towards reproducible computational drug discovery.J. Cheminform.2020121910.1186/s13321‑020‑0408‑x
    [Google Scholar]
  50. BehlT. KaurI. SehgalA. SinghS. BhatiaS. Al-HarrasiA. ZenginG. BabesE.E. BriscC. StoicescuM. TomaM.M. SavaC. BungauS.G. Bioinformatics accelerates the major tetrad: A real boost for the pharmaceutical industry.Int. J. Mol. Sci.20212212618410.3390/ijms22126184
    [Google Scholar]
  51. GreenerJ.G. KandathilS.M. MoffatL. JonesD.T. A guide to machine learning for biologists.Nat. Rev. Mol. Cell Biol.2022231405510.1038/s41580‑021‑00407‑0
    [Google Scholar]
  52. WoodsA.D. GerasimovaD. Van DusenB. NissenJ. BainterS. UzdavinesA. Davis-KeanP.E. HalvorsonM. KingK.M. LoganJ.A.R. XuM. VasilevM.R. ClayJ.M. MoreauD. Joyal-DesmaraisK. CruzR.A. BrownD.M.Y. SchmidtK. ElsherifM.M. Best practices for addressing missing data through multiple imputation.Infant Child Dev.2024331e240710.1002/icd.2407
    [Google Scholar]
  53. NeelimaK VasundraS. Machine learning-based business rule engine data transformation over high-speed networks.CAMES2023301557110.24423/cames.472
    [Google Scholar]
  54. CerdaP. VaroquauxG. Encoding high-cardinality string categorical variables.IEEE Trans. Knowl. Data Eng.20223431164117610.1109/TKDE.2020.2992529
    [Google Scholar]
  55. AliM.S. IslamM.K. DasA.A. DurantaD.U.S. HaqueM.F. RahmanM.H. A novel approach for best parameters selection and feature engineering to analyze and detect diabetes: Machine learning insights.BioMed Res. Int.20232023111510.1155/2023/8583210
    [Google Scholar]
  56. BoehmK.M. KhosraviP. VanguriR. GaoJ. ShahS.P. Harnessing multimodal data integration to advance precision oncology.Nat. Rev. Cancer202222211412610.1038/s41568‑021‑00408‑3
    [Google Scholar]
  57. ReelP.S. ReelS. PearsonE. TruccoE. JeffersonE. Using machine learning approaches for multi-omics data analysis: A review.Biotechnol. Adv.20214910773910.1016/j.biotechadv.2021.107739
    [Google Scholar]
  58. SinghD. SinghB. Investigating the impact of data normalization on classification performance.Appl. Soft Comput.20209710552410.1016/j.asoc.2019.105524
    [Google Scholar]
  59. FuJ. ZhangY. LiuJ. LianX. TangJ. ZhuF. Pharmacometabonomics: Data processing and statistical analysis.Brief. Bioinform.2021225bbab13810.1093/bib/bbab138
    [Google Scholar]
  60. MiceliM. SchuesslerM. YangT. Between subjectivity and imposition: Power dynamics in data annotation for computer vision.Proceedings of the ACM on Human-Computer Interaction, New York, NY, USA, 15 October 2020, Volume 4, pp. 1 - 25.10.1145/3415186
    [Google Scholar]
  61. Atas GuvenilirH. DoğanT. How to approach machine learning-based prediction of drug/compound–target interactions.J. Cheminform.20231511610.1186/s13321‑023‑00689‑w
    [Google Scholar]
  62. Montesinos LópezO.A. Montesinos LópezA. CrossaJ. Overfitting, model tuning, and evaluation of prediction performance. Multivariate statistical machine learning methods for genomic prediction.Springer202210913910.1007/978‑3‑030‑89010‑0_4
    [Google Scholar]
  63. NguyenQ.H. LyH.B. HoL.S. Al-AnsariN. LeH.V. TranV.Q. PrakashI. PhamB.T. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil.Math. Probl. Eng.2021202111510.1155/2021/4832864
    [Google Scholar]
  64. BansalM.A. SharmaD.R. KathuriaD.M. A systematic review on data scarcity problem in deep learning: Solution and applications.ACM Comput. Surv.20225410s12910.1145/3502287
    [Google Scholar]
  65. DasS. MullickS.S. ZelinkaI. On supervised class-imbalanced learning: An updated perspective and some key challenges.IEEE Trans. Artif. Intell.20223697399310.1109/TAI.2022.3160658
    [Google Scholar]
  66. KhanP.M. RoyK. Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR).Expert Opin. Drug Discov.201813121075108910.1080/17460441.2018.1542428
    [Google Scholar]
