Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Ethnopharmacological Relevance

Due to the high prevalence of cancer, researchers for the past decades have made considerable efforts for its management and treatment. Medicinal plants have always been exploited to discover novel anticancer agents. Oman’s huge biodiversity has created a rich source of traditional medicine.

Objective

The current survey has aimed to document the traditionally used medicinal plants of Oman and their therapeutic role in the treatment of cancer.

Materials and Methods

This study comprises of literature-based survey through different databases, including Google, Scopus, Google Scholar, Web of Science, Science Direct, Springer Link, BioMed Central and PubMed.

Results

The current review revealed a total of 57 plant species that belong to 35 families that are used in the treatment of cancer in Oman. Most documented plants belong to Solanaceae (6 sp.), Apocyanaceae (5 sp.) and Lamiaceae (4 sp.). The literature reveals that the residents of the area mostly use leaves (38.5%) and prepare their recipes in the form of decoction (40.3%). Moreover, herbs are the most dominant life form (43.85%). Among all forms of cancer in Oman, breast (47%), wound (26), and lung cancer (0.5%) were found dominantly. A literature study confirmed that the medicinal plants used for cancer in Oman are rich in phytochemicals such as quercetin, allicin, coumarin, alliin, kaempferol, solamargine, rutin, lupeol, ursolic acid and luteolin that have shown significant biological activities including anti-cancer potential. It reflects the efficacy of these plants to be used as a medicine in clinical trials. Among all, Flueck. is of key importance due to the presence Boswellic acid being used for the treatment of different types of cancer.

Conclusion

The residents of Oman have great knowledge about the traditional use of medicinal plants for the treatment of various diseases like cancer. The therapeutic potential and physiological efficacy of Omani medicinal plants should be further explored at a molecular level and experiments.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266318053240819100111
2024-08-21
2025-10-20
Loading full text...

Full text loading...

References

  1. LiuJ. In Seminars in cancer biology.Elsevier201853116
    [Google Scholar]
  2. KhanA. AliS. MuradW. HayatK. SirajS. JawadM. KhanR.A. UddinJ. Al-HarrasiA. KhanA. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan.J. Ethnopharmacol.202128111443710.1016/j.jep.2021.11443734391861
    [Google Scholar]
  3. JhaveriJ. LiuY. ChowdharyM. BuchwaldZ.S. GillespieT.W. OlsonJ.J. VoloschinA.D. EatonB.R. ShuH.K.G. CrockerI.R. CurranW.J. PatelK.R. Is less more? Comparing chemotherapy alone with chemotherapy and radiation for high‐risk grade 2 glioma: An analysis of the National Cancer Data Base.Cancer201812461169117810.1002/cncr.3115829205287
    [Google Scholar]
  4. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever‐increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.3358734086348
    [Google Scholar]
  5. YinJ. WuX. LiS. LiC. GuoZ. Impact of environmental factors on gastric cancer: A review of the scientific evidence, human prevention and adaptation.J. Environ. Sci.202089657910.1016/j.jes.2019.09.02531892402
    [Google Scholar]
  6. LewandowskaA. RudzkiM. RudzkiS. LewandowskiT. LaskowskaB. Environmental risk factors for cancer – Review paper.Ann. Agric. Environ. Med.20192611710.26444/aaem/9429930922021
    [Google Scholar]
  7. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  8. ShenB.J. LoW.C. LinH.H. Global burden of tuberculosis attributable to cancer in 2019: Global, regional, and national estimates.J. Microbiol. Immunol. Infect.202255226627210.1016/j.jmii.2021.02.00533789827
    [Google Scholar]
  9. KhaledH. IbrahimA.S. KhaledR.H. Cancer incidence and mortality for 22 Arab countries in 2020: Profile of total and top major cancers.Research Square2022202210.21203/rs.3.rs‑1744528/v1
    [Google Scholar]
  10. MorganE. ArnoldM. GiniA. LorenzoniV. CabasagC.J. LaversanneM. VignatJ. FerlayJ. MurphyN. BrayF. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN.Gut202372233834410.1136/gutjnl‑2022‑32773636604116
    [Google Scholar]
  11. BellS.C. MallM.A. GutierrezH. MacekM. MadgeS. DaviesJ.C. BurgelP.R. TullisE. CastañosC. CastellaniC. ByrnesC.A. CathcartF. ChotirmallS.H. CosgriffR. EichlerI. FajacI. GossC.H. DrevinekP. FarrellP.M. GravelleA.M. HavermansT. Mayer-HamblettN. KashirskayaN. KeremE. MathewJ.L. McKoneE.F. NaehrlichL. NasrS.Z. OatesG.R. O’NeillC. PypopsU. RaraighK.S. RoweS.M. SouthernK.W. SivamS. StephensonA.L. ZampoliM. RatjenF. The future of cystic fibrosis care: A global perspective.Lancet Respir. Med.2020816512410.1016/S2213‑2600(19)30337‑631570318
    [Google Scholar]
  12. SafarzadehE. Sandoghchian ShotorbaniS. BaradaranB. Herbal medicine as inducers of apoptosis in cancer treatment.Adv. Pharm. Bull.20144Suppl. 142142725364657
    [Google Scholar]
  13. KhazirJ. MirB.A. PilcherL. RileyD.L. Role of plants in anticancer drug discovery.Phytochem. Lett.2014717318110.1016/j.phytol.2013.11.010
    [Google Scholar]
  14. AhmadR. AhmadN. NaqviA.A. ShehzadA. Al-GhamdiM.S. Role of traditional Islamic and Arabic plants in cancer therapy.J. Tradit. Complement. Med.20177219520410.1016/j.jtcme.2016.05.00228417090
    [Google Scholar]
