Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Cancers are complex multi-genetic diseases that should be tackled in multi-target drug discovery scenarios. Computational methods are of great importance to accelerate the discovery of multi-target anticancer agents. Here, we employed a ligand-based approach by combining a perturbation-theory machine learning model derived from an ensemble of multilayer perceptron networks (PTML-EL-MLP) with the Fragment-Based Topological Design (FBTD) approach to rationally design and predict triple-target inhibitors against the cancer-related proteins named Tropomyosin Receptor Kinase A (TRKA), poly[ADP-ribose] polymerase 1 (PARP-1), and Insulin-like Growth Factor 1 Receptor (IGF1R).

Methods

We extracted the chemical and biological data from ChEMBL. We applied the Box-Jenkins approach to generate multi-label topological indices and subsequently created the PTML-EL-MLP model.

Results

Our PTML-EL-MLP model exhibited an accuracy of around 80%. The application FBTD permitted the physicochemical and structural interpretation of the PTML-EL-MLP model, thus enabling a) the chemistry-driven analysis of different molecular fragments with a positive influence on the multi-target activity and b) the use of those favorable fragments as building blocks to virtually design four new drug-like molecules. The designed molecules were predicted as triple-target inhibitors against the aforementioned cancer-related proteins.

Conclusion

Our study envisages the capabilities of combining PTML modeling with FBTD for the generation of new chemical diversity for multi-target drug discovery in oncology research and beyond.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266325897240815112505
2025-08-21
2025-12-28
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. KocarnikJ.M. ComptonK. DeanF.E. FuW. GawB.L. HarveyJ.D. HenriksonH.J. LuD. PenniniA. XuR. AbabnehE. Abbasi-KangevariM. AbbastabarH. Abd-ElsalamS.M. AbdoliA. AbediA. AbidiH. AbolhassaniH. AdedejiI.A. AdnaniQ.E.S. AdvaniS.M. AfzalM.S. AghaaliM. AhinkorahB.O. AhmadS. AhmadT. AhmadiA. AhmadiS. Ahmed RashidT. Ahmed SalihY. AkaluG.T. AkliluA. AkramT. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AliS. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. Almasi-HashianiA. AlmasriN.A. Al-MaweriS.A.A. AlmustanyirS. AlonsoN. Alvis-GuzmanN. AmuH. AnbesuE.W. AncuceanuR. AnsariF. Ansari-MoghaddamA. AntwiM.H. AnvariD. AnyasodorA.E. AqeelM. ArablooJ. Arab-ZozaniM. AremuO. AriffinH. AripovT. ArshadM. ArtamanA. ArulappanJ. AsemiZ. Asghari JafarabadiM. AshrafT. AtorkeyP. AujayebA. AusloosM. AwedewA.F. Ayala QuintanillaB.P. AyenewT. AzabM.A. AzadnajafabadS. Azari JafariA. AzarianG. AzzamA.Y. BadiyeA.D. BahadoryS. BaigA.A. BakerJ.L. BalakrishnanS. BanachM. BärnighausenT.W. Barone-AdesiF. BarraF. BarrowA. BehzadifarM. BelgaumiU.I. BezabheW.M.M. BezabihY.M. BhagatD.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BisignanoC. BjørgeT. BleyerA. BlyussO. BolarinwaO.A. BollaS.R. BraithwaiteD. BrarA. BrennerH. Bustamante-TeixeiraM.T. ButtN.S. ButtZ.A. Caetano dos SantosF.L. CaoY. CarrerasG. Catalá-LópezF. CembranelF. CerinE. CernigliaroA. ChakinalaR.C. ChattuS.K. ChattuV.K. ChaturvediP. Chimed-OchirO. ChoD.Y. ChristopherD.J. ChuD.T. ChungM.T. CondeJ. CortésS. CortesiP.A. CostaV.M. CunhaA.R. DadrasO. DagnewA.B. DahlawiS.M.A. DaiX. DandonaL. DandonaR. DarweshA.M. das NevesJ. De la HozF.P. DemisA.B. Denova-GutiérrezE. DhamnetiyaD. DhimalM.L. DhimalM. DianatinasabM. DiazD. DjalaliniaS. DoH.P. DoaeiS. DorostkarF. dos Santos FigueiredoF.W. DriscollT.R. EbrahimiH. EftekharzadehS. El TantawiM. El-AbidH. ElbaraziI. ElhabashyH.R. ElhadiM. El-JaafaryS.I. EshratiB. EskandariehS. EsmaeilzadehF. EtemadiA. EzzikouriS. FaisaluddinM. FaraonE.J.A. FaresJ. FarzadfarF. FerozeA.H. FerreroS. Ferro DesideriL. FilipI. FischerF. FisherJ.L. ForoutanM. FukumotoT. GaalP.A. GadM.M. GadanyaM.A. GallusS. Gaspar FonsecaM. Getachew ObsaA. GhafourifardM. GhashghaeeA. GhithN. GholamalizadehM. GilaniS.A. GinindzaT.G. GizawA.T.T. GlasbeyJ.C. GolechhaM. GoleijP. GomezR.S. GopalaniS.V. GoriniG. GoudarziH. GrossoG. GubariM.I.M. GuerraM.R. GuhaA. GunasekeraD.S. GuptaB. GuptaV.B. GuptaV.K. GutiérrezR.A. Hafezi-NejadN. HaiderM.R. Haj-MirzaianA. HalwaniR. HamadehR.R. HameedS. HamidiS. HanifA. HaqueS. HarliantoN.I. HaroJ.M. HasaballahA.I. HassanipourS. HayR.J. HayS.I. HayatK. HeidariG. HeidariM. Herrera-SernaB.Y. HerteliuC. HezamK. HollaR. HossainM.M. HossainM.B.H. HosseiniM.S. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HsairiM. HuangJ. HugoF.N. HussainR. HusseinN.R. HwangB.F. IavicoliI. IbitoyeS.E. IdaF. IkutaK.S. IlesanmiO.S. IlicI.M. IlicM.D. IrhamL.M. IslamJ.Y. IslamR.M. IslamS.M.S. IsmailN.E. IsolaG. IwagamiM. JacobL. JainV. JakovljevicM.B. JavaheriT. JayaramS. JazayeriS.B. JhaR.P. JonasJ.B. JooT. JosephN. JoukarF. JürissonM. KabirA. KahriziD. KalankeshL.R. KalhorR. KaliyadanF. KalkondeY. KamathA. Kameran Al-SalihiN. KandelH. KapoorN. KarchA. KasaA.S. KatikireddiS.V. KauppilaJ.H. KavetskyyT. KebedeS.A. KeshavarzP. KeykhaeiM. KhaderY.S. KhalilovR. KhanG. KhanM. KhanM.N. KhanM.A.B. KhangY.H. KhaterA.M. KhayamzadehM. KimG.R. KimY.J. KisaA. KisaS. Kissimova-SkarbekK. KopecJ.A. KoteeswaranR. KoulP.A. Koulmane LaxminarayanaS.L. KoyanagiA. Kucuk BicerB. KugbeyN. KumarG.A. KumarN. KumarN. KurmiO.P. KutlukT. La VecchiaC. LamiF.H. LandiresI. LauriolaP. LeeS. LeeS.W.H. LeeW.C. LeeY.H. LeighJ. LeongE. LiJ. LiM.C. LiuX. LoureiroJ.A. LuneviciusR. Magdy Abd El RazekM. MajeedA. MakkiA. MaleS. MalikA.A. MansourniaM.A. MartiniS. MasoumiS.Z. MathurP. McKeeM. MehrotraR. MendozaW. MenezesR.G. MengeshaE.W. MesregahM.K. MestrovicT. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirzaeiH. MirzaeiH.R. MisraS. MithraP. MoghadaszadehM. MohammadK.A. MohammadY. MohammadiM. MohammadiS.M. Mohammadian-HafshejaniA. MohammedS. MokaN. MokdadA.H. MolokhiaM. MonastaL. MoniM.A. MoosaviM.A. MoradiY. MoragaP. Morgado-da-CostaJ. MorrisonS.D. MosapourA. MubarikS. MwanriL. NagarajanA.J. NagarajuS.P. NagataC. NaimzadaM.D. NangiaV. NaqviA.A. Narasimha SwamyS. NdejjoR. NduagubaS.O. NegoiI. NegruS.M. Neupane KandelS. NguyenC.T. NguyenH.L.T. NiaziR.K. NnajiC.A. NoorN.M. Nuñez-SamudioV. NzoputamC.I. OanceaB. OchirC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OlakundeB.O. OmarE. Omar BaliA. OmonisiA.E.E. OngS. OnwujekweO.E. OrruH. Ortega-AltamiranoD.V. OtstavnovN. OtstavnovS.S. OwolabiM.O. P AM. PadubidriJ.R. PakshirK. PanaA. PanagiotakosD. Panda-JonasS. PardhanS. ParkE.C. ParkE.K. Pashazadeh KanF. PatelH.K. PatelJ.R. PatiS. PattanshettyS.M. PaudelU. PereiraD.M. PereiraR.B. PerianayagamA. PillayJ.D. PirouzpanahS. PishgarF. PodderI. PostmaM.J. PourjafarH. PrashantA. PreotescuL. RabieeM. RabieeN. RadfarA. RadhakrishnanR.A. RadhakrishnanV. RafieeA. RahimF. RahimzadehS. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RajeshA. RakovacI. RamP. RamezanzadehK. RanabhatK. RanasingheP. RaoC.R. RaoS.J. RawassizadehR. RazeghiniaM.S. RenzahoA.M.N. RezaeiN. RezaeiN. RezapourA. RobertsT.J. RodriguezJ.A.B. RohloffP. RomoliM. RonfaniL. RoshandelG. RwegereraG.M. SM. SabourS. SaddikB. SaeedU. SahebkarA. SahooH. SalehiS. SalemM.R. SalimzadehH. SamaeiM. SamyA.M. SanabriaJ. SankararamanS. Santric-MilicevicM.M. SardiwallaY. SarveazadA. SathianB. SawhneyM. SaylanM. SchneiderI.J.C. SekerijaM. SeylaniA. ShafaatO. ShaghaghiZ. ShaikhM.A. ShamsoddinE. ShannawazM. SharmaR. SheikhA. SheikhbahaeiS. ShettyA. ShettyJ.K. ShettyP.H. ShibuyaK. ShirkoohiR. ShivakumarK.M. ShivarovV. SiabaniS. Siddappa MalleshappaS.K. SilvaD.A.S. SinghJ.A. SintayehuY. SkryabinV.Y. SkryabinaA.A. SoebergM.J. Sofi-MahmudiA. SotoudehH. SteiropoulosP. StraifK. SubediR. SufiyanM.B. SultanI. SultanaS. SurD. SzerencsésV. SzócskaM. Tabarés-SeisdedosR. TabuchiT. TadbiriH. TaherkhaniA. TakahashiK. TalaatI.M. TanK.K. TatV.Y. TedlaB.A.A. TeferaY.G. Tehrani-BanihashemiA. TemsahM.H. TesfayF.H. TessemaG.A. ThaparR. ThavamaniA. Thoguluva ChandrasekarV. ThomasN. TohidinikH.R. TouvierM. Tovani-PaloneM.R. TrainiE. TranB.X. TranK.B. TranM.T.N. TripathyJ.P. TusaB.S. UllahI. UllahS. UmapathiK.K. UnnikrishnanB. UpadhyayE. VacanteM. VaeziM. Valadan TahbazS. VelazquezD.Z. VerouxM. ViolanteF.S. VlassovV. VoB. VoloviciV. VuG.T. WaheedY. WamaiR.G. WardP. WenY.F. WestermanR. WinklerA.S. YadavL. Yahyazadeh JabbariS.H. YangL. YayaS. YazieT.S.Y. YeshawY. YonemotoN. YounisM.Z. YousefiZ. YuC. YuceD. YunusaI. ZadnikV. ZareF. ZastrozhinM.S. ZastrozhinaA. ZhangJ. ZhongC. ZhouL. ZhuC. ZiapourA. ZimmermannI.R. FitzmauriceC. MurrayC.J.L. ForceL.M. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.698734967848