  67. Isarankura-Na-AyudhyaC NaennaT NantasenamatC PrachayasittikulV. A practical overview of quantitative structure-activity relationship.WJPPS2009
    [Google Scholar]
  68. GaultonA. BellisL.J. BentoA.P. ChambersJ. DaviesM. HerseyA. LightY. McGlincheyS. MichalovichD. Al-LazikaniB. OveringtonJ.P. ChEMBL: A large-scale bioactivity database for drug discovery.Nucleic Acids Res.201240D1D1100D110710.1093/nar/gkr777
    [Google Scholar]
  69. GaultonA. HerseyA. NowotkaM. BentoA.P. ChambersJ. MendezD. MutowoP. AtkinsonF. BellisL.J. Cibrián-UhalteE. DaviesM. DedmanN. KarlssonA. MagariñosM.P. OveringtonJ.P. PapadatosG. SmitI. LeachA.R. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw1074
    [Google Scholar]
  70. Tran-NguyenV.K. RognanD. Benchmarking data sets from pubchem bioassay data: Current scenario and room for improvement.Int. J. Mol. Sci.20202112438010.3390/ijms21124380
    [Google Scholar]
  71. KimS. Getting the most out of PubChem for virtual screening.Expert Opin. Drug Discov.201611984385510.1080/17460441.2016.1216967
    [Google Scholar]
  72. RichardA.M. HuangR. WaidyanathaS. ShinnP. CollinsB.J. ThillainadarajahI. GrulkeC.M. WilliamsA.J. LougeeR.R. JudsonR.S. HouckK.A. ShobairM. YangC. RathmanJ.F. YasgarA. FitzpatrickS.C. SimeonovA. ThomasR.S. CroftonK.M. PaulesR.S. BucherJ.R. AustinC.P. KavlockR.J. TiceR.R. The Tox21 10K compound library: Collaborative chemistry advancing toxicology.Chem. Res. Toxicol.202134218921610.1021/acs.chemrestox.0c00264
    [Google Scholar]
  73. HuangR. XiaM. SakamuruS. ZhaoJ. ShahaneS.A. Attene-RamosM. ZhaoT. AustinC.P. SimeonovA. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization.Nat. Commun.2016711042510.1038/ncomms10425
    [Google Scholar]
  74. ThanguduR.R. TyagiM. ShoemakerB.A. BryantS.H. PanchenkoA.R. MadejT. Knowledge-based annotation of small molecule binding sites in proteins.BMC Bioinformatics201011136510.1186/1471‑2105‑11‑365
    [Google Scholar]
  75. MeyersJ. BrownN. BlaggJ. Mapping the 3D structures of small molecule binding sites.J. Cheminform.2016817010.1186/s13321‑016‑0180‑0
    [Google Scholar]
  76. Jiménez-LunaJ. GrisoniF. SchneiderG. Drug discovery with explainable artificial intelligence.Nat. Mach. Intell.202021057358410.1038/s42256‑020‑00236‑4
    [Google Scholar]
  77. ArabiA.A. Artificial intelligence in drug design: Algorithms, applications, challenges and ethics.Future Drug Discov.202132FDD5910.4155/fdd‑2020‑0028
    [Google Scholar]
  78. RahmanM.A. AsyhariA.T. WenO.W. AjraH. AhmedY. AnwarF. Effective combining of feature selection techniques for machine learning-enabled IoT intrusion detection.Multimedia Tools Appl.20218020313813139910.1007/s11042‑021‑10567‑y
    [Google Scholar]
  79. HomaifarA. QiC.X. LaiS.H. Constrained optimizationvia genetic algorithms.Simulation199462424225310.1177/003754979406200405
    [Google Scholar]
  80. GadA.G. Particle swarm optimization algorithm and its applications: A systematic review.Arch. Comput. Methods Eng.20222952531256110.1007/s11831‑021‑09694‑4
    [Google Scholar]
  81. ShamiT.M. El-SalehA.A. AlswaittiM. Al-TashiQ. SummakiehM.A. MirjaliliS. Particle swarm optimization: A comprehensive survey.IEEE Access202210100311006110.1109/ACCESS.2022.3142859
    [Google Scholar]
  82. WangX. JinY. SchmittS. OlhoferM. Recent advances in bayesian optimization.ACM Comput. Surv.20235513s13610.1145/3582270
    [Google Scholar]
  83. ParkK. SongC. ParkJ. RyuS. Multi-objective bayesian optimization for the design of nacre-inspired composites: Optimizing and understanding biomimetics through AI.Mater. Horiz.202310104329434310.1039/D3MH00137G
    [Google Scholar]
  84. LimaA.N. PhilotE.A. TrossiniG.H.G. ScottL.P.B. MaltarolloV.G. HonorioK.M. Use of machine learning approaches for novel drug discovery.Expert Opin. Drug Discov.201611322523910.1517/17460441.2016.1146250
    [Google Scholar]
