Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Zika (ZIKV) is a virus transmitted by mosquitoes that can cause Guillain-Barré syndrome and congenital malformations like microcephaly. Given its explosive resurgence and the resulting epidemics in 2016, the search for effective antiviral drugs has become absolutely necessary.

Methods

In this study, we examined the potential of naphthoquinone derivatives that have a sulfonamide or sulfonate group to inhibit ZIKV replication in primary cultured neurons and in Vero cells.

Results

In our studies, we found that PAV05 had low cytotoxicity with a CC50 of 329 µM ±3.6 for Vero cells and 290 µM ±3.5 for neurons. Additionally, we observed a strong inhibitory activity on viral replication with an EC value of EC of 0.92 µM ±0.15 in Vero cells, resulting in a Selectivity Index (SI) of 357. Even when added 16 hours post-infection, PAV05 maintained its inhibitory effect. When PAV05 was evaluated in sub-optimal concentrations together with Ribavirin, we observed a strong synergistic effect, with an inhibition greater than 90% even at doses of 0.5 µM. tests suggested that PAV05 may have effects on ZIKV NS2B-NS3.

Conclusion

The ZIKV inhibitor described in this study shows promise as a compound for the development of therapies against ZIKV. It may also be considered for inclusion in the portfolio of broad-spectrum antiflavivirus inhibitors.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266323907241212062715
2025-01-21
2025-10-25
Loading full text...

Full text loading...