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  4. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  5. HilalT. Gonzalez-VelezM. PrasadV. Limitations in Clinical Trials Leading to Anticancer Drug Approvals by the US Food and Drug Administration.JAMA Intern. Med.202018081108111510.1001/jamainternmed.2020.225032539071
    [Google Scholar]
  6. Dominguez-ValentinM. NakkenS. TubeufH. VodakD. EkstrømP.O. NissenA.M. MorakM. Holinski-FederE. HolthA. CapellaG. DavidsonB. EvansD.G. MartinsA. MøllerP. HovigE. Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing.Sci. Rep.2019911855510.1038/s41598‑019‑54517‑z31811167
    [Google Scholar]
  7. Martin-MoralesL. RofesP. Diaz-RubioE. LlovetP. LorcaV. BandoI. Perez-SeguraP. de la HoyaM. GarreP. Garcia-BarberanV. CaldesT. Novel genetic mutations detected by multigene panel are associated with hereditary colorectal cancer predisposition.PLoS One2018139e020388510.1371/journal.pone.020388530256826
    [Google Scholar]
  8. MezinaA. PhilipsN. BogusZ. ErezN. XiaoR. FanR. OlthoffK.M. ReddyK.R. SamadderN.J. NielsenS.M. HatchellK.E. EsplinE.D. RustgiA.K. KatonaB.W. HoteitM.A. NathansonK.L. WangensteenK.J. Multigene panel testing in individuals with hepatocellular carcinoma identifies pathogenic germline variants.JCO Precis. Oncol.202155988100010.1200/PO.21.0007934250406
    [Google Scholar]
  9. HamiltonJ.G. SymeckoH. SpielmanK. BreenK. MuellerR. CatchingsA. TrottierM. Salo-MullenE.E. ShahI. ArutyunovaA. BatsonM. GebertR. PundockS. SchofieldE. OffitK. StadlerZ.K. CadooK. CarloM.I. NarayanV. ReissK.A. RobsonM.E. DomchekS.M. Uptake and acceptability of a mainstreaming model of hereditary cancer multigene panel testing among patients with ovarian, pancreatic, and prostate cancer.Genet. Med.202123112105211310.1038/s41436‑021‑01262‑234257420
    [Google Scholar]
  10. HuC. LaDucaH. ShimelisH. PolleyE.C. LilyquistJ. HartS.N. NaJ. ThomasA. LeeK.Y. DavisB.T. BlackM.H. PesaranT. GoldgarD.E. DolinskyJ.S. CouchF.J. Multigene hereditary cancer panels reveal high-risk pancreatic cancer susceptibility genes.JCO Precis. Oncol.20182212810.1200/PO.17.0029131497750
    [Google Scholar]
  11. NussinovR. TsaiC.J. JangH. Anticancer drug resistance: An update and perspective.Drug Resist. Updat.20215910079610.1016/j.drup.2021.10079634953682
    [Google Scholar]
  12. RamsayR.R. Popovic-NikolicM.R. NikolicK. UliassiE. BolognesiM.L. A perspective on multi‐target drug discovery and design for complex diseases.Clin. Transl. Med.201871e310.1186/s40169‑017‑0181‑229340951
    [Google Scholar]
  13. SchaduangratN. LampaS. SimeonS. GleesonM.P. SpjuthO. NantasenamatC. Towards reproducible computational drug discovery.J. Cheminform.2020121910.1186/s13321‑020‑0408‑x33430992
    [Google Scholar]
  14. BrogiS. RamalhoT.C. KucaK. Medina-FrancoJ.L. ValkoM. Editorial: In silico Methods for Drug Design and Discovery.Front Chem.2020861210.3389/fchem.2020.0061232850641
    [Google Scholar]
  15. ElasbaliA.M. Al-SoudW.A. Mousa ElayyanA.E. Al-OanziZ.H. AlhassanH.H. MohamedB.M. AlanaziH.H. AshrafM.S. MoizS. PatelM. PatelM. AdnanM. Integrating network pharmacology approaches for the investigation of multi-target pharmacological mechanism of 6-shogaol against cervical cancer.J. Biomol. Struct. Dyn.20234123141351415110.1080/07391102.2023.219171936943780
    [Google Scholar]
  16. HeQ. LiuC. WangX. RongK. ZhuM. DuanL. ZhengP. MiY. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking.Front. Pharmacol.202314110258110.3389/fphar.2023.110258136874006
    [Google Scholar]
  17. KhalidH.R. AamirM. TabassumS. AlghamdiY.S. AlzamamiA. AshfaqU.A. Integrated system pharmacology approaches to elucidate multi-target mechanism of Solanum surattense against Hepatocellular Carcinoma.Molecules20222719622010.3390/molecules2719622036234758
    [Google Scholar]
  18. BatoolS. JavedM.R. AslamS. NoorF. JavedH.M.F. SeemabR. RehmanA. AslamM.F. ParayB.A. GulnazA. Network pharmacology and bioinformatics approach reveals the multi-target pharmacological mechanism of Fumaria indica in the treatment of liver cancer.Pharmaceuticals (Basel)202215665410.3390/ph1506065435745580
    [Google Scholar]
  19. DengZ. ChenG. ShiY. LinY. OuJ. ZhuH. WuJ. LiG. LvL. Curcumin and its nano-formulations: Defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification.Front. Pharmacol.20221392051410.3389/fphar.2022.92051436003508