  85. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  86. DasB. MathewA.T. BaidyaA.T.K. DeviB. SalmonR.R. KumarR. Artificial intelligence assisted identification of potential tau aggregation inhibitors: Ligand- and structure-based virtual screening, in silico ADME, and molecular dynamics study.Mol. Divers.202311910.1007/s11030‑023‑10645‑3
    [Google Scholar]
  87. FonsecaG. PoltavskyI. TkatchenkoA. Force field analysis software and tools (FFAST): Assessing machine learning force fields under the microscope.J. Chem. Theory Comput.202319238706871710.1021/acs.jctc.3c00985
    [Google Scholar]
  88. PissurlenkarRRS ShaikhMS IyerRP CoutinhoEC Molecular mechanics force fields and their applications in drug design.Anti-infective agents in medicinal chemistry200912815010.2174/187152109787846088
    [Google Scholar]
  89. DinurU. HaglerA.T. New approaches to empirical force fields.Rev. Comput. Chem.199129916410.1002/9780470125793.ch4
    [Google Scholar]
  90. ZhangJ. ChenD. XiaY. HuangY.P. LinX. HanX. NiN. WangZ. YuF. YangL. YangY.I. GaoY.Q. Artificial intelligence enhanced molecular simulations.J. Chem. Theory Comput.202319144338435010.1021/acs.jctc.3c00214
    [Google Scholar]
  91. WaldenD.M. BundeyY. JagarapuA. AntontsevV. ChakravartyK. VarshneyJ. Molecular simulation and statistical learning methods toward predicting drug–polymer amorphous solid dispersion miscibility, stability, and formulation design.Molecules202126118210.3390/molecules26010182
    [Google Scholar]
  92. KastureK. ShendeP. Amalgamation of artificial intelligence with nanoscience for biomedical applications.Arch. Comput. Methods Eng.20233084667468510.1007/s11831‑023‑09948‑3
    [Google Scholar]
  93. AdekoyaO.C. AdekoyaG.J. SadikuE.R. HamamY. RayS.S. Application of DFT calculations in designing polymer-based drug delivery systems: An overview.Pharmaceutics2022149197210.3390/pharmaceutics14091972
    [Google Scholar]
  94. MorawietzT. ArtrithN. Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications.J. Comput. Aided Mol. Des.202135455758610.1007/s10822‑020‑00346‑6
    [Google Scholar]
  95. GiustinoF. Materials modelling using density functional theory: Properties and predictions.Oxford University Press2014
    [Google Scholar]
  96. Abd-algaleelS.A. Abdel-BarH.M. MetwallyA.A. HathoutR.M. Evolution of the computational pharmaceutics approaches in the modeling and prediction of drug payload in lipid and polymeric nanocarriers.Pharmaceuticals202114764510.3390/ph14070645
    [Google Scholar]
  97. MengucciC. FerrantiP. RomanoA. MasiP. PiconeG. CapozziF. Food structure, function and artificial intelligence.Trends Food Sci. Technol.202212325126310.1016/j.tifs.2022.03.015
    [Google Scholar]
  98. ChopraH. BaigA.A. GautamR.K. KamalM.A. Application of artificial intelligence in drug discovery.Curr. Pharm. Des.202228332690270310.2174/1381612828666220608141049
    [Google Scholar]
  99. SencerogluS. AyariM.A. RezaeiT. FaressF. KhandakarA. ChowdhuryM.E.H. JawharZ.H. Constructing an intelligent model based on support vector regression to simulate the solubility of drugs in polymeric media.Pharmaceuticals20221511140510.3390/ph15111405
    [Google Scholar]
  100. ZhouS. KaufmannH. BohnN. BochowM. KuesterT. SeglK. Identifying distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using machine/deep learning methods trained with synthetically mixed spectral data.Remote Sens. Environ.202228111326310.1016/j.rse.2022.113263
    [Google Scholar]
  101. GuoZ. LiX. HuangH. GuoN. LiQ. Deep learning-based image segmentation on multimodal medical imaging.IEEE Trans. Radiat. Plasma Med. Sci.20193216216910.1109/TRPMS.2018.2890359
    [Google Scholar]
  102. KecmanV. Learning and soft computing: support vector machines, neural networks, and fuzzy logic models.MIT press2001
    [Google Scholar]
