Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Nipah virus (NiV), a member of the Paramyxoviridae family, has gained global attention owing to its high mortality rate and destructive potential. NiV has a Biosafety Level 4 (BSL-4) rating and has repeatedly precipitated devastating outbreaks associated with severe respiratory infections, often accompanied by encephalitis and systemic vasculitis. Several studies have been conducted to understand the mechanisms involved in its pathogenesis and to effectively produce new medications to treat this zoonotic virus. However, the cruelty of NiV and its propensity to elude existing treatments underscores the need to elucidate better therapeutics to manage NiV infection more effectively. Therefore, this review highlights the fundamental mechanisms involved in the etiology of NiV, specifically fatal encephalitis and systemic vasculitis. Furthermore, this study investigated promising therapeutic strategies to mitigate the clinical consequences of NiV infections.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347761250515082453
2025-06-04
2025-12-23
Loading full text...

Full text loading...

References

  1. SharmaV. KaushikS. KumarR. YadavJ.P. KaushikS. Emerging trends of nipah virus: A review.Rev. Med. Virol.2019291e201030251294
    [Google Scholar]
  2. SayedA. BottuA. QaisarM. ManeM.P. AcharyaY. Nipah virus: A narrative review of viral characteristics and epidemiological determinants.Public Health20191739710410.1016/j.puhe.2019.05.01931261032
    [Google Scholar]
  3. MishraG. PrajapatV. NayakD. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics.Immunology2024171215516937712243
    [Google Scholar]
  4. GarbugliaA.R. LapaD. PauciulloS. RaoulH. PannetierD. Nipah virus: An overview of the current status of diagnostics and their role in preparedness in endemic countries.Viruses20231510206210.3390/v1510206237896839
    [Google Scholar]
  5. SunB. JiaL. LiangB. ChenQ. LiuD. Phylogeography, transmission, and viral proteins of Nipah virus.Virol. Sin.201833538539310.1007/s12250‑018‑0050‑130311101
    [Google Scholar]
  6. BossartK.N. BroderC.C. Developments towards effective treatments for Nipah and Hendra virus infection.Expert Rev. Anti Infect. Ther.200641435510.1586/14787210.4.1.4316441208
    [Google Scholar]
  7. SinghR.K. DhamaK. ChakrabortyS. TiwariR. NatesanS. KhandiaR. MunjalA. VoraK.S. LatheefS.K. KarthikK. MalikS.Y. SinghR. ChaicumpaW. MouryaD.T. Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review.Vet. Q.2019391265510.1080/01652176.2019.158082731006350
    [Google Scholar]
  8. MahediM.R. RawatA. RabbiF. BabuK.S. TasaycoE.S. ArecheF.O. Pacovilca-AlejoO.V. FloresD.D. AguilarS.V. OroscoF.L. SyrmosN. Understanding the global transmission and demographic distribution of Nipah virus (NiV).Res. J. Pharma. Technol.20231683588359410.52711/0974‑360X.2023.00592
    [Google Scholar]
  9. LiH. KimJ.Y.V. PickeringB.S. Henipavirus zoonosis: Outbreaks, animal hosts and potential new emergence.Front. Microbiol.202314116708510.3389/fmicb.2023.116708537529329
    [Google Scholar]
  10. Faus-CotinoJ. ReinaG. PueyoJ. Nipah virus: A multidimensional update.Viruses202416217910.3390/v1602017938399954
    [Google Scholar]
  11. BaruaS. DénesA. Global dynamics of a compartmental model to assess the effect of transmission from deceased.Math. Biosci.202336410905910.1016/j.mbs.2023.10905937619887