    [Google Scholar]
  20. PirhadiS. DamghaniT. AvestanM.S. SharifiS. Dual potent c-Met and ALK inhibitors: From common feature pharmacophore modeling to structure based virtual screening.J. Recept. Signal Transduct. Res.202040435736410.1080/10799893.2020.173541832126881
    [Google Scholar]
  21. AhmedB. KhanS. NourozF. FarooqU. KhalidS. Exploring multi-target inhibitors using in silico approach targeting cell cycle dysregulator–CDK proteins.J. Biomol. Struct. Dyn.202240198825883910.1080/07391102.2021.191825333931002
    [Google Scholar]
  22. Al-KhafajiK. Taskin TokT. Amygdalin as multi-target anticancer drug against targets of cell division cycle: Double docking and molecular dynamics simulation.J. Biomol. Struct. Dyn.20213961965197410.1080/07391102.2020.174279232174270
    [Google Scholar]
  23. SharmaA. SinhaS. RathaurP. VoraJ. JhaP.C. JoharK. RawalR.M. ShrivastavaN. Reckoning apigenin and kaempferol as a potential multi-targeted inhibitor of EGFR/HER2-MEK pathway of metastatic colorectal cancer identified using rigorous computational workflow.Mol. Divers.20222663337335610.1007/s11030‑022‑10396‑735147860
    [Google Scholar]
  24. PrabhavathiH. DasegowdaK.R. RenukanandaK.H. KarunakarP. LingarajuK. Raja NaikaH. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents.J. Biomol. Struct. Dyn.202240104713472410.1080/07391102.2020.186198233345701
    [Google Scholar]
  25. De SimoneG. SardinaD.S. GulottaM.R. PerriconeU. KUALA: A machine learning-driven framework for kinase inhibitors repositioning.Sci. Rep.20221211787710.1038/s41598‑022‑22324‑836284125
    [Google Scholar]
  26. BrindhaG.R. RishiikeshwerB.S. SanthiB. NakendraprasathK. ManikandanR. GandomiA.H. Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis.Comput. Methods Programs Biomed.202222410702710.1016/j.cmpb.2022.10702735914385
    [Google Scholar]
  27. Al taweraqiN. KingR.D. Improved prediction of gene expression through integrating cell signalling models with machine learning.BMC Bioinformatics202223132310.1186/s12859‑022‑04787‑835933367
    [Google Scholar]
  28. NguyenL.C. NaulaertsS. BrunaA. GhislatG. BallesterP.J. Predicting Cancer drug response in vivo by learning an optimal feature selection of tumour molecular profiles.Biomedicines2021910131910.3390/biomedicines910131934680436
    [Google Scholar]
  29. SimeonS. GhislatG. BallesterP. Characterizing the Relationship Between the Chemical Structures of Drugs and their Activities on Primary Cultures of Pediatric Solid Tumors.Curr. Med. Chem.202128387830783910.2174/092986732866621041913470833874867
    [Google Scholar]
  30. González-DíazH. ArrasateS. Gómez-SanJuanA. SotomayorN. LeteE. Besada-PortoL. RusoJ. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.Curr. Top. Med. Chem.201313141713174110.2174/156802661131314001123889050
    [Google Scholar]
  31. Speck-PlancheA. CordeiroM.N.D.S. Multitasking models for quantitative structure–biological effect relationships: Current status and future perspectives to speed up drug discovery.Expert Opin. Drug Discov.201510324525610.1517/17460441.2015.100619525613725
    [Google Scholar]
  32. HalderA.K. MouraA.S. CordeiroM.N.D.S. Moving average-based multitasking in silico classification modeling: Where do we stand and what is next?Int. J. Mol. Sci.2022239493710.3390/ijms2309493735563327
    [Google Scholar]
  33. KleandrovaV.V. CordeiroM.N.D.S. Speck-PlancheA. Optimizing drug discovery using multitasking models for quantitative structure–biological effect relationships: An update of the literature.Expert Opin. Drug Discov.202318111231124310.1080/17460441.2023.225138537639708
    [Google Scholar]
  34. KleandrovaV.V. DS CordeiroM.N. Speck-PlancheA. Current in silico methods for multi-target drug discovery in early anticancer research: The rise of the perturbation-theory machine learning approach.Future Med. Chem.202315181647165010.4155/fmc‑2023‑024137728008
    [Google Scholar]
  35. HalderA.K. CordeiroM.N.D.S. Multi-target in silico prediction of inhibitors for mitogen-activated protein kinase-interacting kinases.Biomolecules20211111167010.3390/biom1111167034827668
    [Google Scholar]