  103. CristianiniN. ScholkopfB. Support vector machines and kernel methods: The new generation of learning machines.AI Mag.200223331
    [Google Scholar]
  104. Kouider AmarM. RahalS. LaidiM. BoukessaniH. HallouaneH. KerbouciK. ZemirlineH. A comparative study of multi-objective methods and algorithms for optimizing emulgels consistency and drug diffusion.J. Drug Deliv. Sci. Technol.20238910499610.1016/j.jddst.2023.104996
    [Google Scholar]
  105. WaltersW.P. BarzilayR. Applications of deep learning in molecule generation and molecular property prediction.Acc. Chem. Res.202154226327010.1021/acs.accounts.0c00699
    [Google Scholar]
  106. HesslerG. BaringhausK.H. Artificial intelligence in drug design.Molecules20182310252010.3390/molecules23102520
    [Google Scholar]
  107. JiangJ. MaX. OuyangD. WilliamsR.O.III Emerging artificial intelligence (ai) technologies used in the development of solid dosage forms.Pharmaceutics20221411225710.3390/pharmaceutics14112257
    [Google Scholar]
  108. JiangJ. LuA. MaX. OuyangD. WilliamsR.O.III The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion.Int. J. Pharm. X2023510016410.1016/j.ijpx.2023.100164
    [Google Scholar]
  109. WangC. HeT. ZhouH. ZhangZ. LeeC. Artificial intelligence enhanced sensors enabling technologies to next-generation healthcare and biomedical platform.Bioelectron. Med.2023911710.1186/s42234‑023‑00118‑1
    [Google Scholar]
  110. HaickH. TangN. Artificial intelligence in medical sensors for clinical decisions.ACS Nano20211533557356710.1021/acsnano.1c00085
    [Google Scholar]
  111. YuZ. JiangN. KazarianS.G. TasogluS. YetisenA.K. Optical sensors for continuous glucose monitoring.Progress in Biomedical Engineering20213202200410.1088/2516‑1091/abe6f8
    [Google Scholar]
  112. WangJ. Electrochemical glucose biosensors.Chem. Rev.2008108281482510.1021/cr068123a
    [Google Scholar]
  113. GhoneimM.T. NguyenA. DerejeN. HuangJ. MooreG.C. MurzynowskiP.J. DagdevirenC. Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications.Chem. Rev.201911985248529710.1021/acs.chemrev.8b00655
    [Google Scholar]
  114. LuoX. DavisJ.J. Electrical biosensors and the label free detection of protein disease biomarkers.Chem. Soc. Rev.201342135944596210.1039/c3cs60077g
    [Google Scholar]
  115. MetkarS.K. GirigoswamiK. Diagnostic biosensors in medicine A review.Biocatal. Agric. Biotechnol.20191727128310.1016/j.bcab.2018.11.029
    [Google Scholar]
  116. GrieshaberD. MacKenzieR. VörösJ. ReimhultE. Electrochemical biosensors-sensor principles and architectures.Sensors2008831400145810.3390/s80314000
    [Google Scholar]
  117. KhansiliN. RattuG. KrishnaP.M. Label-free optical biosensors for food and biological sensor applications.Sens. Actuators B Chem.2018265354910.1016/j.snb.2018.03.004
    [Google Scholar]
  118. BorisovS.M. WolfbeisO.S. Optical biosensors.Chem. Rev.2008108242346110.1021/cr068105t
    [Google Scholar]
  119. RodriguesD. BarbosaA.I. RebeloR. KwonI.K. ReisR.L. CorreloV.M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review.Biosensors20201077910.3390/bios10070079
    [Google Scholar]
  120. NasiriS. KhosravaniM.R. Progress and challenges in fabrication of wearable sensors for health monitoring.Sens. Actuators A Phys.202031211210510.1016/j.sna.2020.112105
    [Google Scholar]
  121. JohnstonL. WangG. HuK. QianC. LiuG. Advances in biosensors for continuous glucose monitoring towards wearables.Front. Bioeng. Biotechnol.2021973381010.3389/fbioe.2021.733810
    [Google Scholar]
  122. JinX. LiG. XuT. SuL. YanD. ZhangX. Fully integrated flexible biosensor for wearable continuous glucose monitoring.Biosens. Bioelectron.202219611376010.1016/j.bios.2021.113760
    [Google Scholar]
  123. ZhaoJ. LinY. WuJ. NyeinH.Y.Y. BariyaM. TaiL.C. ChaoM. JiW. ZhangG. FanZ. JaveyA. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring.ACS Sens.2019471925193310.1021/acssensors.9b00891
