Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

In continuation of our chemical and biological work on we evaluated the antipyretic activity of its extract which on fractionation gives a pure alkaloid galegine. Galegine a bioprivileged compound, is a hemiterpene bearing a guanidine group, which holds significant importance in medicinal chemistry. Biological activities such as antimicrobial, antidiabetic, anti-inflammatory, cardiovascular, anticancer, and antihypertensive, are often associated with guanidine-containing molecules.

Objective

Given the biological importance of guanidine and in search of safe antipyretic agents from natural resources, an antipyretic activity of methanolic extract of and galegine was conducted to discover a potential hypothermic drug candidate from the plant.

Methods

the antipyretic activity of galegine (5, 25, and 50 mg/kg doses) and methanolic extract of (50, 100, and 200 mg/kg doses) was investigated by employing yeast-induced pyrexia in mice model. molecular docking analysis involving target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) was conducted. Additionally, galegine underwent ADME/T profiling using SwissADME and Protox-II tools to evaluate its bioavailability and safety profiles.

Results

Both the extract and galegine showed a progressive dose-dependent reduction in body temperatures of the hyperthermic test animals. Moreover, molecular docking analysis revealed significant binding affinities ranging from -3.58 to -5.41 kcal/mol. ADME/T analyses of galegine predicted its high drug-likeness and good safety profile.

Conclusion

These biological and computational approaches supported in addressing pyrexia, with the isolated compound galegine emerging as a promising antipyretic agent.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266333237241212071912
2025-01-29
2025-10-20
Loading full text...

Full text loading...