  36. SantanaR. ZuluagaR. GañánP. ArrasateS. OnievaE. MontemoreM.M. González-DíazH. PTML model for selection of nanoparticles, anticancer drugs, and vitamins in the design of drug–vitamin nanoparticle release systems for cancer cotherapy.Mol. Pharm.20201772612262710.1021/acs.molpharmaceut.0c0030832459098
    [Google Scholar]
  37. Speck-PlancheA. Multicellular target QSAR model for simultaneous prediction and design of anti-pancreatic cancer agents.ACS Omega2019423122313210.1021/acsomega.8b03693
    [Google Scholar]
  38. KleandrovaV.V. Speck-PlancheA. PTML modeling for pancreatic cancer research: In silico design of simultaneous multi-protein and multi-cell inhibitors.Biomedicines202210249110.3390/biomedicines1002049135203699
    [Google Scholar]
  39. Speck-PlancheA. ScottiM.T. BET bromodomain inhibitors: Fragment-based in silico design using multi-target QSAR models.Mol. Divers.201923355557210.1007/s11030‑018‑9890‑830421269
    [Google Scholar]
  40. KleandrovaV.V. ScottiM.T. Speck-PlancheA. Computational drug repurposing for antituberculosis therapy: Discovery of multi-strain inhibitors.Antibiotics (Basel)2021108100510.3390/antibiotics1008100534439055
    [Google Scholar]
  41. KleandrovaV.V. ScottiL. Bezerra Mendonça JuniorF.J. MuratovE. ScottiM.T. Speck-PlancheA. QSAR modeling for multi-target drug discovery: Designing simultaneous inhibitors of proteins in diverse pathogenic parasites.Front Chem.2021963466310.3389/fchem.2021.63466333777898
    [Google Scholar]
  42. Vásquez-DomínguezE. Armijos-JaramilloV.D. TejeraE. González-DíazH. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds.Mol. Pharm.201916104200421210.1021/acs.molpharmaceut.9b0053831426639
    [Google Scholar]
  43. Ortega-TenezacaB. González-DíazH. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks.Nanoscale20211321318133010.1039/D0NR07588D33410431
    [Google Scholar]
  44. UristaD.V. CarruéD.B. OteroI. ArrasateS. Quevedo-TumailliV.F. GestalM. González-DíazH. MunteanuC.R. Prediction of antimalarial drug-decorated nanoparticle delivery systems with random forest models.Biology (Basel)20209819810.3390/biology908019832751710
    [Google Scholar]
  45. Nocedo-MenaD. CornelioC. Camacho-CoronaM.R. Garza-GonzálezE. Waksman de TorresN. ArrasateS. SotomayorN. LeteE. González-DíazH. Modeling antibacterial activity with machine learning and fusion of chemical structure information with microorganism metabolic networks.J. Chem. Inf. Model.20195931109112010.1021/acs.jcim.9b0003430802402
    [Google Scholar]
  46. Herrera-IbatáD.M. PazosA. Orbegozo-MedinaR.A. Romero-DuránF.J. González-DíazH. Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties.Biosystems2015132-133203410.1016/j.biosystems.2015.04.00725916548
    [Google Scholar]
  47. González-DíazH. Herrera-IbatáD.M. Duardo-SánchezA. MunteanuC.R. Orbegozo-MedinaR.A. PazosA. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.J. Chem. Inf. Model.201454374475510.1021/ci400716y24521170
    [Google Scholar]
  48. Tenorio-BorrotoE. CastañedoN. García-MeraX. RivadeneiraK. Vázquez ChagoyánJ.C. Barbabosa PliegoA. MunteanuC.R. González-DíazH. Perturbation theory machine learning modeling of immunotoxicity for drugs targeting inflammatory cytokines and study of the antimicrobial g1 using cytometric bead arrays.Chem. Res. Toxicol.20193291811182310.1021/acs.chemrestox.9b0015431327231
    [Google Scholar]
  49. Vázquez-PrietoS. PaniaguaE. SolanaH. UbeiraF.M. González-DíazH. A study of the Immune Epitope Database for some fungi species using network topological indices.Mol. Divers.201721371371810.1007/s11030‑017‑9749‑428567560
    [Google Scholar]
  50. Martínez-ArzateS.G. Tenorio-BorrotoE. Barbabosa PliegoA. Díaz-AlbiterH.M. Vázquez-ChagoyánJ.C. González-DíazH. PTML model for proteome mining of B-Cell epitopes and theoretical–experimental study of bm86 protein sequences from Colima, Mexico.J. Proteome Res.201716114093410310.1021/acs.jproteome.7b0047728922600
    [Google Scholar]
  51. Tenorio-BorrotoE. Peñuelas-RivasC.G. Vásquez-ChagoyánJ.C. CastañedoN. Prado-PradoF.J. García-MeraX. González-DíazH. Model for high-throughput screening of drug immunotoxicity – Study of the anti-microbial G1 over peritoneal macrophages using flow cytometry.Eur. J. Med. Chem.20147220622010.1016/j.ejmech.2013.08.03524445280
    [Google Scholar]