  15. MarwahR.G. FatopeM.O. MahrooqiR.A. VarmaG.B. AbadiH.A. Al-BurtamaniS.K.S. Antioxidant capacity of some edible and wound healing plants in Oman.Food Chem.2007101246547010.1016/j.foodchem.2006.02.001
    [Google Scholar]
  16. TariqA. MussaratS. AdnanM. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants.J. Ethnopharmacol.20151649611910.1016/j.jep.2015.02.00325680842
    [Google Scholar]
  17. AnsariS. In Preparation of Phytopharmaceuticals for the Management of Disorders.Elsevier202143147310.1016/B978‑0‑12‑820284‑5.00017‑4
    [Google Scholar]
  18. DivakarM.C. Al-SiyabiA. VargheseS.S. Al-RubaieM. The practice of ethnomedicine in the northern and southern provinces of Oman.Oman Med. J.201631424525210.5001/omj.2016.4927403235
    [Google Scholar]
  19. HinaiA. LuptonD.A. Al IssaiG. Indigenous knowledge and folk use of medicinal plants in the Eastern Hajar Mountains, Oman.J. Med. Plants Res.20208104110
    [Google Scholar]
  20. HanifM.A. Al-MaskriA.Y. Al-MahruqiZ.M.H. Al-SabahiJ.N. Al-AzkawiA. Al-MaskariM.Y. Analytical evaluation of three wild growing Omani medicinal plants.Nat. Prod. Commun.20116101934578X110060101010.1177/1934578X1100601010
    [Google Scholar]
  21. WeberA.S. Folk medicine in Oman.Int. J. Arts Soc.2011423237
    [Google Scholar]
  22. MillerA.G. MorrisM. Plants of Dhofar, the southern region of Oman: traditional, economic, and medicinal uses.Royal Botanic Gardens Edinburgh1997
    [Google Scholar]
  23. Al-MandhariA. Al-AdawiS. Al-ZakwaniI. Al-ShafaeeM. EloulL. Impact of geographical proximity on health care seeking behaviour in northern oman.Sultan Qaboos Univ. Med. J.20088331031821748077
    [Google Scholar]
  24. PatzeltA. HarrisonT. KneesS.G. Al HarthyL. Studies in the flora of Arabia: XXXI. New records from the Sultanate of Oman.Edinb. J. Bot.201471216118010.1017/S0960428614000067
    [Google Scholar]
  25. HammerK. GebauerJ. Al KhanjariS. BuerkertA. Oman at the cross-roads of inter-regional exchange of cultivated plants.Genet. Resour. Crop Evol.200956454756010.1007/s10722‑008‑9385‑z
    [Google Scholar]
  26. GhazanfarS.A. Status of the flora and plant conservation in the sultanate of Oman.Biol. Conserv.199885328729510.1016/S0006‑3207(97)00162‑6
    [Google Scholar]
  27. Al HatmiS. LuptonD.A. Documenting the most widely utilized plants and the potential threats facing ethnobotanical practices in the Western Hajar Mountains, sultanate of Oman.J. Arid Environ.202118910448410.1016/j.jaridenv.2021.104484
    [Google Scholar]
  28. Zia UllahZ.U. Atif IjazA.I. MughalT.K. Khurram ZiaK.Z. Larvicidal activity of medicinal plant extracts against Culex quinquefasciatus Say.(Culicidae, Diptera).Int. J. Mosq. Res.201854751
    [Google Scholar]
  29. Al-SubhiA.M. Al-SaadyN.A. KhanA.J. DeadmanM.L. First report of a group 16srii phytoplasma associated with witches’-broom of eggplant in Oman.Plant Dis.201195336036010.1094/PDIS‑10‑10‑076130743516
    [Google Scholar]
  30. TaylorD. Mycorrhizal ecology.Springer200237541310.1007/978‑3‑540‑38364‑2_15
    [Google Scholar]
  31. MuradW. AhmadA. IshaqG. Saleem KhanM. Muhammad KhanA. UllahI. KhanI. Ethnobotanical studies on plant resources of Hazar Nao forest, district Malakand, Pakistan.Pak. J. Weed Sci. Res.2012184
    [Google Scholar]
  32. TounektiT. MahdhiM. KhemiraH. Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia.Evid. Based Complement. Alternat. Med.20192019
    [Google Scholar]
  33. Al-FatimiM. Ethnobotanical survey of medicinal plants in central Abyan governorate, Yemen.J. Ethnopharmacol.201924111197310.1016/j.jep.2019.11197331146001
    [Google Scholar]
  34. SafaO. SoltanipoorM.A. RastegarS. KazemiM. Nourbakhsh DehkordiK. GhannadiA. An ethnobotanical survey on hormozgan province, Iran.Avicenna J. Phytomed.201331648125050260
    [Google Scholar]
  35. Al LawatiZ. Al LawatiA. Uses, local practices and side effects of six medicinal plants in the sultanate of Oman: A review article.J. Med. Plants Stud.2020850513
    [Google Scholar]
  36. Al AsmiA. Al ManiriA. Al-FarsiY.M. BurkeD.T. Al AsfoorF.M.H. Al BusaidiI. Al BreikiM.H.A. LahiriS. BraidyN. EssaM.M. Al-AdawiS. Types and sociodemographic correlates of complementary and alternative medicine (CAM) use among people with epilepsy in Oman.Epilepsy Behav.201329236136610.1016/j.yebeh.2013.07.02224011398
    [Google Scholar]
  37. Javid HussainJ.H. KhanA. Assessment of herbal products and their composite medicinal plants through proximate and micronutrients analysis.J. Med. Plants Res.2009310721077
    [Google Scholar]
  38. HamayunM. KhanM.A. ChudharyM.F. AhmadH. Studies on traditional knowledge of medicinal herbs of Swat Kohistan, District Swat, Pakistan.J. Herbs Spices Med. Plants2006124112810.1300/J044v12n04_02
    [Google Scholar]
  39. SalamU. UllahS. TangZ.H. ElateeqA.A. KhanY. KhanJ. KhanA. AliS. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors.Life202313370610.3390/life1303070636983860
    [Google Scholar]
  40. KhanA. AliS. KhanM. HamayunM. MoonY.S. Parthenium hysterophorus’s endophytes: The second layer of defense against biotic and abiotic stresses.Microorganisms20221011221710.3390/microorganisms1011221736363809
    [Google Scholar]
  41. AboK.A. Fred-JaiyesimiA.A. JaiyesimiA.E.A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria.J. Ethnopharmacol.20081151677110.1016/j.jep.2007.09.00517950547
    [Google Scholar]
  42. Parinitha MahishiP.M. SrinivasaB. ShivannaM. Medicinal plant wealth of local communities in some villages in Shimoga District of Karnataka.India2005
    [Google Scholar]