    [Google Scholar]
  12. ParijaSC Miscellaneous viruses.Textbook of Microbiology and ImmunologyChamSpringer202392194310.1007/978‑981‑19‑3315‑8_64
    [Google Scholar]
  13. LiewY.J.M. IbrahimP.A.S. OngH.M. ChongC.N. TanC.T. ScheeJ.P. RománG.R. CherianN.G. WongW.F. ChangL.Y. The immunobiology of Nipah virus.Microorganisms2022106116210.3390/microorganisms1006116235744680
    [Google Scholar]
  14. BrunoL. NappoM.A. FerrariL. LecceD.R. GuarnieriC. CantoniA.M. CorradiA. Nipah virus disease: Epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis.Animals202213115910.3390/ani1301015936611767
    [Google Scholar]
  15. BengisR.G. LeightonF.A. FischerJ.R. ArtoisM. MörnerT. TateC.M. The role of wildlife in emerging and re-emerging zoonoses.Rev. Sci. Tech.200423249751115702716
    [Google Scholar]
  16. AmbatA.S. ZubairS.M. PrasadN. PundirP. RajwarE. PatilD.S. MangadP. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making.J. Infect. Public Health201912563463910.1016/j.jiph.2019.02.01330808593
    [Google Scholar]
  17. MountsA.W. KaurH. ParasharU.D. KsiazekT.G. CannonD. ArokiasamyJ.T. AndersonL.J. LyeM.S. A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999.J. Infect. Dis.2001183581081310.1086/31882211181159
    [Google Scholar]
  18. LooiL.M. ChuaK.B. Lessons from the Nipah virus outbreak in Malaysia.Malays. J. Pathol.2007292636719108397
    [Google Scholar]
  19. ChuaK.B. LamS.K. GohK.J. HooiP.S. KsiazekT.G. KamarulzamanA. OlsonJ. TanC.T. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia.J. Infect.2001421404310.1053/jinf.2000.078211243752
    [Google Scholar]
  20. DevnathP. MasudH.M.A.A. Nipah virus: A potential pandemic agent in the context of the current severe acute respiratory syndrome coronavirus 2 pandemic.New Microbes New Infect.20214110087310.1016/j.nmni.2021.10087333758670
    [Google Scholar]
  21. RahmanM.A. HossainM.J. SultanaS. HomairaN. KhanS.U. RahmanM. GurleyE.S. RollinP.E. LoM.K. ComerJ.A. LoweL. RotaP.A. KsiazekT.G. KenahE. SharkerY. LubyS.P. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008.Vector Borne Zoonotic Dis.2012121657210.1089/vbz.2011.065621923274
    [Google Scholar]
  22. RamphulK. MejiasS.G. AgumaduV.C. SombansS. SonayeR. LohanaP. The killer virus called Nipah: A review.Cureus2018108e316810.7759/cureus.316830416895
    [Google Scholar]
  23. DeBuysscherB.L. ScottD. MarziA. PrescottJ. FeldmannH. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins.Vaccine201432222637264410.1016/j.vaccine.2014.02.08724631094
    [Google Scholar]
  24. MuzeniekT. Studies on the prevalence of viral pathogens in bat species inhabiting Wavul Galge cave.2023Available from: https://core.ac.uk/outputs/553570157/?source=oai 10.17169/REFUBIUM‑37441
  25. GouglasD. ChristodoulouM. PlotkinS.A. HatchettR. CEPI: Driving progress toward epidemic preparedness and response.Epidemiol. Rev.2019411283310.1093/epirev/mxz01231673694
    [Google Scholar]
  26. WilliamsonE.D. WestlakeG.E. Vaccines for emerging pathogens: Prospects for licensure.Clin. Exp. Immunol.2019198217018310.1111/cei.1328430972733
    [Google Scholar]
  27. GautamS KumarM. Targeted computational approaches to identify potential inhibitors for nipah virus.Current Trends in Computational Modeling for DrugChamSpringer20231610.1007/978‑3‑031‑33871‑7_5
    [Google Scholar]