References

  1. Quiñonez-BastidasG.N. NavarreteA. Mexican plants and derivates compounds as alternative for inflammatory and neuropathic pain treatment—A review.Plants202110586510.3390/plants10050865 33923101
    [Google Scholar]
  2. NawazN.U.A. SaeedM. RaufK. UsmanM. ArifM. UllahZ. RaziqN. Antinociceptive effectiveness of Tithonia tubaeformis in a vincristine model of chemotherapy-induced painful neuropathy in mice.Biomed. Pharmacother.20181031043105110.1016/j.biopha.2018.04.115 29710662
    [Google Scholar]
  3. López-CaamalA. Tovar-SánchezE. Comparing the population history of Neotropical annual species: The role of climate change and hybridization between Tithonia tubaeformis and T. rotundifolia (Asteraceae).Plant Biol.202123696297310.1111/plb.13313 34374194
    [Google Scholar]
  4. López-CaamalA. Reyes-ChilpaR. Tovar-SánchezE. Hybridization between Tithonia tubaeformis and T. rotundifolia (Asteraceae) evidenced by nSSR and secondary metabolites.Plant Syst. Evol.2018304331332610.1007/s00606‑017‑1478‑8
    [Google Scholar]
  5. NawazN.U.A. SaeedM. KhanK.M. AliI. BhattiH.A. Sabi-Ur-Rehman; Shahid, M.; Faizi, S. Isolation of tyrosine derived phenolics and their possible beneficial role in anti-inflammatory and antioxidant potential of Tithonia tubaeformis.Nat. Prod. Res.202135224286429410.1080/14786419.2019.1705813 31872778
    [Google Scholar]
  6. Chagas-PaulaD.A. OliveiraR.B. RochaB.A. Da CostaF.B. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).Chem. Biodivers.20129221023510.1002/cbdv.201100019 22344901
    [Google Scholar]
  7. Rangel-LandaS. CasasA. Rivera-LozoyaE. Torres-GarcíaI. Vallejo-RamosM. Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico.J. Ethnobiol. Ethnomed.20161213010.1186/s13002‑016‑0101‑3 27439512
    [Google Scholar]
  8. PlatzerM. KieseS. TybussekT. HerfellnerT. SchneiderF. Schweiggert-WeiszU. EisnerP. Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study.Front. Nutr.2022988245810.3389/fnut.2022.882458 35445057
    [Google Scholar]
  9. AhmadI. KhanH. GilaniA.H. KamalM. Potential of plant alkaloids as antipyretic drugs of future.Curr. Drug Metab.201718213814410.2174/1389200218666170116102625 28093998
    [Google Scholar]
  10. BlomqvistA. EngblomD. Neural mechanisms of inflammation-induced fever.Neuroscientist201824438139910.1177/1073858418760481 29557255
    [Google Scholar]
  11. LiedtkeA.J. CrewsB.C. DanielC.M. BlobaumA.L. KingsleyP.J. GhebreselasieK. MarnettL.J. Cyclooxygenase-1-selective inhibitors based on the (E)-2′-des-methyl-sulindac sulfide scaffold.J. Med. Chem.20125552287230010.1021/jm201528b 22263894
    [Google Scholar]
  12. MuhammadN. KhanR. SerajF. KhanA. UllahU. WadoodA. AjmalA. Uzma; Ali, B.; Khan, K.M.; Ain Nawaz, N.U.; AlMasoud, N.; Alomar, T.S.; Rauf, A. In vivo analgesic, anti-inflammatory and molecular docking studies of S-naproxen derivatives.Heliyon2024102e2426710.1016/j.heliyon.2024.e24267 38304837
    [Google Scholar]
  13. KhuranaP. JachakS.M. Chemistry and biology of microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status.RSC Advances2016634283432836910.1039/C5RA25186A
    [Google Scholar]
  14. DwivediA.K. GurjarV. KumarS. SinghN. Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs).Drug Discov. Today201520786387310.1016/j.drudis.2015.03.004 25794602
    [Google Scholar]
  15. DangarembiziR. ErlwangerK.H. RummelC. RothJ. MadzivaM.T. HardenL.M. Brewer’s yeast is a potent inducer of fever, sickness behavior and inflammation within the brain.Brain Behav. Immun.20186821122310.1016/j.bbi.2017.10.019 29074357
    [Google Scholar]