  43. OmaraT. KipropA.K. RamkatR.C. CherutoiJ. KagoyaS. Moraa NyangenaD. Azeze TeboT. NteziyaremyeP. Nyambura KaranjaL. JepchirchirA. MaiyoA. Jematia KiptuiB. MbabaziI. Kiwanuka NakiguliC. NakabuyeB.V. Chepkemoi KoskeM. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies.Evid. Based Complement. Alternat. Med.2020202012610.1155/2020/352908132256639
    [Google Scholar]
  44. GhazanfarS.A. Al-Al-SabahiA.M. Medicinal plants of northern and central Oman (Arabia).Econ. Bot.1993471899810.1007/BF02862209
    [Google Scholar]
  45. SaidS. TamimiY. AkhtarM. WeliA. Al-KhanjariS. Al-RiyamiQ. In vitro anticancer activity of selected medicinal plants from Oman.Br. J. Pharm. Res.20171551810.9734/BJPR/2017/32459
    [Google Scholar]
  46. Al-HarrasiA. HussainH. CsukR. KhanH.Y. Chemistry and bioactivity of boswellic acids and other terpenoids of the genus boswellia.Elsevier2018
    [Google Scholar]
  47. MichieC.A. CooperE. Frankincense and myrrh as remedies in children.J. R. Soc. Med.1991841060260510.1177/0141076891084010111744842
    [Google Scholar]
  48. The Greek herbal of dioscorides.Nature1934133335523123310.1038/133231a0
    [Google Scholar]
  49. ReubenS. CsekeL.J. BhinuV. NarasimhanK. JeyakumarM. SwarupS. KirakosyanA. KaufmanP. WarberS. DukeJ. Molecular biology of plant natural products.Natural Products from Plants. CsekeL.J. KirakosyanA. KaufmanP.B. WarberS.L. DukeJ.A. BrielmannH.L. Boca RatonCRC Press/Taylor & Francis2006165202
    [Google Scholar]
  50. TschirchA. Halbey Untersuchungen über die Sekrete. Ueber das Olibanum.Arch. Pharm. (Weinheim)18982365-848750310.1002/ardp.18982360517
    [Google Scholar]
  51. RoyN.K. DekaA. BordoloiD. MishraS. KumarA.P. SethiG. KunnumakkaraA.B. The potential role of boswellic acids in cancer prevention and treatment.Cancer Lett.20163771748610.1016/j.canlet.2016.04.01727091399
    [Google Scholar]
  52. Abu-DarwishM.S. EfferthT. Medicinal plants from near east for cancer therapy.Front. Pharmacol.201895610.3389/fphar.2018.0005629445343
    [Google Scholar]
  53. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  54. GhonchehM. PournamdarZ. SalehiniyaH. Incidence and mortality and epidemiology of breast cancer in the world.Asian Pac. J. Cancer Prev.201617Suppl 3434610.7314/APJCP.2016.17.S3.43
    [Google Scholar]
  55. CoatesA.S. WinerE.P. GoldhirschA. GelberR.D. GnantM. Piccart-GebhartM. ThürlimannB. SennH.J. AndréF. BaselgaJ. BerghJ. BonnefoiH. BursteinH. CardosoF. Castiglione-GertschM. CoatesA.S. ColleoniM. CuriglianoG. DavidsonN.E. Di LeoA. EjlertsenB. ForbesJ.F. GalimbertiV. GelberR.D. GnantM. GoldhirschA. GoodwinP. HarbeckN. HayesD.F. HuoberJ. HudisC.A. IngleJ.N. JassemJ. JiangZ. KarlssonP. MorrowM. OrecchiaR. Kent OsborneC. PartridgeA.H. de la PeñaL. Piccart-GebhartM.J. PritchardK.I. RutgersE.J.T. SedlmayerF. SemiglazovV. ShaoZ-M. SmithI. ThürlimannB. ToiM. TuttA. VialeG. von MinckwitzG. WatanabeT. WhelanT. WinerE.P. XuB. Panel Members Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015.Ann. Oncol.20152681533154610.1093/annonc/mdv22125939896
    [Google Scholar]
  56. NatarajanJ.R. JosephM.A. Al AlawiR.M. Al BalushiT. Al AlawiI. Al JunaibiS.M. JohnA.N.T. Al BalushiL.D. Al IsmailiI.S. ShummoM. A descriptive study to assess wellbeing, quality of life and satisfaction of omani patients with chronic wounds.Research Square2021202110.21203/rs.3.rs‑1173016/v1
    [Google Scholar]
  57. ChavanR. GaikwadD. The ethnobotany, phytochemistry and biological properties of Allophylus species used in traditional medicine: A review.World J. Pharm. Pharm. Sci.2016511664682
    [Google Scholar]
  58. SyrovetsT. GschwendJ.E. BücheleB. LaumonnierY. ZugmaierW. GenzeF. SimmetT. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo.J. Biol. Chem.200528076170618010.1074/jbc.M40947720015576374
    [Google Scholar]
  59. TakadaY. IchikawaH. BadmaevV. AggarwalB.B. Acetyl-11-keto-β-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-κ B and NF-κ B-regulated gene expression.J. Immunol.200617653127314010.4049/jimmunol.176.5.312716493072
    [Google Scholar]
  60. KunnumakkaraA.B. NairA.S. SungB. PandeyM.K. AggarwalB.B. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1.Mol. Cancer Res.20097111812810.1158/1541‑7786.MCR‑08‑015419147543
    [Google Scholar]
  61. GrossC.P. McAvayG.J. GuoZ. TinettiM.E. The impact of chronic illnesses on the use and effectiveness of adjuvant chemotherapy for colon cancer.Cancer2007109122410241910.1002/cncr.2272617510973
    [Google Scholar]
  62. TakahashiM. SungB. ShenY. HurK. LinkA. BolandC.R. AggarwalB.B. GoelA. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family.Carcinogenesis201233122441244910.1093/carcin/bgs28622983985
    [Google Scholar]
  63. LiuJ.J. DuanR.D. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells.Anticancer Res.20092982987299119661305
    [Google Scholar]
  64. MishraD. MishraA. Nand RaiS. VamanuE. SinghM.P. Demystifying the role of prognostic biomarkers in breast cancer through integrated transcriptome and pathway enrichment analyses.Diagnostics2023136114210.3390/diagnostics1306114236980449
    [Google Scholar]
  65. TogniS. MaramaldiG. BonettaA. GiacomelliL. Di PierroF. Clinical evaluation of safety and efficacy of Boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma: A randomized placebo controlled trial.Eur. Rev. Med. Pharmacol. Sci.20151981338134425967706
    [Google Scholar]