References

  1. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  2. SongW. ZhangH. ZhangY. ChenY. LinY. HanY. JiangJ. Identification and characterization of zika virus NS5 methyltransferase inhibitors.Front. Cell. Infect. Microbiol.20211166537910.3389/fcimb.2021.665379 33898335
    [Google Scholar]
  3. SirohiD. KuhnR.J. Zika virus structure, maturation, and receptors.J. Infect. Dis.2017216Suppl. 10S935S94410.1093/infdis/jix515 29267925
    [Google Scholar]
  4. GublerD.J. VasilakisN. MussoD. History and emergence of Zika virus.J. Infect. Dis.2017216Suppl. 10S860S86710.1093/infdis/jix451 29267917
    [Google Scholar]
  5. FerrarisP. YsselH. MisséD. Zika virus infection: An update.Microbes Infect.2019218-935336010.1016/j.micinf.2019.04.005 31158508
    [Google Scholar]
  6. GrubaughN.D. SarafS. GangavarapuK. WattsA. TanA.L. OidtmanR.J. LadnerJ.T. OliveiraG. MattesonN.L. KraemerM.U. Travel surveillance and genomics uncover a hidden Zika outbreak during the waning epidemic.Cell20195335336010.1016/j.cell.2019.07.018
    [Google Scholar]
  7. LiuZ.Y. ShiW.F. QinC.F. The evolution of Zika virus from Asia to the Americas.Nat. Rev. Microbiol.201917313113910.1038/s41579‑018‑0134‑9 30617340
    [Google Scholar]
  8. Runge-RanzingerS. MorrisonA.C. Manrique-SaideP. HorstickO. Zika transmission patterns: A meta‐review.Trop. Med. Int. Health201924552352910.1111/tmi.13216 30771269
    [Google Scholar]
  9. SampieriC.L. MonteroH. Breastfeeding in the time of Zika: A systematic literature review.PeerJ20197e645210.7717/peerj.6452 30809448
    [Google Scholar]
  10. SchwartzB. WHO issues new Zika updates.Contemp. Ob Gyn201964878
    [Google Scholar]
  11. GironS. FrankeF. DecoppetA. CadiouB. TravagliniT. ThirionL. DurandG. JeanninC. L’AmbertG. GrardG. NoëlH. FournetN. Auzet-CaillaudM. ZandottiC. AboukaïsS. ChaudP. GuedjS. HamoudaL. NaudotX. OvizeA. LazarusC. de ValkH. PatyM.C. Leparc-GoffartI. Vector-borne transmission of Zika virus in Europe, southern France, August 2019.Euro Surveill.20192445190065510.2807/1560‑7917.ES.2019.24.45.1900655 31718742
    [Google Scholar]
  12. KarkhahA. NouriH.R. JavanianM. KoppoluV. Masrour-RoudsariJ. KazemiS. EbrahimpourS. Zika virus: Epidemiology, clinical aspects, diagnosis, and control of infection.Eur. J. Clin. Microbiol. Infect. Dis.201837112035204310.1007/s10096‑018‑3354‑z 30167886
    [Google Scholar]
  13. MuñozL.S. ParraB. PardoC.A. Study, N.E.i.t.A., Neurological implications of Zika virus infection in adults.J. Infect. Dis.2017216Suppl. 10S897S90510.1093/infdis/jix511 29267923
    [Google Scholar]
  14. UnciniA. ShahrizailaN. KuwabaraS. Zika virus infection and Guillain-Barré syndrome: a review focused on clinical and electrophysiological subtypes.J. Neurol. Neurosurg. Psychiatry201788326627110.1136/jnnp‑2016‑314310 27799296
    [Google Scholar]
  15. DeCockerK. Zika virus and pregnancy concerns.Nurs. Clin. North Am.201954228529510.1016/j.cnur.2019.02.005 31027667
    [Google Scholar]
  16. OeserC. LadhaniS. An update on Zika virus and congenital zika syndrome.Paediatr. Child Health (Oxford)2019291343710.1016/j.paed.2018.10.010
    [Google Scholar]
  17. FigueiredoC.P. Barros-AragãoF.G.Q. NerisR.L.S. FrostP.S. SoaresC. SouzaI.N.O. ZeidlerJ.D. ZamberlanD.C. de SousaV.L. SouzaA.S. GuimarãesA.L.A. BellioM. Marcondes de SouzaJ. Alves-LeonS.V. NevesG.A. Paula-NetoH.A. CastroN.G. De FeliceF.G. Assunção-MirandaI. ClarkeJ.R. Da PoianA.T. FerreiraS.T. Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice.Nat. Commun.2019101389010.1038/s41467‑019‑11866‑7 31488835
    [Google Scholar]
  18. Chan-ZapataI. Borges-ArgáezR. Ayora-TalaveraG. Quinones as promising compounds against respiratory viruses: A review.Molecules2023284198110.3390/molecules28041981 36838969
    [Google Scholar]