  52. Diez-AlarciaR. Yáñez-PérezV. Muneta-ArrateI. ArrasateS. LeteE. MeanaJ.J. González-DíazH. Big data challenges targeting proteins in GPCR signaling pathways; combining PTML-ChEMBL models and [ 35 S]GTPγS binding assays.ACS Chem. Neurosci.201910114476449110.1021/acschemneuro.9b0030231618004
    [Google Scholar]
  53. KleandrovaV.V. Speck-PlancheA. PTML modeling for alzheimer’s disease: Design and prediction of virtual multi-target inhibitors of GSK3B, HDAC1, and HDAC6.Curr. Top. Med. Chem.202020191661167610.2174/156802662066620060719095132515311
    [Google Scholar]
  54. Sampaio-DiasI.E. Rodríguez-BorgesJ.E. Yáñez-PérezV. ArrasateS. LlorenteJ. BreaJ.M. BediagaH. ViñaD. LozaM.I. CaamañoO. García-MeraX. González-DíazH. Synthesis, pharmacological, and biological evaluation of 2-Furoyl-Based MIF-1 peptidomimetics and the development of a general-purpose model for Allosteric Modulators (ALLOPTML).ACS Chem. Neurosci.202112120321510.1021/acschemneuro.0c0068733347281
    [Google Scholar]
  55. Ferreira da CostaJ. SilvaD. CaamañoO. BreaJ.M. LozaM.I. MunteanuC.R. PazosA. García-MeraX. González-DíazH. Perturbation theory/machine learning model of ChEMBL data for dopamine targets: Docking, synthesis, and assay of new l -Prolyl- l -leucyl-glycinamide Peptidomimetics.ACS Chem. Neurosci.20189112572258710.1021/acschemneuro.8b0008329791132
    [Google Scholar]
  56. AbeijonP. Garcia-MeraX. CaamanoO. YanezM. Lopez-CastroE. Romero-DuranF. Gonzalez-DiazH. Multi-target mining of alzheimer disease proteome with Hansch’s QSBR-perturbation theory and experimental-theoretic study of new thiophene isosters of rasagiline.Curr. Drug Targets201718551152110.2174/138945011666615110209524326521774
    [Google Scholar]
  57. Romero-DuránF.J. AlonsoN. YañezM. CaamañoO. García-MeraX. González-DíazH. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives.Neuropharmacology201610327027810.1016/j.neuropharm.2015.12.01926721628
    [Google Scholar]
  58. DuránF. AlonsoN. CaamañoO. García-MeraX. YañezM. Prado-PradoF. González-DíazH. Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1,2-rasagiline carbamates.Int. J. Mol. Sci.2014159170351706410.3390/ijms15091703525255029
    [Google Scholar]
  59. LuanF. CordeiroM.N.D.S. AlonsoN. García-MeraX. CaamañoO. Romero-DuranF.J. YañezM. González-DíazH. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases.Bioorg. Med. Chem.20132171870187910.1016/j.bmc.2013.01.03523415089
    [Google Scholar]
  60. Speck-PlancheA. CordeiroM.N.D.S. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles.Med. Chem. Res.201726102345235610.1007/s00044‑017‑1936‑4
    [Google Scholar]
  61. Speck-PlancheA. Dias Soeiro CordeiroM.N. Speeding up early drug discovery in antiviral research: A fragment-based in silico approach for the design of virtual Anti-Hepatitis C leads.ACS Comb. Sci.201719850151210.1021/acscombsci.7b0003928437091
    [Google Scholar]
  62. LaetschT.W. DuBoisS.G. MascarenhasL. TurpinB. FedermanN. AlbertC.M. NagasubramanianR. DavisJ.L. RudzinskiE. FeracoA.M. TuchB.B. EbataK.T. ReynoldsM. SmithS. CruickshankS. CoxM.C. PappoA.S. HawkinsD.S. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study.Lancet Oncol.201819570571410.1016/S1470‑2045(18)30119‑029606586
    [Google Scholar]
  63. KhotskayaY.B. HollaV.R. FaragoA.F. Mills ShawK.R. Meric-BernstamF. HongD.S. Targeting TRK family proteins in cancer.Pharmacol. Ther.2017173586610.1016/j.pharmthera.2017.02.00628174090
    [Google Scholar]
  64. ScottL.J. Larotrectinib: First global approval.Drugs201979220120610.1007/s40265‑018‑1044‑x30635837
    [Google Scholar]
  65. MateoJ. LordC.J. SerraV. TuttA. BalmañaJ. Castroviejo-BermejoM. CruzC. OakninA. KayeS.B. de BonoJ.S. A decade of clinical development of PARP inhibitors in perspective.Ann. Oncol.20193091437144710.1093/annonc/mdz19231218365
    [Google Scholar]
  66. XieM. SunM. JiX. LiD. ChenX. ZhangB. HuangW. ZhangT. WangY. TianD. XiaL. Overexpression of BACH1 mediated by IGF2 facilitates hepatocellular carcinoma growth and metastasis via IGF1R and PTK2.Theranostics20221231097111610.7150/thno.6577535154476
    [Google Scholar]
  67. Warshamana-GreeneG.S. LitzJ. BuchdungerE. García-EcheverríaC. HofmannF. KrystalG.W. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy.Clin. Cancer Res.20051141563157110.1158/1078‑0432.CCR‑04‑154415746061
    [Google Scholar]