  66. Cuaz-PérolinC. BillietL. BaugéE. CopinC. Scott-AlgaraD. GenzeF. BücheleB. SyrovetsT. SimmetT. RouisM. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-β-boswellic acid in LPS-challenged ApoE-/- mice.Arterioscler. Thromb. Vasc. Biol.200828227227710.1161/ATVBAHA.107.15560618032778
    [Google Scholar]
  67. ParkB. PrasadS. YadavV. SungB. AggarwalB.B. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.PLoS One2011610e2694310.1371/journal.pone.002694322066019
    [Google Scholar]
  68. WangR. WangY. GaoZ. QuX. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APCMin/+ mice.Drug Discov. Ther.201481253210.5582/ddt.8.2524647155
    [Google Scholar]
  69. HoernleinR.F. OrlikowskyT. ZehrerC. NiethammerD. SailerE.R. SimmetT. DanneckerG.E. AmmonH.P. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I.J. Pharmacol. Exp. Ther.199928826136199918566
    [Google Scholar]
  70. ChashooG. SinghS.K. SharmaP.R. MondheD.M. HamidA. SaxenaA. AndotraS.S. ShahB.A. QaziN.A. TanejaS.C. SaxenaA.K. A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition.Chem. Biol. Interact.20111891-2607110.1016/j.cbi.2010.10.01721056033
    [Google Scholar]
  71. SafayhiH. MackT. SabierajJ. AnazodoM.I. SubramanianL.R. AmmonH.P. Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase.J. Pharmacol. Exp. Ther.19922613114311461602379
    [Google Scholar]
  72. SafayhiH. RallB. SailerE-R. AmmonH.P.T. Inhibition by boswellic acids of human leukocyte elastase.J. Pharmacol. Exp. Ther.199728114604639103531
    [Google Scholar]
  73. BücheleB. ZugmaierW. EstradaA. GenzeF. SyrovetsT. PaetzC. SchneiderB. SimmetT. Characterization of 3α-acetyl-11-keto-α-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo.Planta Med.200672141285128910.1055/s‑2006‑95168017022003
    [Google Scholar]
  74. LiuJ.J. HuangB. HooiS.C. Acetyl‐keto‐ β ‐boswellic acid inhibits cellular proliferation through a p21‐dependent pathway in colon cancer cells.Br. J. Pharmacol.200614881099110710.1038/sj.bjp.070681716783403
    [Google Scholar]
  75. AbdulF. RaheemI. AbdulrazaqR. SubhiH.T. Staphylococcus epidermidis biofilms: Functional molecules; Relation to virulence and the host immune response.JLBSR2021202425310.38094/jlbsr20243
    [Google Scholar]
  76. PangX. YiZ. ZhangX. SungB. QuW. LianX. AggarwalB.B. LiuM. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.Cancer Res.200969145893590010.1158/0008‑5472.CAN‑09‑075519567671
    [Google Scholar]
  77. KirsteS. TreierM. WehrleS.J. BeckerG. Abdel-TawabM. GerbethK. HugM.J. LubrichB. GrosuA.L. MommF. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors.Cancer2011117163788379510.1002/cncr.2594521287538
    [Google Scholar]
  78. AparoyP. Kumar ReddyK. ReddannaP. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors.Curr. Med. Chem.201219223763377810.2174/09298671280166111222680930
    [Google Scholar]
  79. PaceS. ZhangK. JordanP.M. BilanciaR. WangW. BörnerF. HofstetterR.K. PotenzaM. KretzerC. GerstmeierJ. FischerD. LorkowskiS. GilbertN.C. NewcomerM.E. RossiA. ChenX. WerzO. Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators.Pharmacol. Res.202116710555610.1016/j.phrs.2021.10555633812006
    [Google Scholar]
  80. Al-YasiryA.R.M. KiczorowskaB. Frankincense – Therapeutic properties.Postepy Hig. Med. Dosw.20167038039110.5604/17322693.120055327117114
    [Google Scholar]
  81. SolankiN. MehtaM. ChellappanD.K. GuptaG. HansbroN.G. TambuwalaM.M. AA AljabaliA. PaudelK.R. LiuG. SatijaS. HansbroP.M. DuaK. DurejaH. Antiproliferative effects of boswellic acid-loaded chitosan nanoparticles on human lung cancer cell line A549.Future Med. Chem.202012222019203410.4155/fmc‑2020‑008333124483
    [Google Scholar]
  82. GuptaS. AhsanA.U. WaniA. KhajuriaV. NazirL.A. SharmaS. BhagatA. Raj SharmaP. BhardwajS. PeerzadaK.J. Ali ShahB. AhmedZ. The amino analogue of β-boswellic acid efficiently attenuates the release of pro-inflammatory mediators than its parent compound through the suppression of NF-κB/IκBα signalling axis.Cytokine20181079310410.1016/j.cyto.2017.12.00429229421
    [Google Scholar]
  83. LvM. ZhuangX. ZhangQ. ChengY. WuD. WangX. QiaoT. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway.Cell Biol. Toxicol.202137220922810.1007/s10565‑020‑09541‑532562082
    [Google Scholar]
  84. FirákováS. ŠturdíkováM. MúčkováM. Bioactive secondary metabolites produced by microorganisms associated with plants.Biologia200762325125710.2478/s11756‑007‑0044‑1
    [Google Scholar]
  85. BillsG.F. GloerJ.B. Biologically active secondary metabolites from the fungi.Microbiol. Spectr.2016464.6.0110.1128/microbiolspec.FUNK‑0009‑201627809954
    [Google Scholar]
  86. ChaturvediV.K. YadavN. RaiN.K. BoharaR.A. RaiS.N. AleyaL. SinghM.P. Two birds with one stone: Oyster mushroom mediated bimetallic Au-Pt nanoparticles for agro-waste management and anticancer activity.Environ. Sci. Pollut. Res. Int.20212811137611377510.1007/s11356‑020‑11435‑233196993
    [Google Scholar]
  87. HayatK. KhanJ. KhanA. UllahS. AliS. Salahuddin FuY. Ameliorative effects of exogenous proline on photosynthetic attributes, nutrients uptake, and oxidative stresses under cadmium in pigeon pea (Cajanus cajan L.).Plants202110479610.3390/plants1004079633921552
    [Google Scholar]
  88. JainC. KhatanaS. VijayvergiaR. Bioactivity of secondary metabolites of various plants: A review.Int. J. Pharm. Sci. Res.2019102494504
    [Google Scholar]
  89. VirgiliF. MarinoM. Regulation of cellular signals from nutritional molecules: A specific role for phytochemicals, beyond antioxidant activity.Free Radic. Biol. Med.20084591205121610.1016/j.freeradbiomed.2008.08.00118762244