  28. KalbhorM.S. BhowmickS. AlanaziA.M. PatilP.C. IslamM.A. Multi-step molecular docking and dynamics simulation-based screening of large antiviral specific chemical libraries for identification of Nipah virus glycoprotein inhibitors.Biophys. Chem.202127010653710.1016/j.bpc.2020.10653733450550
    [Google Scholar]
  29. NeversQ. AlbertiniA.A. Lagaudrière-GesbertC. GaudinY. Negri bodies and other virus membrane-less replication compartments.Biochim. Biophys. Acta Mol. Cell Res.202018671211883110.1016/j.bbamcr.2020.11883132835749
    [Google Scholar]
  30. HarcourtB.H. LoweL. TaminA. LiuX. BankampB. BowdenN. RollinP.E. ComerJ.A. KsiazekT.G. HossainM.J. GurleyE.S. BreimanR.F. BelliniW.J. RotaP.A. Genetic characterization of Nipah virus, Bangladesh, 2004.Emerg. Infect. Dis.200511101594159710.3201/eid1110.05051316318702
    [Google Scholar]
  31. BaselerL. ScottD.P. SaturdayG. HorneE. RosenkeR. ThomasT. Meade-WhiteK. HaddockE. FeldmannH. WitD.E. Identifying early target cells of Nipah virus infection in Syrian hamsters.PLoS Negl. Trop. Dis.20161011e000512027812087
    [Google Scholar]
  32. AbuBakarS. ChangL.Y. AliA.R. SharifahS.H. YusoffK. ZamrodZ. Isolation and molecular identification of Nipah virus from pigs.Emerg. Infect. Dis.200410122228223015663869
    [Google Scholar]
  33. ClaytonB.A. MiddletonD. ArkinstallR. FrazerL. WangL.F. MarshG.A. The nature of exposure drives transmission of Nipah viruses from Malaysia and Bangladesh in ferrets.PLoS Negl. Trop. Dis.2016106e000477510.1371/journal.pntd.000477527341030
    [Google Scholar]
  34. YadavP.D. SheteA.M. KumarG.A. SarkaleP. SahayR.R. RadhakrishnanC. LakraR. PardeshiP. GuptaN. GangakhedkarR.R. RajendranV.R. SadanandanR. MouryaD.T. Nipah virus sequences from humans and bats during Nipah outbreak, Kerala, India, 2018.Emerg. Infect. Dis.20192551003100631002049
    [Google Scholar]
  35. TanF.H. SukriA. IdrisN. OngK.C. ScheeJ.P. TanC.T. TanS.H. WongK.T. WongL.P. TeeK.K. ChangL.Y. A systematic review on Nipah virus: Global molecular epidemiology and medical countermeasures development.Virus Evol.2024101veae04810.1093/ve/veae04839119137
    [Google Scholar]
  36. MireC.E. SatterfieldB.A. GeisbertJ.B. AgansK.N. BorisevichV. YanL. ChanY.P. CrossR.W. FentonK.A. BroderC.C. GeisbertT.W. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: Implications for antibody therapy.Sci. Rep.2016613091610.1038/srep3091627484128
    [Google Scholar]
  37. WongJ.J. ChenZ. ChungJ.K. GrovesJ.T. JardetzkyT.S. EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer–cell interfaces.Sci. Adv.202175eabe123510.1126/sciadv.abe123533571127
    [Google Scholar]
  38. LiuQ. Bradel-TrethewayB. MonrealA.I. SaludesJ.P. LuX. NicolaA.V. AguilarH.C. Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering.J. Virol.20158931838185010.1128/JVI.02277‑1425428863
    [Google Scholar]
  39. HauserN. GushikenA.C. NarayananS. KottililS. ChuaJ.V. Evolution of Nipah virus infection: Past, present, and future considerations.Trop. Med. Infect. Dis.2021612410.3390/tropicalmed601002433672796
    [Google Scholar]
  40. DiederichS. ThielL. MaisnerA. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry.Virology2008375239140010.1016/j.virol.2008.02.01918342904
    [Google Scholar]
  41. RanadheeraC. ProulxR. ChaiyakulM. JonesS. GrollaA. LeungA. RutherfordJ. KobasaD. CarpenterM. CzubM. The interaction between the Nipah virus nucleocapsid protein and phosphoprotein regulates virus replication.Sci. Rep.2018811599410.1038/s41598‑018‑34484‑730375468