  68. GaultonA. BellisL.J. BentoA.P. ChambersJ. DaviesM. HerseyA. LightY. McGlincheyS. MichalovichD. Al-LazikaniB. OveringtonJ.P. ChEMBL: A large-scale bioactivity database for drug discovery.Nucleic Acids Res.201240D1D1100D110710.1093/nar/gkr77721948594
    [Google Scholar]
  69. MendezD. GaultonA. BentoA.P. ChambersJ. De VeijM. FélixE. MagariñosM.P. MosqueraJ.F. MutowoP. NowotkaM. Gordillo-MarañónM. HunterF. JuncoL. MugumbateG. Rodriguez-LopezM. AtkinsonF. BoscN. RadouxC.J. Segura-CabreraA. HerseyA. LeachA.R. ChEMBL: Towards direct deposition of bioassay data.Nucleic Acids Res.201947D1D930D94010.1093/nar/gky107530398643
    [Google Scholar]
  70. EstradaE. GutiérrezY. Santiago de Compostela, Spain, 2002-2004.2022Available From: https://en.wikipedia.org/wiki/Camino_de_Santiago
  71. TodeschiniR. ConsonniV. Handbook of Molecular Descriptors.Weinheim, New York, Chichester, Brisbane, Singapore, TorontoWILEY-VCH Verlag GmbH200010.1002/9783527613106
    [Google Scholar]
  72. TodeschiniR. ConsonniV. Molecular Descriptors for Chemoinformatics.Handbook of Molecular Descriptors.Hoboken, New JerseyWiley200910.1002/9783527628766
    [Google Scholar]
  73. Speck-PlancheA. KleandrovaV.V. ScottiM.T. In silico drug repurposing for anti-inflammatory therapy: Virtual search for dual inhibitors of caspase-1 and TNF-Alpha.Biomolecules20211112183210.3390/biom1112183234944476
    [Google Scholar]
  74. UriasR.W.P. BarigyeS.J. Marrero-PonceY. García-JacasC.R. Valdes-MartiníJ.R. Perez-GimenezF. IMMAN: Free software for information theory-based chemometric analysis.Mol. Divers.201519230531910.1007/s11030‑014‑9565‑z25620721
    [Google Scholar]
  75. StahuraF.L. GoddenJ.W. BajorathJ. Differential Shannon entropy analysis identifies molecular property descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations.J. Chem. Inf. Comput. Sci.200242355055810.1021/ci010243q12086513
    [Google Scholar]
  76. QuinlanJ.R. Induction of decision trees.Mach. Learn.1986118110610.1007/BF00116251
    [Google Scholar]
  77. TIBCO-Software-IncSTATISTICA (Data Analysis Software System).2018
  78. Speck-PlancheA. KleandrovaV.V. Multi-condition QSAR Model for the virtual design of chemicals with dual pan-antiviral and anti-cytokine storm profiles.ACS Omega2022736321193213010.1021/acsomega.2c0336336120024
    [Google Scholar]
  79. ZhouZ.H. WuJ. TangW. Ensembling neural networks: Many could be better than all.Artif. Intell.20021371-223926310.1016/S0004‑3702(02)00190‑X
    [Google Scholar]
  80. KleandrovaV.V. Rojas-VargasJ.A. ScottiM.T. Speck-PlancheA. PTML modeling for peptide discovery: In silico design of non-hemolytic peptides with antihypertensive activity.Mol. Divers.20222652523253410.1007/s11030‑021‑10350‑z34802116
    [Google Scholar]
  81. SchneiderG. WredeP. Artificial neural networks for computer-based molecular design.Prog. Biophys. Mol. Biol.199870317522210.1016/S0079‑6107(98)00026‑19830312
    [Google Scholar]
  82. ManallackD.T. LivingstoneD.J. Neural Networks and Expert Systems in Molecular Design.Advanced Computer‐Assisted Techniques in Drug Discovery. van de WaterbeemdH. Weinheim, GermanyWiley-VCH199429333110.1002/9783527615674.ch5
    [Google Scholar]
  83. KleandrovaV.V. ScottiM.T. ScottiL. Speck-PlancheA. Multi-target drug discovery via PTML modeling: Applications to the design of virtual dual inhibitors of CDK4 and HER2.Curr. Top. Med. Chem.202121766167510.2174/18734294MTEznNDIcy33463472
    [Google Scholar]
  84. SahigaraF. MansouriK. BallabioD. MauriA. ConsonniV. TodeschiniR. Comparison of different approaches to define the applicability domain of QSAR models.Molecules20121754791481010.3390/molecules1705479122534664
    [Google Scholar]
  85. NakanoH. MiyaoT. SwaritJ. FunatsuK. Sparse topological pharmacophore graphs for interpretable scaffold hopping.J. Chem. Inf. Model.20216173348336010.1021/acs.jcim.1c0040934264667
    [Google Scholar]
  86. PinelP. GuichaouaG. NajmM. LabouilleS. DrizardN. Gaston-MathéY. HoffmannB. StovenV. Exploring isofunctional molecules: Design of a benchmark and evaluation of prediction performance.Mol. Inform.2023424220021610.1002/minf.20220021636633361
    [Google Scholar]
  87. Speck-PlancheA. KleandrovaV.V. Demystifying Artificial neural networks as generators of new chemical knowledge: Antimalarial Drug Discovery as a case study.Machine Learning in Chemistry: The Impact of Artificial Intelligence. CartwrightH.M. London, United KingdomThe Royal Society of Chemistry202039842310.1039/9781839160233‑00398