    [Google Scholar]
  90. NeergheenV.S. BahorunT. TaylorE.W. JenL.S. AruomaO.I. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention.Toxicology2010278222924110.1016/j.tox.2009.10.01019850100
    [Google Scholar]
  91. PanyodS. WuW.K. HoC.T. LuK.H. LiuC.T. ChuY.L. LaiY.S. ChenW.C. LinY.E. LinS.H. SheenL.Y. Diet supplementation with allicin protects against alcoholic fatty liver disease in mice by improving anti-inflammation and antioxidative functions.J. Agric. Food Chem.201664387104711310.1021/acs.jafc.6b0276327584700
    [Google Scholar]
  92. NourozF. MehboobM. NoreenS. ZaidiF. MobinT. A review on anticancer activities of garlic (Allium sativum L.).Middle East J. Sci. Res.201523611451151
    [Google Scholar]
  93. HaghiA. AzimiH. RahimiR. A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer.J. Gastrointest. Cancer201748431432010.1007/s12029‑017‑9997‑728828709
    [Google Scholar]
  94. KontogiorgisC. DetsiA. Hadjipavlou-LitinaD. Coumarin-based drugs: A patent review (2008 – present).Expert Opin. Ther. Pat.201222443745410.1517/13543776.2012.67883522475457
    [Google Scholar]
  95. AdnanM. UllahI. TariqA. MuradW. AzizullahA. KhanA.L. AliN. Ethnomedicine use in the war affected region of northwest Pakistan.J. Ethnobiol. Ethnomed.20141011610.1186/1746‑4269‑10‑1624484608
    [Google Scholar]
  96. LacyA. O’KennedyR. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer.Curr. Pharm. Des.200410303797381110.2174/138161204338269315579072
    [Google Scholar]
  97. Venkata SairamK. GurupadayyaB.M. VishwanathanB.I. ChandanR.S. NageshaD.K. Cytotoxicity studies of coumarin analogs: Design, synthesis and biological activity.RSC Advances20166101988169882810.1039/C6RA22466K
    [Google Scholar]
  98. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m11410016
    [Google Scholar]
  99. WangX. YangY. AnY. FangG. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer.Biomed. Pharmacother.201911710908610.1016/j.biopha.2019.10908631200254
    [Google Scholar]
  100. AkhtarN. Ihsan-ul-Haq MirzaB. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species.Arab. J. Chem.20181181223123510.1016/j.arabjc.2015.01.013
    [Google Scholar]
  101. ParkS.W. ChoC.S. JunH.O. RyuN.H. KimJ.H. YuY.S. KimJ.S. KimJ.H. Anti-angiogenic effect of luteolin on retinal neovascularization via blockade of reactive oxygen species production.Invest. Ophthalmol. Vis. Sci.201253127718772610.1167/iovs.11‑879023099493
    [Google Scholar]
  102. TuorkeyM.J. Molecular targets of luteolin in cancer.Eur. J. Cancer Prev.2016251657610.1097/CEJ.000000000000012825714651
    [Google Scholar]
  103. ChirumboloS. Role of quercetin in vascular physiology.Can. J. Physiol. Pharmacol.201290121652165710.1139/y2012‑13723210445
    [Google Scholar]
  104. VafadarA. ShabaninejadZ. MovahedpourA. FallahiF. TaghavipourM. GhasemiY. AkbariM. ShafieeA. HajighadimiS. MoradizarmehriS. RaziE. SavardashtakiA. MirzaeiH. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells.Cell Biosci.20201013210.1186/s13578‑020‑00397‑032175075
    [Google Scholar]
  105. VolateS.R. DavenportD.M. MugaS.J. WargovichM.J. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin).Carcinogenesis20052681450145610.1093/carcin/bgi08915831530
    [Google Scholar]
  106. RussoG.L. RussoM. SpagnuoloC. TedescoI. BilottoS. IannittiR. PalumboR. Quercetin: A pleiotropic kinase inhibitor against cancer.Adv. Nutr. Cancer2014185205
    [Google Scholar]
  107. FarhaA.K. GanR.Y. LiH.B. WuD.T. AtanasovA.G. GulK. ZhangJ.R. YangQ.Q. CorkeH. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives.Crit. Rev. Food Sci. Nutr.202262383285910.1080/10408398.2020.182954133054344
    [Google Scholar]
  108. StanojevićL. StankovićM. JumaA. Antioxidant activity of aqueous extracts from dill fruit (Anethi fructus) obtained by different extraction techniques.Advanced technologies201652465210.5937/savteh1602046S
    [Google Scholar]
  109. HuC. KittsD.D. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro.Phytomedicine200512858859710.1016/j.phymed.2003.12.01216121519
    [Google Scholar]
  110. ChenY. TangQ. WuJ. ZhengF. YangL. HannS.S. Inactivation of PI3-K/Akt and reduction of SP1 and p65 expression increase the effect of solamargine on suppressing EP4 expression in human lung cancer cells.J. Exp. Clin. Cancer Res.201534115410.1186/s13046‑015‑0272‑026689593
    [Google Scholar]
  111. DingX. ZhuF.S. LiM. GaoS.G. Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L.J. Ethnopharmacol.2012139259960410.1016/j.jep.2011.11.05822172325
    [Google Scholar]
  112. HossainM.A. A review on Ficus sycomorus: A potential indigenous medicinal plant in Oman.J. King Saud Univ. Sci.201931496196510.1016/j.jksus.2018.07.002
    [Google Scholar]
  113. TkachenkoH. BuyunL. Terech-MajewskaE. OsadowskiZ. In vitro antimicrobial activity of ethanolic extracts obtained from Ficus spp. leaves against the fish pathogen Aeromonas hydrophila.Fisheries & Aquatic Life2016244219230
    [Google Scholar]
  114. YinR. LiT. TianJ.X. XiP. LiuR.H. Ursolic acid, a potential anticancer compound for breast cancer therapy.Crit. Rev. Food Sci. Nutr.201858456857410.1080/10408398.2016.120375527469428
    [Google Scholar]
  115. JabeenM. AhmadS. ShahidK. SadiqA. RashidU. Ursolic acid hydrazide based organometallic complexes: synthesis, characterization, antibacterial, antioxidant, and docking studies.Front Chem.201865510.3389/fchem.2018.0005529594100