    [Google Scholar]
  124. XuM. LiuY. YangK. LiS. WangM. WangJ. YangD. ShkunovM. SilvaS.R.P. CastroF.A. ZhaoY. Minimally invasive power sources for implantable electronics.Exploration2024412022010610.1002/EXP.20220106
    [Google Scholar]
  125. ManickamP. MariappanS.A. MurugesanS.M. HansdaS. KaushikA. ShindeR. ThipperudraswamyS.P. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare.Biosensors202212856210.3390/bios12080562
    [Google Scholar]
  126. SweeneyK.T. WardT.E. McLooneS.F. Artifact removal in physiological signals—Practices and possibilities.IEEE Trans. Inf. Technol. Biomed.201216348850010.1109/TITB.2012.2188536
    [Google Scholar]
  127. Baharuddin Ismail RohaniM.N.K.H. IsmailB. IsaM.A.M. RosmiA.S. MustafaW.A.W. Review study of image de-noising on digital image processing and applications.ARASET202330133134310.37934/araset.30.1.331343
    [Google Scholar]
  128. AlíasF. SocoróJ. SevillanoX. A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds.Appl. Sci.20166514310.3390/app6050143
    [Google Scholar]
  129. SaxenaS.C. KumarV. HamdeS.T. Feature extraction from ECG signals using wavelet transforms for disease diagnostics.Int. J. Syst. Sci.200233131073108510.1080/00207720210167159
    [Google Scholar]
  130. Domínguez-JiménezJ.A. Campo-LandinesK.C. Martínez-SantosJ.C. DelahozE.J. Contreras-OrtizS.H. A machine learning model for emotion recognition from physiological signals.Biomed. Signal Process. Control20205510164610.1016/j.bspc.2019.101646
    [Google Scholar]
  131. HalfonN. HochsteinM. Life course health development: An integrated framework for developing health, policy, and research.Milbank Q.200280343347910.1111/1468‑0009.00019
    [Google Scholar]
  132. MassaroA. Intelligent materials and nanomaterials improving physical properties and control oriented on electronic implementations.Electronics20231218377210.3390/electronics12183772
    [Google Scholar]
  133. MurataS. ToyotaT. NomuraS.M. NakakukiT. KuzuyaA. Molecular cybernetics: Challenges toward cellular chemical artificial intelligence.Adv. Funct. Mater.20223237220186610.1002/adfm.202201866
    [Google Scholar]
  134. Villarruel MendozaL.A. ScillettaN.A. BellinoM.G. DesimoneM.F. CatalanoP.N. Recent advances in micro-electro-mechanical devices for controlled drug release applications.Front. Bioeng. Biotechnol.2020882710.3389/fbioe.2020.00827
    [Google Scholar]
  135. ChenL. HeneinG. LucianiV. Nanofabrication techniques for controlled drug-release devices.Nanomedicine2011611610.2217/nnm.10.140
    [Google Scholar]
  136. TsaiH.K.A. MadouM. Microfabrication of bilayer polymer actuator valves for controlled drug delivery. JALA.J. Assoc. Lab. Autom.200712529129510.1016/j.jala.2007.06.010
    [Google Scholar]
  137. SanjayS.T. ZhouW. DouM. TavakoliH. MaL. XuF. LiX.J. Recent advances of controlled drug delivery using microfluidic platforms.Adv. Drug Deliv. Rev.201812832810.1016/j.addr.2017.09.013
    [Google Scholar]
  138. ShiQ. LiuH. TangD. LiY. LiX. XuF. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications.NPG Asia Mater.20191116410.1038/s41427‑019‑0165‑3
    [Google Scholar]
  139. LavradorP. EstevesM.R. GasparV.M. ManoJ.F. Stimuli-responsive nanocomposite hydrogels for biomedical applications.Adv. Funct. Mater.2021318200594110.1002/adfm.202005941
    [Google Scholar]
  140. ZhangX. ChenL. LimK.H. GonuguntlaS. LimK.W. PranantyoD. YongW.P. YamW.J.T. LowZ. TeoW.J. NienH.P. LohQ.W. SohS. The pathway to intelligence: Using stimuli-responsive materials as building blocks for constructing smart and functional systems.Adv. Mater.20193111180454010.1002/adma.201804540
    [Google Scholar]
  141. MurdanS. Electro-responsive drug delivery from hydrogels.J. Control. Release2003921-211710.1016/S0168‑3659(03)00303‑1
    [Google Scholar]