  19. PauliF.P. FreitasC.S. PereiraP.R. MagalhãesA. de Carvalho da SilvaF. PaschoalinV.M.F. FerreiraV.F. Exploring the antimicrobial and antitumoral activities of naphthoquinone-grafted chitosans.Polymers2023156143010.3390/polym15061430 36987212
    [Google Scholar]
  20. RibeiroL.M.B.C. FumagalliF. MelloR.B. FroesT.Q. da SilvaM.V.S. Villamizar GómezS.M. BarrosT.F. EmeryF.S. CastilhoM.S. Structure-activity relationships and mechanism of action of tetragomycin derivatives as inhibitors of Staphylococcus aureus staphyloxanthin biosynthesis.Microb. Pathog.202014410412710.1016/j.micpath.2020.104127 32169485
    [Google Scholar]
  21. PachecoP.A.F. GalvãoR.M.S. FariaA.F.M. Von RankeN. RangelM.S. RibeiroT.M. BelloM. RodriguesC.R. FerreiraV.F. da RochaD.R. FariaR.X. 8-Hydroxy-2-(1H-1,2,3-triazol-1-yl)-1,4-naphtoquinone derivatives inhibited P2X7 receptor-induced dye uptake into murine Macrophages.Bioorg. Med. Chem.20192781449145510.1016/j.bmc.2018.11.036 30528164
    [Google Scholar]
  22. DantasW.M. de OliveiraV.N.M. SantosD.A.L. SeabraG. SharmaP.P. RathiB. PenaL.J. de OliveiraR.N. Searching Anti-Zika virus activity in 1H-1,2,3-Triazole based compounds.Molecules20212619586910.3390/molecules26195869 34641413
    [Google Scholar]
  23. ZouJ. ShiP.Y. Strategies for Zika drug discovery.Curr. Opin. Virol.201935192610.1016/j.coviro.2019.01.005 30852345
    [Google Scholar]
  24. MottinM. BorbaJ.V.V.B. BragaR.C. TorresP.H.M. MartiniM.C. Proenca-ModenaJ.L. JudiceC.C. CostaF.T.M. EkinsS. PerrymanA.L. Horta AndradeC. The A–Z of Zika drug discovery.Drug Discov. Today201823111833184710.1016/j.drudis.2018.06.014 29935345
    [Google Scholar]
  25. GonzagaD. GomesR. MarraR. da SilvaF. GomesM. FerreiraD. SantosR. PintoA. RatcliffeN.A. Cirne-SantosC. BarrosC. FerreiraV. PaixãoI.C. Inhibition of Zika virus replication by synthetic bis-naphthoquinones.J. Braz. Chem. Soc.2019301697170610.21577/0103‑5053.20190071
    [Google Scholar]
  26. PachecoP. GonzagaD. Cirne-SantosC. BarrosC. GomesM. GomesR. GonçalvesM. FerreiraV. RabeloV. AbreuP. FariaR. de ResendeG. da RochaD. PaixãoI. da SilvaF. Synthesis and anti-chikungunya virus (CHIKV) activity of novel 1,4-Naphthoquinone sulfonamide and sulfonate ester derivatives.J. Braz. Chem. Soc.20223355656910.21577/0103‑5053.20220010
    [Google Scholar]
  27. Cirne-SantosC.C. BarrosC.S. NogueiraC.C.R. AzevedoR.C. YamamotoK.A. MeiraG.L.S. VasconcelosZ.F.M. RatcliffeN.A. TeixeiraV.L. Schmidt-ChanasitJ. FerreiraD.F. PaixãoI.C.N.P. Inhibition by marine algae of chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro.Front. Microbiol.201910242610.3389/fmicb.2019.02426 31708898
    [Google Scholar]
  28. AdlerR. LindseyJ.D. ElsnerC.L. Expression of cone-like properties by chick embryo neural retina cells in glial-free monolayer cultures.J. Cell Biol.19849931173117810.1083/jcb.99.3.1173 6470040
    [Google Scholar]
  29. FerreiraJ.M. Paes-de-CarvalhoR. Long-term activation of adenosine A2a receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons.Brain Res.2001900216917610.1016/S0006‑8993(01)02279‑X 11334795
    [Google Scholar]
  30. Paes-de-CarvalhoR. MaiaG.A. FerreiraJ.M. Adenosine regulates the survival of avian retinal neurons and photoreceptors in culture.Neurochem. Res.200328101583159010.1023/A:1025686812298 14570404
    [Google Scholar]
  31. Mejía-GarcíaT.A. PortugalC.C. EncarnaçãoT.G. PradoM.A.M. Paes-de-CarvalhoR. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.Cell. Signal.201325122424243910.1016/j.cellsig.2013.08.001 23958999
    [Google Scholar]
  32. AnccasiR.M. OrnelasI.M. CossenzaM. PersechiniP.M. VenturaA.L.M. ATP induces the death of developing avian retinal neurons in culture via activation of P2X7 and glutamate receptors.Purinergic Signal.201391152910.1007/s11302‑012‑9324‑5 22733428