    [Google Scholar]
  116. Youssef MoustafaA.M. KhodairA.I. SalehM.A. Isolation, structural elucidation of flavonoid constituents from Leptadenia pyrotechnica and evaluation of their toxicity and antitumor activity.Pharm. Biol.200947653955210.1080/13880200902875065
    [Google Scholar]
  117. KsiksiT. HamzaA. Antioxidant, lipoxygenase and histone deacetylase inhibitory activities of Acridocarbus orientalis from al ain and oman.Molecules20121711125211253210.3390/molecules17111252123095895
    [Google Scholar]
  118. Al-AwthanY.S. BahattabO.S. Phytochemistry and pharmacological activities of Dracaena cinnabari resin.BioMed Res. Int.202120211710.1155/2021/856169634337055
    [Google Scholar]
  119. VaníčkováL. PompeianoA. MaděraP. MassadT.J. VahalíkP. Terpenoid profiles of resin in the genus Dracaena are species specific.Phytochemistry202017011219710.1016/j.phytochem.2019.11219731759268
    [Google Scholar]
  120. NieblerJ. Incense materials.Springer handbook of odor20171314
    [Google Scholar]
  121. RaeesM.A. HussainH. Al-RawahiA. CsukR. Al-GhafriA. Ur RehmanN. ElyassiA. GreenI.R. MahmoodT. Al-HarrasiA. DesflavasidesA.D. Desflavasides A-D: Four new tetrasaccharide pregnane glycosides from Desmidorchis flava.Phytochem. Lett.20161623023510.1016/j.phytol.2016.04.012
    [Google Scholar]
  122. HussainH. RaeesM.A. RehmanN.U. Al-RawahiA. CsukR. KhanH.Y. AbbasG. Al-BroumiM.A. GreenI.R. ElyassiA. MahmoodT. Al-HarrasiA. Nizwaside: A new anticancer pregnane glycoside from the sap of Desmidorchis flava.Arch. Pharm. Res.201538122137214210.1007/s12272‑015‑0653‑026335549
    [Google Scholar]
  123. HossainM.A. A review on Adenium obesum: A potential endemic medicinal plant in Oman.Beni. Suef Univ. J. Basic Appl. Sci.20187455956310.1016/j.bjbas.2018.06.008
    [Google Scholar]
  124. HassanI.U. IdreesM. Ahmad NaikooG. RashanL. ElhissiA. ZimmerleW. AhmedW. Recent advances in applications of active constituents of selected medicinal plants of dhofar, sultanate of oman.Asian J. Pharm. Clin. Res.2018114283710.22159/ajpcr.2018.v11i4.16386
    [Google Scholar]
  125. MekkyH. Al-SabahiJ. Abdel-KreemM.F.M. Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus.S. Afr. J. Bot.2018114293110.1016/j.sajb.2017.10.008
    [Google Scholar]
  126. Al-SaeediA.H. Al-GhafriM.T.H. HossainM.A. Brine shrimp toxicity of various polarities leaves and fruits crude fractions of Ziziphus jujuba native to Oman and their antimicrobial potency.Sustain. Chem. Pharm.2017512212610.1016/j.scp.2017.03.003
    [Google Scholar]
  127. GilaniS.A. KikuchiA. ShinwariZ.K. KhattakZ.I. WatanabeK.N. Phytochemical, pharmacological and ethnobotanical studies of Rhazya stricta Decne.Phytother. Res.200721430130710.1002/ptr.206417186492
    [Google Scholar]
  128. BruynsP.V. JonkersH.A. The genus Caralluma R.Br. (Asclepiadaceae) in Oman.Bradleya19931111516910.25223/brad.n11.1993.a3
    [Google Scholar]
  129. Al-FaifiZ.I. MasrahiY.S. AlyM.S. Al-TurkiT.A. In vitro anticancer activity of Caralluma acutangula (Decne.) NE Br. Extract.Int. J. Pharm. Sci. Rev. Res.20163825963
    [Google Scholar]
  130. PickloM. RousovaJ. KubatovaA. Al-NaqebG. Pulicaria jaubertii extract prevents triglyceride deposition in 3T3‐L1 adipocytes.FASEB J.201529S1924.1910.1096/fasebj.29.1_supplement.924.19
    [Google Scholar]
  131. DjermaneN. GherrafN. ArhadR. ZellaguiA. RebbasK. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Pulicaria arabica (L.) Cass.Pharm. Lett.2016816
    [Google Scholar]
  132. FriisI. Phytogeography of the tropical north-east African mountains.Bothalia1983143/452553210.4102/abc.v14i3/4.1203
    [Google Scholar]
  133. ZhangY. KongJ. ZhangJ.H. WangL. ZhangW. LiuB. JiangY.Y. Chemical constituents and pharmacological activities of family Flacourtiaceae: A class of important phytomedicine.Am. J. Chin. Med.202048228732810.1142/S0192415X2050015932160758
    [Google Scholar]
  134. LanskyE.P. PaavilainenH.M. LanskyS. Caper: The genus Capparis.CRC Press201310.1201/b16031
    [Google Scholar]
  135. NwofiaG.E. OjimelukweP. EjiC. Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes.Int. J. Med. Aromat. Plants20122200206
    [Google Scholar]
  136. GuizaniN. WalyM.I. AliA. Al-SaidiG. SinghV. BhattN. RahmanM.S. Papaya epicarp extract protects against hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuronal cells.Exp. Biol. Med.2011236101205121010.1258/ebm.2011.01103121893571
    [Google Scholar]
  137. Said-Al AhlH. NaguibN.Y. HusseinM.S. Evaluation growth and essential oil content of catmint and lemon catnip plants as new cultivated medicinal plants in Egypt.Ann. Agric. Sci.201863220120510.1016/j.aoas.2018.11.005
    [Google Scholar]
  138. PanickerN.G. BalhamarS.O.M.S. AkhlaqS. QureshiM.M. RehmanN.U. Al-HarrasiA. HussainJ. MustafaF. Organic extracts from Cleome droserifolia exhibit effective caspase-dependent anticancer activity.BMC Complement. Med. Ther.20202017410.1186/s12906‑020‑2858‑032143618
    [Google Scholar]
  139. AlshawshM.A. MothanaR.A. Al-shamahyH.A. AlsllamiS.F. LindequistU. Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants.Evid. Based Complement. Alternat. Med.20096445345610.1093/ecam/nem14818955251
    [Google Scholar]
  140. HussainJ. RehmanN.U. Al-HarrasiA. AliL. KhanA.L. AlbroumiM.A. Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman.Asian Pac. J. Trop. Dis.20133642142810.1016/S2222‑1808(13)60095‑X
    [Google Scholar]