  16. AronoffD.M. NeilsonE.G. Antipyretics: mechanisms of action and clinical use in fever suppression.Am. J. Med.2001111430431510.1016/S0002‑9343(01)00834‑8 11566461
    [Google Scholar]
  17. OrandiB.J. McLeodM.C. MacLennanP.A. LeeW.M. FontanaR.J. KarvellasC.J. McGuireB.M. LewisC.E. TerraultN.M. LockeJ.E. LarsonA.M. LiouI. FixO. SchilskyM. McCashlandT. HayJ.E. MurrayN. ShaikhO.S. BleiA. GangerD. ZamanA. HanS.H.B. ChungR.T. SmithA. BrownR. CrippinJ. HarrisonE. ReubenA. MunozS. ReddyR. StravitzR.T. RossaroL. SatyanarayanaR. HassaneinT. KarvellasC.J. OlsonJ. SubramanianR. HanjeJ. HameedB. SamuelG. LalaniE. PezziaC. SandersC. AttarN. HynanL.S. DurkalskiV. ZhaoW. SpeiserJ. DillonC. BattenhouseH. GottfriendM. Association of FDA Mandate Limiting Acetaminophen (Paracetamol) in Prescription Combination Opioid Products and Subsequent Hospitalizations and Acute Liver Failure.JAMA2023329973574410.1001/jama.2023.1080 36881033
    [Google Scholar]
  18. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  19. PlaisanceK.I. MackowiakP.A. Antipyretic Therapy.Arch. Intern. Med.2000160444945610.1001/archinte.160.4.449 10695685
    [Google Scholar]
  20. AsefaM. TeshomeN. DeguA. Anti-inflammatory and analgesic activity of methanolic root extract of Verbascum sinaiticum benth.J. Inflamm. Res.2022156381639210.2147/JIR.S389430 36444312
    [Google Scholar]
  21. AyoubS.S. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action.Temperature20218435137110.1080/23328940.2021.1886392 34901318
    [Google Scholar]
  22. NazliA. Irshad KhanM.Z. AhmedM. AkhtarN. OklaM.K. Al-HashimiA. Al-QahtaniW.H. AbdelgawadH. HaqI. HPLC-DAD Based Polyphenolic Profiling and Evaluation of Pharmacological Attributes of Putranjiva roxburghii Wall.Molecules20212716810.3390/molecules27010068 35011299
    [Google Scholar]
  23. BargerG. WhiteF.D. The constitution of galegine.Biochem. J.192317682783510.1042/bj0170827 16743219
    [Google Scholar]
  24. KimS.H. SemenyaD. CastagnoloD. Antimicrobial drugs bearing guanidine moieties: A review.Eur. J. Med. Chem.202121611329310.1016/j.ejmech.2021.113293 33640673
    [Google Scholar]
  25. GehlotP. KumarS. Kumar VyasV. Singh ChoudharyB. SharmaM. MalikR. Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer’s disease (AD): A review.Bioorg. Med. Chem.20227411704710.1016/j.bmc.2022.117047 36265268
    [Google Scholar]
  26. GomesA.R. VarelaC.L. PiresA.S. Tavares-da-SilvaE.J. RoleiraF.M.F. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review.Bioorg. Chem.202313810660010.1016/j.bioorg.2023.106600 37209561
    [Google Scholar]
  27. Delle MonacheG. BottaB. MonacheF.D. EspinalR. De BonnevauxS.C. De LucaC. BottaM. CorelliF. CarmignaniM. Novel hypotensive agents from Verbesina caracasana. 2. Synthesis and pharmacology of caracasanamide.J. Med. Chem.199336202956296310.1021/jm00072a016 8411013
    [Google Scholar]
  28. BerlinckR.G.S. BernardiD.I. FillT. FernandesA.A.G. JurbergI.D. The chemistry and biology of guanidine secondary metabolites.Nat. Prod. Rep.202138358666710.1039/D0NP00051E 33021301
    [Google Scholar]
  29. DantasN. de AquinoT.M. de Araújo-JúniorJ.X. da Silva-JúniorE. GomesE.A. GomesA.A.S. Siqueira-JúniorJ.P. MendonçaF.J.B.Junior Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump.Chem. Biol. Interact.201828081410.1016/j.cbi.2017.12.009 29208359
    [Google Scholar]
  30. RamirezD.M. RamirezD. DhimanS. AroraR. LozeauC. ArthurG. ZhanelG. SchweizerF. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa.ACS Infect. Dis.2023991754176810.1021/acsinfecdis.3c00217 37603592
    [Google Scholar]
  31. Espirito SantoR. MachadoM. SantosJ. GonzalezE. ChinC.R. MachadoG.M. M.; L dos Santos, J.; RP Gonzalez, E.; M Chin, C. Use of guanidine compounds in the treatment of neglected tropical diseases.Curr. Org. Chem.201418202572260210.2174/138527281820141028104429