    [Google Scholar]
  33. Cirne-SantosC.C. de Souza BarrosC. de OliveiraM.C. RabeloV.W.H. AzevedoR.C. TeixeiraV.L. FerreiraD.F. de Palmer PaixãoI.C.N. In vitro studies on the inhibition of replication of zika and chikungunya viruses by dolastane isolated from seaweed Canistrocarpus cervicornis.Sci. Rep.2020101826310.1038/s41598‑020‑65357‑7 32427940
    [Google Scholar]
  34. Di VeroliG.Y. FornariC. WangD. MollardS. BramhallJ.L. RichardsF.M. JodrellD.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations.Bioinformatics201632182866286810.1093/bioinformatics/btw230 27153664
    [Google Scholar]
  35. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  36. LiL. WangJ. JiaZ. ShawN. Structural view of the helicase reveals that Zika virus uses a conserved mechanism for unwinding RNA.Acta Crystallogr. F Struct. Biol. Commun.201874420521310.1107/S2053230X18003813 29633968
    [Google Scholar]
  37. KangC. KellerT.H. LuoD. Zika virus protease: An antiviral drug target.Trends Microbiol.2017251079780810.1016/j.tim.2017.07.001 28789826
    [Google Scholar]
  38. PhooW.W. LiY. ZhangZ. LeeM.Y. LohY.R. TanY.B. NgE.Y. LescarJ. KangC. LuoD. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage.Nat. Commun.2016711341010.1038/ncomms13410 27845325
    [Google Scholar]
  39. LiY. ZhangZ. PhooW.W. LohY.R. LiR. YangH.Y. JanssonA.E. HillJ. KellerT.H. NacroK. Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor.Structure201826455556410.1016/j.str.2018.02.005
    [Google Scholar]
  40. ZhangZ. LiY. LohY.R. PhooW.W. HungA.W. KangC. LuoD. Crystal structure of unlinked NS2B-NS3 protease from Zika virus.Science201635463191597160010.1126/science.aai9309 27940580
    [Google Scholar]
  41. QadirA. RiazM. SaeedM. Shahzad-ul-HussanS. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus.Eur. J. Med. Chem.201815644446010.1016/j.ejmech.2018.07.014 30015077
    [Google Scholar]
  42. DolinskyT.J. NielsenJ.E. McCammonJ.A. BakerN.A. PDB2PQR: An automated pipeline for the setup of PoissonBoltzmann electrostatics calculations. Nucleic Acids Res.200432(Web Server)(Suppl. 2)W665W66710.1093/nar/gkh381 15215472
    [Google Scholar]
  43. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  44. ChanJ.F.W. ChikK.K.H. YuanS. YipC.C.Y. ZhuZ. TeeK.M. TsangJ.O.L. ChanC.C.S. PoonV.K.M. LuG. ZhangA.J. LaiK.K. ChanK.H. KaoR.Y.T. YuenK.Y. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor.Antiviral Res.2017141293710.1016/j.antiviral.2017.02.002 28185815
    [Google Scholar]
  45. YuanS. ChanJ.F.W. den-HaanH. ChikK.K.H. ZhangA.J. ChanC.C.S. PoonV.K.M. YipC.C.Y. MakW.W.N. ZhuZ. ZouZ. TeeK.M. CaiJ.P. ChanK.H. de la PeñaJ. Pérez-SánchezH. Cerón-CarrascoJ.P. YuenK.Y. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo.Antiviral Res.2017145334310.1016/j.antiviral.2017.07.007 28712942
    [Google Scholar]
  46. LeeH. RenJ. NocadelloS. RiceA.J. OjedaI. LightS. MinasovG. VargasJ. NagarathnamD. AndersonW.F. JohnsonM.E. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus.Antiviral Res.2017139495810.1016/j.antiviral.2016.12.016 28034741
    [Google Scholar]
  47. ColeJ.C. MurrayC.W. NissinkJ.W.M. TaylorR.D. TaylorR. Comparing protein–ligand docking programs is difficult.Proteins200560332533210.1002/prot.20497 15937897
    [Google Scholar]
  48. KontoyianniM. McClellanL.M. SokolG.S. Evaluation of docking performance: Comparative data on docking algorithms.J. Med. Chem.200447355856510.1021/jm0302997 14736237
    [Google Scholar]
  49. LeachA.R. ShoichetB.K. PeishoffC.E. Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps.J. Med. Chem.200649205851585510.1021/jm060999m 17004700
    [Google Scholar]
  50. MastrangeloE. PezzulloM. De BurghgraeveT. KapteinS. PastorinoB. DallmeierK. de LamballerieX. NeytsJ. HansonA.M. FrickD.N. BolognesiM. MilaniM. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug.J. Antimicrob. Chemother.20126781884189410.1093/jac/dks147 22535622