  141. MozanielS.O. WanessaA.C. FernandaW.F.B. MarilenaE.A. GracialdaC.F. RaulN.C.J. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review.Afr. J. Biotechnol.2018172782984610.5897/AJB2017.16374
    [Google Scholar]
  142. AL-HaddabiyahL.H. Distribution and ecological status of juniperus seravschanica woodlands on the western region of AL-Jabal AL-Khadar.Int. J. Environ. Stud.201673746759
    [Google Scholar]
  143. GuizaniN. WalyM.I. RahmanM.S. Al-AttabiZ. Natural products and their benefits in cancer prevention.Bioactive Components, Diet and Medical Treatment in Cancer Prevention.Springer, Cham20185161
    [Google Scholar]
  144. BelitzH-D. GroschW. BelitzH-D. GroschW. Fruits and fruit products.Food Chem.1999748800
    [Google Scholar]
  145. Habib-ur-Rehman YasinK.A. ChoudharyM.A. KhaliqN. Atta-ur-Rahman ChoudharyM.I. MalikS. Studies on the chemical constituents of Phyllanthus emblica .Nat. Prod. Res.200721977578110.1080/1478641060112466417763100
    [Google Scholar]
  146. BoraK.S. SharmaA. Phytochemical and pharmacological potential of Medicago sativa : A review.Pharm. Biol.201149221122010.3109/13880209.2010.50473220969516
    [Google Scholar]
  147. KalidharS.B. MalikA. Phytochemical examination of Prosopis cineraria L.(druce) leaves.Indian J. Pharm. Sci.200769457657610.4103/0250‑474X.36950
    [Google Scholar]
  148. UpsonT.M. GreenhamJ.R. Al-GhamdiF. ChenF. Al-GhamdiF. ChenF-H. J Grayer R A Williams C Leaf flavonoids as systematic characters in the genera Lavandula and Sabaudia.Biochem. Syst. Ecol.20002810991100710.1016/S0305‑1978(00)00013‑210996263
    [Google Scholar]
  149. HishamA. PathareN. Al-SaidiS. Al-SalmiA. The composition and antimicrobial activity of leaf essential oil of Teucrium mascatenses Boiss. from Oman.J. Essent. Oil Res.200618446546810.1080/10412905.2006.9699142
    [Google Scholar]
  150. RizviT.S. HussainI. AliL. MaboodF. KhanA.L. ShujahS. RehmanN.U. Al-HarrasiA. HussainJ. KhanA. HalimS.A. New gorgonane sesquiterpenoid from Teucrium mascatense Boiss, as α-glucosidase inhibitor.S. Afr. J. Bot.201912421822210.1016/j.sajb.2019.05.008
    [Google Scholar]
  151. ShahS.M.M. UllahF. ShahS.M.H. ZahoorM. SadiqA. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium Stocksianum bioss collected from the North West of Pakistan.BMC Complement. Altern. Med.201212124410.1186/1472‑6882‑12‑24423217213
    [Google Scholar]
  152. AdamO.A.O. AbadiR.S.M. AyoubS.M.H. Chemical constituents and antioxidant activity of some Sudanese medicinal plants.J. Pharmacogn. Phytochem.20187617511755
    [Google Scholar]
  153. El-AweelM. GhobashiA. El-KaforyA. Yield potential and storability of some onion cultivars (Allium cepa, L.) in the Sultanate of Oman.Assiut J. Agri. Sci20003189100
    [Google Scholar]
  154. BegumH.A. YassenT. Anitmicrobial, phytochemical, ethnobotanical and proximate analysis of Allium cepa L.Methods201519920
    [Google Scholar]
  155. PhanA. NetzelG. ChhimP. NetzelM. SultanbawaY. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars.Foods20198935810.3390/foods809035831450776
    [Google Scholar]
  156. HabbalO.A. Al-JabriA.A. El-HagA.H. Al-MahrooqiZ.H. Al-HashmiN.A. In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study on the Omani henna.Saudi Med. J.2005261697215756356
    [Google Scholar]
  157. RajaW. OvaisM. DubeyA. Phytochemical screening and antibacterial activity of Lawsonia inermis leaf extract.Medicine201368
    [Google Scholar]
  158. PoumaleH.M.P. KengapR.T. TchouankeuJ.C. KeumedjioF. LaatschH. NgadjuiB.T. Pentacyclic triterpenes and other constituents from Ficus cordata (Moraceae).Z. Naturforsch. B. J. Chem. Sci.200863111335133810.1515/znb‑2008‑1113
    [Google Scholar]
  159. RaffaelliM. MostiS. TardelliM. The Frankincense Tree The Frankincense Tree (Boswellia sacra Flueck., Burseraceae) in Dhofar, southern Oman: Field-investigations on the natural populations.Webbia200358113314910.1080/00837792.2003.10670749
    [Google Scholar]
  160. Abdel-AtyA.M. HamedM.B. SalamaW.H. AliM.M. FahmyA.S. MohamedS.A. Ficus carica, Ficus sycomorus and Euphorbia tirucalli latex extracts: Phytochemical screening, antioxidant and cytotoxic properties.Biocatal. Agric. Biotechnol.20192010119910.1016/j.bcab.2019.101199
    [Google Scholar]
  161. RagasaC.Y. MedeciloM.P. ShenC.-C. Chemical constituents of Moringa oleifera Lam. leavesDelta201511a
    [Google Scholar]
  162. SomaliM.A. BajneidM.A. Al-FhaimaniS.S. Chemical composition and characteristics of Moringa peregrina seeds and seeds oil.J. Am. Oil Chem. Soc.1984611858610.1007/BF02672051
    [Google Scholar]
  163. ArunaK. RajeswariP.D.R. PrabuK. RamkumarM. ChidambaramR. SankarS.R. Quantitative phytochemical analysis of Oxalis corniculata L.(Oxalidaceae).World J. Pharm. Sci20143711716
    [Google Scholar]
  164. BalhamarS.O.M.S. PanickerN.G. AkhlaqS. QureshiM.M. AhmadW. RehmanN.U. AliL. Al-HarrasiA. HussainJ. MustafaF. Differential cytotoxic potential of Acridocarpus orientalis leaf and stem extracts with the ability to induce multiple cell death pathways.Molecules20192421397610.3390/molecules2421397631684146
    [Google Scholar]
  165. IranshahyM. JavadiB. IranshahiM. JahanbakhshS.P. MahyariS. HassaniF.V. KarimiG. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L.J. Ethnopharmacol.201720515817210.1016/j.jep.2017.05.00428495602
    [Google Scholar]
  166. ChanK. IslamM.W. KamilM. RadhakrishnanR. ZakariaM.N.M. HabibullahM. AttasA. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak.J. Ethnopharmacol.200073344545110.1016/S0378‑8741(00)00318‑411090998