    [Google Scholar]
  32. AlmeidaF.S. MoreiraV.P. SilvaE.S. CardosoL.L. de Sousa PalmeiraP.H. Cavalcante-SilvaL.H.A. AraújoD.A.M. AmaralI.P.G. GonzálezE.R.P. KeesenT.S.L. Leishmanicidal Activity of Guanidine Derivatives against Leishmania infantum.Trop. Med. Infect. Dis.20238314110.3390/tropicalmed8030141 36977142
    [Google Scholar]
  33. DrozdovF. KotovV. Guanidine: A simple molecule with great potential: From catalysts to biocides and molecular glues.Ineos Open.20203200213
    [Google Scholar]
  34. Estévez-SarmientoF. SaavedraE. BrouardI. PeyracJ. Hernández-GarcésJ. GarcíaC. QuintanaJ. EstévezF. Guanidine Derivatives Containing the Chalcone Skeleton Are Potent Antiproliferative Compounds against Human Leukemia Cells.Int. J. Mol. Sci.202223241551810.3390/ijms232415518 36555165
    [Google Scholar]
  35. MehalK.K. KaurA. SinghH.P. BatishD.R. Investigating the phytotoxic potential of Verbesina encelioides: effect on growth and performance of co-occurring weed species.Protoplasma20232601778710.1007/s00709‑022‑01761‑2 35441891
    [Google Scholar]
  36. MuhammadA. KhanB. IqbalZ. KhanA.Z. KhanI. KhanK. AlamzebM. AhmadN. KhanK. Lal BadshahS. UllahA. MuhammadS. JanM.T. NadeemS. KabirN. Viscosine as a potent and safe antipyretic agent evaluated by yeast-induced pyrexia model and molecular docking studies.ACS Omega2019410141881419210.1021/acsomega.9b01041 31508540
    [Google Scholar]
  37. RaziqN. SaeedM. ShahidM. MuhammadN. KhanH. GulF. Pharmacological basis for the use of Hypericum oblongifolium as a medicinal plant in the management of pain, inflammation and pyrexia.BMC Complement. Altern. Med.20151614110.1186/s12906‑016‑1018‑z 26832937
    [Google Scholar]
  38. WangW. ZhangX. Antihypertensive Effect of Galegine from Biebersteinia heterostemon in Rats.Molecules20212616483010.3390/molecules26164830 34443434
    [Google Scholar]
  39. XuS. HermansonD.J. BanerjeeS. GhebreselasieK. ClaytonG.M. GaravitoR.M. MarnettL.J. Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding Network.J. Biol. Chem.2014289106799680810.1074/jbc.M113.517987 24425867
    [Google Scholar]
  40. HoJ.D. LeeM.R. RauchC.T. AznavourK. ParkJ.S. LuzJ.G. AntonysamyS. CondonB. MaleticM. ZhangA. HickeyM.J. HughesN.E. ChandrasekharS. SloanA.V. GoodingK. HarveyA. YuX.P. KahlS.D. NormanB.H. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP).Biochim. Biophys. Acta, Gen. Subj.20211865212980010.1016/j.bbagen.2020.129800 33246032
    [Google Scholar]
  41. ULC 2019
  42. TiwariA. TiwariV. KumarS. KumarM. SaharanR. VarmaN. SahooB.M. KaushikD. SharmaR.K. Molecular Docking and simulation analysis of cyclopeptides as anticancer agents.Curr. Drug Ther.202318324726110.2174/1574885518666230222113033
    [Google Scholar]
  43. Abdel-AzizA.A.M. Abou-ZeidL.A. ElTahirK.E.H. MohamedM.A. Abu El-EninM.A. El-AzabA.S. Design, synthesis of 2,3-disubstitued 4(3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents: COX-1/2 inhibitory activities and molecular docking studies.Bioorg. Med. Chem.201624163818382810.1016/j.bmc.2016.06.026 27344214
    [Google Scholar]
  44. OnigaS. PacureanuL. StoicaC. PalageM. Crăciun, A.; Rusu, L.; Crisan, E.L.; Araniciu, C. COX inhibition profile and molecular docking studies of some 2-(trimethoxyphenyl)-thiazoles.Molecules2017229150710.3390/molecules22091507 28891941
    [Google Scholar]
  45. RaoZ. CaprioglioD. GollowitzerA. KretzerC. ImperioD. ColladoJ.A. WaltlL. LacknerS. AppendinoG. MuñozE. TemmlV. WerzO. MinassiA. KoeberleA. Rotational constriction of curcuminoids impacts 5-lipoxygenase and mPGES-1 inhibition and evokes a lipid mediator class switch in macrophages.Biochem. Pharmacol.202220311520210.1016/j.bcp.2022.115202 35932797