    [Google Scholar]
  51. ByrdC.M. GrosenbachD.W. BerhanuA. DaiD. JonesK.F. CardwellK.B. SchneiderC. YangG. TyavanagimattS. HarverC. WineingerK.A. PageJ. StavaleE. StoneM.A. FullerK.P. LovejoyC. LeedsJ.M. HrubyD.E. JordanR. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.Antimicrob. Agents Chemother.20135741902191210.1128/AAC.02251‑12 23403421
    [Google Scholar]
  52. SweeneyN.L. HansonA.M. MukherjeeS. NdjomouJ. GeissB.J. SteelJ.J. FrankowskiK.J. LiK. SchoenenF.J. FrickD.N. Benzothiazole and pyrrolone flavivirus inhibitors targeting the viral helicase.ACS Infect. Dis.20151314014810.1021/id5000458 26029739
    [Google Scholar]
  53. YangX. ChenC. TianH. ChiH. MuZ. ZhangT. YangK. ZhaoQ. LiuX. WangZ. JiX. YangH. Mechanism of ATP hydrolysis by the Zika virus helicase.FASEB J.201832105250525710.1096/fj.201701140R 29913559
    [Google Scholar]
  54. MarraR.K.F. KümmerleA.E. GuedesG.P. BarrosC.S. GomesR.S.P. Cirne-SantosC.C. PaixãoI.C.N.P. NevesA.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors.Bioorg. Med. Chem. Lett.202030212688110.1016/j.bmcl.2019.126881 31843348
    [Google Scholar]
  55. CataneoA.H.D. ÁvilaE.P. MendesL.A.O. de OliveiraV.G. FerrazC.R. de AlmeidaM.V. FrabasileS. Duarte dos SantosC.N. VerriW.A.Jr BordignonJ. WowkP.F. Flavonoids as molecules with anti-Zika virus activity.Front. Microbiol.20211271035910.3389/fmicb.2021.710359 34566915
    [Google Scholar]
  56. DahiyaN. YadavM. SinghH. JakharR. SehrawatN. ZIKV: Epidemiology, infection mechanism and current therapeutics.Front. Trop. Dis.20233105928310.3389/fitd.2022.1059283
    [Google Scholar]
  57. MoneN. BhagwatS. SharmaD. ChaskarM. PatilR. ZamboniP. NawaniN. SatputeS. Naphthoquinones and their derivatives: Emerging trends in combating microbial pathogens.Coatings202111443410.3390/coatings11040434
    [Google Scholar]
  58. GiongoV. FalangaA. De MeloC.P.P. da SilvaG.B. BellavitaR. De-SimoneS.G. PaixãoI.C. GaldieroS. Antiviral potential of naphthoquinones derivatives encapsulated within liposomes.Molecules20212621644010.3390/molecules26216440 34770849
    [Google Scholar]
  59. CuiJ. JiaJ. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors.Eur. J. Med. Chem.202122511378910.1016/j.ejmech.2021.113789 34438124
    [Google Scholar]
  60. RanaD. MandalB.M. BhattacharyyaS.N. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends.Polymer (Guildf.)19933471454145910.1016/0032‑3861(93)90861‑4
    [Google Scholar]
  61. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetry of polymer blends: Poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate).Polymer (Guildf.)199637122439244310.1016/0032‑3861(96)85356‑0
    [Google Scholar]
  62. RanaD. BagK. BhattacharyyaS.N. MandalB.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST.J. Polym. Sci., B, Polym. Phys.200038336937510.1002/(SICI)1099‑0488(20000201)38:3<369:AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  63. RanaD. MandalB.M. BhattacharyyaS.N. Analogue calorimetric studies of blends of poly (vinyl ester) s and polyacrylates.Macromolecules19962951579158310.1021/ma950954n
    [Google Scholar]
  64. RabeloV.W.H. RomeiroN.C. PaixãoI.C.N.P. AbreuP.A. Mechanism of resistance to acyclovir in thymidine kinase mutants from Herpes simplex virus type 1: a computational approach.J. Biomol. Struct. Dyn.20203872116212710.1080/07391102.2019.1625443 31190614
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266323907241212062715
Loading
/content/journals/ctmc/10.2174/0115680266323907241212062715
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antiviral; Naphthoquinone; ZIKA-Virus, Arbovirus, PAV05, NS2B-NS3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test