    [Google Scholar]
  167. Al-RawahiA.S. EdwardsG. Al-SibaniM. Al-ThaniG. Al-HarrasiA.S. RahmanM.S. Phenolic constituents of pomegranate peels (Punica granatum L.) cultivated in Oman.Europ. J. Med. Plants201443315331
    [Google Scholar]
  168. Al-SaidF.A. OparaL.U. Al-YahyaiR.A. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman.J. Food Eng.200990112913410.1016/j.jfoodeng.2008.06.012
    [Google Scholar]
  169. AliL. AhmadR. Ur RehmanN. Latif KhanA. HassanZ. Shamim RizviT. Al-HarrasiA. Khan ShinwariZ. HussainJ. A new cyclopropyl‐triterpenoid from Ochradenus arabicus.Helv. Chim. Acta20159891240124410.1002/hlca.201500052
    [Google Scholar]
  170. Al-AttabiZ. AlMamriR. AslamK. Antioxidant potential properties of three wild Omani plants against hydrogen peroxide-induced oxidative stress.Clin. Nutr.2015321622
    [Google Scholar]
  171. HussainJ. RehmanN.U. KhanA.L. AliL. KimJ-S. ZakarovaA. Al-HarrasiA. ShinwariZ.K. Phytochemical and biological assessment of medicinally important plant Ochradenus arabicus.Pak. J. Bot.201446620272034
    [Google Scholar]
  172. MasulloM. CerulliA. MontoroP. PizzaC. PiacenteS. In depth LC-ESIMSn-guided phytochemical analysis of Ziziphus jujuba Mill. leaves.Phytochemistry201915914815810.1016/j.phytochem.2018.12.01430616145
    [Google Scholar]
  173. ShahatA.A. PietersL. ApersS. NazeifN.M. Abdel-AzimN.S. BergheD.V. VlietinckA.J. Chemical and biological investigations on Zizyphus spina‐christi L.Phytother. Res.200115759359710.1002/ptr.88311746840
    [Google Scholar]
  174. AlhakmaniF. KhanS.A. AhmadA. Determination of total phenol, in-vitro antioxidant and anti-inflammatory activity of seeds and fruits of Zizyphus spina-christi grown in Oman.Asian Pac. J. Trop. Biomed.20144S656S66010.12980/APJTB.4.2014APJTB‑2014‑0273
    [Google Scholar]
  175. RaissiA. ArbabiM. RoustakhizJ. HosseiniM. Haplophyllum tuberculatum: An overview.J. Herbmed Pharmacol201654125130
    [Google Scholar]
  176. Al-BurtamaniS.K.S. FatopeM.O. MarwahR.G. OnifadeA.K. Al-SaidiS.H. Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman.J. Ethnopharmacol.2005961-210711210.1016/j.jep.2004.08.03915588657
    [Google Scholar]
  177. HossainM.A. Biological and phytochemicals review of Omani medicinal plant Dodonaea viscosa.J. King Saud Univ. Sci.20193141089109410.1016/j.jksus.2018.09.012
    [Google Scholar]
  178. ShanmugavasanA. RamachandranT. Investigation of the extraction process and phytochemical composition of preparations of Dodonaea viscosa (L.) Jacq.J. Ethnopharmacol.201113731172117610.1016/j.jep.2011.07.04021807086
    [Google Scholar]
  179. GhazanfarS.A. Quantitative and biogeographic analysis of the flora of the Sultanate of Oman.Glob. Ecol. Biogeogr. Lett.19922618919510.2307/2997660
    [Google Scholar]
  180. HussainH. AzizS. MianaG.A. AhmadV.U. AnwarS. AhmedI. Minor chemical constituents of Verbascum thapsus.Biochem. Syst. Ecol.200937212412610.1016/j.bse.2008.12.007
    [Google Scholar]
  181. BileflimiV.T.K. Chemical constituents of Verbascum L. species.Fabad J. Pharm. Sci20042993107
    [Google Scholar]
  182. AboalolaD.M. WeliA.M. HossainM.A. ToubyS.A. Toxicological study of various crude extracts of Hyoscyamus gallagheri native to Oman.Toxicol. Rep.2020768068410.1016/j.toxrep.2020.05.00432518760
    [Google Scholar]
  183. UsmanH. VictorV. WaziriI. Qualitative phytochemical screening and in vitro antimicrobial activities of Solanum americanum mill. Arid Zone Journal of Engineering.Technology and Environment2018141104110
    [Google Scholar]
  184. MwonjoriaJ. NgeranwaJ. KariukiH. GithinjiC. SaginiM. WambuguS. Ethno medicinal, phytochemical and pharmacological aspects of Solanum incanum (Linn.).Int. J. Pharmacol. Toxicol.2014221720
    [Google Scholar]
  185. Al SinaniS.S. EltayebE.A. KamalY.T. KhanM.S. AhmadS. Variations in the cytotoxic glycoalkaloids solamargine and solasonine in different parts of the Solanum incanum plant during its growth and development in Oman.J. Taibah Univ. Sci.201610681382210.1016/j.jtusci.2014.11.013
    [Google Scholar]
  186. MothanaR.A. GrünertR. LindequistU. BednarskiP.J. Study of the anticancer potential of Yemeni plants used in folk medicine.Pharmazie200762430530717484289
    [Google Scholar]
  187. Al-DhahliA.S. Al-HassaniF.A. Mohammed AlarjaniK. Mohamed YehiaH. Al LawatiW.M. Najmul Hejaz AzmiS. Alam KhanS. Essential oil from the rhizomes of the Saudi and Chinese Zingiber officinale cultivars: Comparison of chemical composition, antibacterial and molecular docking studies.J. King Saud Univ. Sci.20203283343335010.1016/j.jksus.2020.09.020
    [Google Scholar]
  188. JaleelK. BS. Characterization of ginger (Zingiber officinale Rosc.) germplasm based on volatile and non-volatile components.Afr. J. Biotechnol.201211477778610.5897/AJB11.292
    [Google Scholar]
  189. SunW. WangS. ZhaoW. WuC. GuoS. GaoH. TaoH. LuJ. WangY. ChenX. Chemical constituents and biological research on plants in the genus Curcuma.Crit. Rev. Food Sci. Nutr.20175771451152310.1080/10408398.2016.117655427229295
    [Google Scholar]
  190. Al-BusaidM.M. AkhtarM.S. AlamT. Aly ShehataW. Development and evaluation of herbal cream containing Curcumin from Curcuma longa.Pharm. Pharmacol. Int. J.20208528528910.15406/ppij.2020.08.00307
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266318053240819100111
Loading
/content/journals/ctmc/10.2174/0115680266318053240819100111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test