  142. AliI. XudongL. XiaoqingC. ZhiweiJ. PervaizM. WeiminY. HaoyiL. SainM. A review of electro-stimulated gels and their applications: Present state and future perspectives.Mater. Sci. Eng. C201910310985210.1016/j.msec.2019.109852
    [Google Scholar]
  143. ZhangS. SureshL. YangJ. ZhangX. TanS.C. Augmenting sensor performance with machine learning towards smart wearable sensing electronic systems.Adv. Intell. Syst.202244210019410.1002/aisy.202100194
    [Google Scholar]
  144. MishraA. AgrawalM. AliA. GargP. Uninterrupted real-time cerebral stress level monitoring using wearable biosensors: A review.Biotechnol. Appl. Biochem.20237061895191410.1002/bab.2491
    [Google Scholar]
  145. SharmaR. SinghD. GaurP. JoshiD. Intelligent automated drug administration and therapy: Future of healthcare.Drug Deliv. Transl. Res.20211151878190210.1007/s13346‑020‑00876‑4
    [Google Scholar]
  146. DavoodiP. LeeL.Y. XuQ. SunilV. SunY. SohS. WangC-H. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.002
    [Google Scholar]
  147. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.001
    [Google Scholar]
  148. KhodaeiM.J. CandelinoN. MehrvarzA. JaliliN. Physiological closed-loop control (PCLC) systems: Review of a modern frontier in automation.IEEE Access20208239652400510.1109/ACCESS.2020.2968440
    [Google Scholar]
  149. TeymourianH. ParrillaM. SempionattoJ.R. MontielN.F. BarfidokhtA. Van EchelpoelR. De WaelK. WangJ. Wearable electrochemical sensors for the monitoring and screening of drugs.ACS Sens.2020592679270010.1021/acssensors.0c01318
    [Google Scholar]
  150. MagePL FergusonBS MaliniakD PloenseKL KippinTE SohHT Closed-loop control of circulating drug levels in live animals.Nat. Biomed. Eng201715007010.1038/s41551‑017‑0070
    [Google Scholar]
  151. DhakalA. McKayC. TannerJ.J. ChengJ. Artificial intelligence in the prediction of protein–ligand interactions: Recent advances and future directions.Brief. Bioinform.2022231bbab47610.1093/bib/bbab476
    [Google Scholar]
  152. QiuY. ChengF. Artificial intelligence for drug discovery and development in Alzheimer’s disease.Curr. Opin. Struct. Biol.20248510277610.1016/j.sbi.2024.102776
    [Google Scholar]
  153. NaqviA.A.T. MohammadT. HasanG.M. HassanM.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships.Curr. Top. Med. Chem.201818201755176810.2174/1568026618666181025114157
    [Google Scholar]
  154. YanX. YueT. WinklerD.A. YinY. ZhuH. JiangG. YanB. Converting nanotoxicity data to information using artificial intelligence and simulation.Chem. Rev.2023123138575863710.1021/acs.chemrev.3c00070
    [Google Scholar]
  155. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.023
    [Google Scholar]
  156. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010
    [Google Scholar]
  157. PanayidesA.S. AminiA. FilipovicN.D. SharmaA. TsaftarisS.A. YoungA. ForanD. DoN. GolematiS. KurcT. HuangK. NikitaK.S. VeaseyB.P. ZervakisM. SaltzJ.H. PattichisC.S. AI in medical imaging informatics: Current challenges and future directions.IEEE J. Biomed. Health Inform.20202471837185710.1109/JBHI.2020.2991043
    [Google Scholar]
  158. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.21552
    [Google Scholar]
  159. ChengalvalaM.V. ChennathukuzhiV.M. JohnstonD.S. StevisP.E. KopfG.S. Gene expression profiling and its practice in drug development.Curr. Genomics20078426227010.2174/138920207781386942
    [Google Scholar]
  160. LockhartD.J. WinzelerE.A. Genomics, gene expression and DNA arrays.Nature2000405678882783610.1038/35015701
    [Google Scholar]
  161. LapointeJ. LiC. GiacominiC.P. SalariK. HuangS. WangP. FerrariM. Hernandez-BoussardT. BrooksJ.D. PollackJ.R. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis.Cancer Res.200767188504851010.1158/0008‑5472.CAN‑07‑0673
    [Google Scholar]