    [Google Scholar]
  88. EstradaE. Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications for the prediction of physical properties of alkanes.J. Chem. Inf. Comput. Sci.199636484484910.1021/ci950187r
    [Google Scholar]
  89. EstradaE. Spectral moments of the edge adjacency matrix in molecular graphs. 2. Molecules containing heteroatoms and QSAR applications.J. Chem. Inf. Comput. Sci.199737232032810.1021/ci960113v
    [Google Scholar]
  90. EstradaE. Spectral moments of the edge adjacency matrix in molecular graphs. 3. Molecules containing cycles.J. Chem. Inf. Comput. Sci.1998381232710.1021/ci970030u
    [Google Scholar]
  91. EstradaE. How the parts organize in the whole? A top-down view of molecular descriptors and properties for QSAR and drug design.Mini Rev. Med. Chem.20088321322110.2174/13895570878374412818336341
    [Google Scholar]
  92. EstradaE. PatlewiczG. GutierrezY. From knowledge generation to knowledge archive. A general strategy using TOPS-MODE with DEREK to formulate new alerts for skin sensitization.J. Chem. Inf. Comput. Sci.200444268869810.1021/ci034242515032551
    [Google Scholar]
  93. EstradaE. MolinaE. Automatic extraction of structural alerts for predicting chromosome aberrations of organic compounds.J. Mol. Graph. Model.200625327528810.1016/j.jmgm.2006.01.00216487735
    [Google Scholar]
  94. EstradaE. Edge adjacency relationship and a novel topological index related to molecular volume.J. Chem. Inf. Comput. Sci.1995351313310.1021/ci00023a004
    [Google Scholar]
  95. EstradaE. Edge adjacency relationships in molecular graphs containing heteroatoms: A new topological index related to molar volume.J. Chem. Inf. Comput. Sci.199535470170710.1021/ci00026a005
    [Google Scholar]
  96. EstradaE. RodríguezL. Edge-connectivity indices in QSPR/QSAR studies. 1. Comparison to other topological indices in QSPR studies.J. Chem. Inf. Comput. Sci.19993961037104110.1021/ci990030p
    [Google Scholar]
  97. EstradaE. Physicochemical interpretation of molecular connectivity indices.J. Phys. Chem. A2002106399085909110.1021/jp026238m
    [Google Scholar]
  98. RandićM. ZupanJ. On interpretation of well-known topological indices.J. Chem. Inf. Comput. Sci.200141355056010.1021/ci000095o11410029
    [Google Scholar]
  99. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+15667143
    [Google Scholar]
  100. HerseyA. ChambersJ. BellisL. Patrícia BentoA. GaultonA. OveringtonJ.P. Chemical databases: Curation or integration by user-defined equivalence?Drug Discov. Today. Technol.201514172410.1016/j.ddtec.2015.01.00526194583
    [Google Scholar]
  101. PapadatosG. DaviesM. DedmanN. ChambersJ. GaultonA. SiddleJ. KoksR. IrvineS.A. PetterssonJ. GoncharoffN. HerseyA. OveringtonJ.P. SureChEMBL: A large-scale, chemically annotated patent document database.Nucleic Acids Res.201644D1D1220D122810.1093/nar/gkv125326582922
    [Google Scholar]
  102. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  103. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.J. Comb. Chem.199911556810.1021/cc980007110746014
    [Google Scholar]
  104. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  105. MauriA. A tool to calculate and analyze molecular descriptors and fingerprints.Ecotoxicological QSARsNew YorkSpringer US2020
    [Google Scholar]
  106. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  107. RossS.P. HoyeT.R. Multiheterocyclic motifs via three-component reactions of benzynes, cyclic amines, and protic nucleophiles.Org. Lett.201820110010310.1021/acs.orglett.7b0345829239617
    [Google Scholar]
  108. AbeT. ShimizuH. TakadaS. TanakaT. YoshikawaM. YamadaK. Double “Open and Shut” transformation of γ-carbolines triggered by ammonium salts: One-pot synthesis of multiheterocyclic compounds.Org. Lett.20182061589159210.1021/acs.orglett.8b0033229488386
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266325897240815112505
Loading
/content/journals/ctmc/10.2174/0115680266325897240815112505
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anticancer; ensemble; FBTD; fragment; graph-based indices; multilayer perceptron; PTML; subgraph
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test