    [Google Scholar]
  46. SalentinS. SchreiberS. HauptV.J. AdasmeM.F. SchroederM. PLIP: fully automated protein–ligand interaction profiler.Nucleic Acids Res.201543W1W443W44710.1093/nar/gkv315 25873628
    [Google Scholar]
  47. LaskowskiR.A. SwindellsM.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  48. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  49. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: a webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  50. WitherupK.M. RansomR.W. GrahamA.C. BernardA.M. SalvatoreM.J. LummaW.C. AndersonP.S. PitzenbergerS.M. VargaS.L. Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae).J. Am. Chem. Soc.1995117256682668510.1021/ja00130a005
    [Google Scholar]
  51. AbbasF. El SayedZ. DoraG. AteyaA. SamyS. Phytochemical and biological studies of Verbesina encelioides (Cav.).Benth. and Hook. Asian Journal of Phytomedicine and Clinical Research.20164108120
    [Google Scholar]
  52. ReuterG. On guanidine metabolism in Galega officinalis.Phytochemistry196212636510.1016/S0031‑9422(00)88001‑2
    [Google Scholar]
  53. OelrichsP.B. VallelyP.J. MacLeodJ.K. LewisI.A.S. Isolation of galegine from Verbesina enceloiodes.J. Nat. Prod.198144675475510.1021/np50018a029
    [Google Scholar]
  54. HuxtableC.R. DorlingP.R. ColegateS.M. Identification of galegine, an isoprenyl guanidine, as the toxic principle of Schoenus asperocarpus (poison sedge).Aust. Vet. J.199370516917110.1111/j.1751‑0813.1993.tb06120.x 8343085
    [Google Scholar]
  55. RojasL.B.A. GomesM.B. Metformin: an old but still the best treatment for type 2 diabetes.Diabetol. Metab. Syndr.201351610.1186/1758‑5996‑5‑6 23415113
    [Google Scholar]
  56. LaMoiaT.E. ButricoG.M. KalpageH.A. GoedekeL. HubbardB.T. VatnerD.F. GasparR.C. ZhangX.M. ClineG.W. NakaharaK. WooS. ShimadaA. HüttemannM. ShulmanG.I. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis.Proc. Natl. Acad. Sci. USA202211910e212228711910.1073/pnas.2122287119 35238637
    [Google Scholar]
  57. MooneyM.H. FogartyS. StevensonC. GallagherA.M. PalitP. HawleyS.A. HardieD.G. CoxonG.D. WaighR.D. TateR.J. HarveyA.L. FurmanB.L. Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice.Br. J. Pharmacol.200815381669167710.1038/bjp.2008.37 18297106
    [Google Scholar]
  58. CoqueiroA. RegasiniL.O. StapletonP. da Silva BolzaniV. GibbonsS. In vitro antibacterial activity of prenylated guanidine alkaloids from Pterogyne nitens and synthetic analogues.J. Nat. Prod.20147781972197510.1021/np500281c 25089583
    [Google Scholar]
  59. MuttathukattilA.N. SrinivasanS. HalderA. ReddyG. Role of guanidinium-carboxylate ion interaction in enzyme inhibition with implications for drug design.J. Phys. Chem. B2019123449302931110.1021/acs.jpcb.9b06130 31597039
    [Google Scholar]
  60. RummelC. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication.Brain Behav. Immun.20165411410.1016/j.bbi.2015.09.003 26348582
    [Google Scholar]
  61. SubediN.K. RahmanS.M.A. AkbarM.A. Analgesic and Antipyretic Activities of Methanol Extract and Its Fraction from the Root of Schoenoplectus grossus.Evid. Based Complement. Alternat. Med.201620161382070410.1155/2016/3820704 26977173
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266333237241212071912
Loading
/content/journals/ctmc/10.2174/0115680266333237241212071912
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Galegine; guanidine derivative; hemiterpene; natural products; pyrexia; Tithonia tubaeformis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test