  162. NingW. LiC.J. KaminskiN. Feghali-BostwickC.A. AlberS.M. DiY.P. OtterbeinS.L. SongR. HayashiS. ZhouZ. PinskyD.J. WatkinsS.C. PilewskiJ.M. SciurbaF.C. PetersD.G. HoggJ.C. ChoiA.M.K. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease.Proc. Natl. Acad. Sci. USA200410141148951490010.1073/pnas.0401168101
    [Google Scholar]
  163. ZhaiL. ChenK. HaoB. TanM. Proteomic characterization of post-translational modifications in drug discovery.Acta Pharmacol. Sin.202243123112312910.1038/s41401‑022‑01017‑y
    [Google Scholar]
  164. NeaguA.N. JayathirthaM. WhithamD. MutsengiP. SullivanI. PetreB.A. DarieC.C. Proteomics-based identification of dysregulated proteins in breast cancer.Proteomes20221043510.3390/proteomes10040035
    [Google Scholar]
  165. ChafaiN. BonizziL. BottiS. BadaouiB. Emerging applications of machine learning in genomic medicine and healthcare.Crit. Rev. Clin. Lab. Sci.2023124
    [Google Scholar]
  166. StenzingerA. AlberM. AllgäuerM. JurmeisterP. BockmayrM. BudcziesJ. Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling.Semin Cancer Biol20228412914310.1016/j.semcancer.2021.02.011
    [Google Scholar]
  167. ShuklaV.K. SudhiM. ShettyD.K. BanthiaS. ChandrasekarP. NaikN. HameedB.M.Z. SG. BalakrishnanJ.M. Transforming disease diagnosis and management: A comprehensive review of ai-driven urine analysis in clinical medicine.Engineered Science202326100910.30919/es1009
    [Google Scholar]
  168. BonioloF. DorigattiE. OhnmachtA.J. SaurD. SchubertB. MendenM.P. Artificial intelligence in early drug discovery enabling precision medicine.Expert Opin. Drug Discov.2021169991100710.1080/17460441.2021.1918096
    [Google Scholar]
  169. MohammadH. YouH.W. UmapathiM. RavikumarK.K. MishraS. Strategies of artificial intelligence tools in the domain of nanomedicine.J. Drug Deliv. Sci. Technol.2023•••105157
    [Google Scholar]
  170. ChenW. LiuX. ZhangS. ChenS. Artificial intelligence for drug discovery: Resources, methods, and applications.Mol. Ther. Nucleic Acids20233169170210.1016/j.omtn.2023.02.019
    [Google Scholar]
  171. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.013
    [Google Scholar]
  172. DasK.P. JC. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges.Frontiers in Medical Technology20234106714410.3389/fmedt.2022.1067144
    [Google Scholar]
  173. NaeemA. SuhailM. BasitA. YaliL. XiaZ.M. QinZ. Convergence of artificial intelligence and nanotechnology in the development of novel formulations for cancer treatment.AI-DD HandbookElsevier202349952910.1016/B978‑0‑323‑89925‑3.00019‑8
    [Google Scholar]
  174. LinZ. ChouW.C. ChengY.H. HeC. Monteiro-RiviereN.A. RiviereJ.E. Predicting nanoparticle delivery to tumors using machine learning and artificial intelligence approaches.Int. J. Nanomedicine2022171365137910.2147/IJN.S344208
    [Google Scholar]
  175. SagdicK. EşI. SittiM. InciF. Smart materials: Rational design in biosystems via artificial intelligence.Trends Biotechnol.2022408987100310.1016/j.tibtech.2022.01.005
    [Google Scholar]
  176. TakayamaK. TakaharaJ. FujikawaM. IchikawaH. NagaiT. Formula optimization based on artificial neural networks in transdermal drug delivery.J. Control. Release1999621-216117010.1016/S0168‑3659(99)00033‑4
    [Google Scholar]
  177. VuGTT PhanNT NguyenHT NguyenHC TranYTH PhamTB Application of the artificial neural network to optimize the formulation of self-nanoemulsifying drug delivery system containing rosuvastatin.Journal of Applied Pharmaceutical Science202010900101110.7324/JAPS.2020.10901
    [Google Scholar]
  178. HashadR.A. IshakR.A.H. FahmyS. MansourS. GeneidiA.S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks.Int. J. Biol. Macromol.201686505810.1016/j.ijbiomac.2016.01.042
    [Google Scholar]
  179. AbbaS.I. UsmanA.G. IşikS. Simulation for response surface in the HPLC optimization method development using artificial intelligence models: A data-driven approach.Chemom. Intell. Lab. Syst.202020110400710.1016/j.chemolab.2020.104007
    [Google Scholar]
  180. WuT. PanW. ChenJ. ZhangR. Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets.Drug Dev. Ind. Pharm.200026221121510.1081/DDC‑100100347
    [Google Scholar]
  181. BarmpalexisP. KachrimanisK. GeorgarakisE. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.Eur. J. Pharm. Biopharm.201177112213110.1016/j.ejpb.2010.09.017
    [Google Scholar]
  182. KangY. XuL. DongJ. YuanX. YeJ. FanY. LiuB. XieJ. JiX. Programmed microalgae-gel promotes chronic wound healing in diabetes.Nat. Commun.2024151104210.1038/s41467‑024‑45101‑9
    [Google Scholar]
  183. YeJ. FanY. SheY. ShiJ. YangY. YuanX. LiR. HanJ. LiuL. KangY. JiX. Biomimetic self-propelled asymmetric nanomotors for cascade-targeted treatment of neurological inflammation.Adv. Sci.20241122231021110.1002/advs.202310211
    [Google Scholar]
  184. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑2
    [Google Scholar]
  185. XieY. FengS. DengL. CaiA. GanL. JiangZ. YangP. YeG. LiuZ. WenL. ZhuQ. ZhangW. ZhangZ. LiJ. FengZ. ZhangC. DuW. XuL. JiangJ. ChenX. ZouG. Inverse design of chiral functional films by a robotic AI-guided system.Nat. Commun.2023141617710.1038/s41467‑023‑41951‑x
    [Google Scholar]
  186. VidhyaK.S. SultanaA. MN.K. RangareddyH. VidhyaK.S. MadalageriN.K. Artificial intelligence’s impact on drug discovery and development from bench to bedside.Cureus2023151010.7759/cureus.47486
    [Google Scholar]
  187. ManikkathJ. SubramonyJ.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems.Adv. Drug Deliv. Rev.202117911399710.1016/j.addr.2021.113997
    [Google Scholar]
  188. SrivastavaM. SiddiquiA.T. SrivastavaV. Application of Artificial Intelligence of Medical Things in Remote Healthcare Delivery. Handbook of Security and Privacy of AI-Enabled Healthcare Systems and Internet of Medical Things.CRC Press2024169190
    [Google Scholar]
  189. PawarV. PatilA. TamboliF. GaikwadD. MaliD. ShindeA. Harnessing the power of AI in pharmacokinetics and pharmacodynamics: A comprehensive review.AAPS PharmSciTech2021142426439
    [Google Scholar]
  190. ChouW.C. LinZ. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.Toxicol. Sci.2023191111410.1093/toxsci/kfac101
    [Google Scholar]
  191. AcostaJ.N. FalconeG.J. RajpurkarP. TopolE.J. Multimodal biomedical AI.Nat. Med.20222891773178410.1038/s41591‑022‑01981‑2
    [Google Scholar]
  192. LiJ. HanX. QinY. TanF. ChenY. WangZ. SongH. ZhouX. ZhangY. HuL. HuP. Artificial intelligence accelerates multi-modal biomedical process: A survey.Neurocomputing202355812672010.1016/j.neucom.2023.126720
    [Google Scholar]
  193. Caldorera-MooreM.E. LiechtyW.B. PeppasN.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers.Acc. Chem. Res.201144101061107010.1021/ar2001777
    [Google Scholar]
  194. ZhouS. ZhongQ. WangY. HuP. ZhongW. HuangC.B. YuZ-Q. DingC-D. LiuH. FuJ. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases.Coord. Chem. Rev.202245221430910.1016/j.ccr.2021.214309
    [Google Scholar]
  195. ElenduC. AmaechiD.C. ElenduT.C. JingwaK.A. OkoyeO.K. OkahM.J. Ethical implications of AI and robotics in healthcare.Rev. Med.202310250e36671
    [Google Scholar]
  196. NassarA. KamalM. Ethical dilemmas in AI-powered decision-making: A deep dive into big data-driven ethical considerations.International Journal of Responsible Artificial Intelligence.2021118111
    [Google Scholar]
  197. GerkeS. MinssenT. CohenG. Ethical and legal challenges of artificial intelligence-driven healthcare.AIElsevier202029533610.1016/B978‑0‑12‑818438‑7.00012‑5
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266324522240725053634
Loading
/content/journals/ctmc/10.2174/0115680266324522240725053634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test