    [Google Scholar]
  42. DietzelE. KolesnikovaL. SawatskyB. HeinerA. WeisM. KobingerG.P. BeckerS. MesslingV.V. MaisnerA. Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability.J. Virol.20169052514252210.1128/JVI.02920‑1526676785
    [Google Scholar]
  43. LudlowM. KortekaasJ. HerdenC. HoffmannB. TappeD. TrebstC. GriffinD.E. BrindleH.E. SolomonT. BrownA.S. RielV.D. WolthersK.C. PajkrtD. WohlseinP. MartinaB.E.E. BaumgärtnerW. VerjansG.M. OsterhausA.D.M.E. Neurotropic virus infections as the cause of immediate and delayed neuropathology.Acta Neuropathol.2016131215918410.1007/s00401‑015‑1511‑326659576
    [Google Scholar]
  44. CainM.D. SalimiH. DiamondM.S. KleinR.S. Mechanisms of pathogen invasion into the central nervous system.Neuron2019103577178310.1016/j.neuron.2019.07.01531487528
    [Google Scholar]
  45. SatterfieldB.A. CrossR.W. FentonK.A. BorisevichV. AgansK.N. DeerD.J. GraberJ. BaslerC.F. GeisbertT.W. MireC.E. Nipah virus C and W proteins contribute to respiratory disease in ferrets.J. Virol.201690146326634327147733
    [Google Scholar]
  46. PorottoM. RockxB. YokoyamaC.C. TalekarA. DevitoI. PalermoL.M. LiuJ. CorteseR. LuM. FeldmannH. PessiA. MosconaA. Inhibition of Nipah virus infection in vivo: Targeting an early stage of paramyxovirus fusion activation during viral entry.PLoS Pathog.2010610e100116821060819
    [Google Scholar]
  47. LampB. DietzelE. KolesnikovaL. SauerheringL. ErbarS. WeingartlH. MaisnerA. Nipah virus entry and egress from polarized epithelial cells.J. Virol.20138763143315423283941
    [Google Scholar]
  48. MorrisonT.G. Structure and function of a paramyxovirus fusion protein. Biochimica et Biophysica Acta (BBA)-.Biomembranes2003161417384
    [Google Scholar]
  49. WeisM. MaisnerA. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity.Eur. J. Cell Biol.2015947-931632226059400
    [Google Scholar]
  50. IorioR.M. MelansonV.R. MahonP.J. Glycoprotein interactions in paramyxovirus fusion.Future Virol.20094433535120161127
    [Google Scholar]
  51. TaminA. HarcourtB.H. KsiazekT.G. RollinP.E. BelliniW.J. RotaP.A. Functional properties of the fusion and attachment glycoproteins of Nipah virus.Virology2002296119020012036330
    [Google Scholar]
  52. MaisnerA. NeufeldJ. WeingartlH. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro.Thromb. Haemost.200910261014102319967130
    [Google Scholar]
  53. WongKT ShiehWJ ZakiSR TanCT Nipah virus infection, an emerging paramyxoviral zoonosis.Springer Semin. Immunopathol.200224221522810.1007/s00281‑002‑0106‑y
    [Google Scholar]
  54. HooperP. ZakiS. DanielsP. MiddletonD. Comparative pathology of the diseases caused by Hendra and Nipah viruses.Microbes Infect.20013431532211334749
    [Google Scholar]
  55. XuK. RajashankarK.R. ChanY.P. HimanenJ.P. BroderC.C. NikolovD.B. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3.Proc. Natl. Acad. Sci. USA2008105299953995818632560
    [Google Scholar]
  56. BossartKN FuscoDL BroderCC Paramyxovirus entry.Adv. Exp. Med. Biol.20137909512710.1007/978‑1‑4614‑7651‑1_6
    [Google Scholar]
  57. SauerheringL. ZicklerM. ElvertM. BehnerL. MatrosovichT. ErbarS. MatrosovichM. MaisnerA. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.J. Gen. Virol.20169771511151927075405
    [Google Scholar]
  58. NegreteO.A. WolfM.C. AguilarH.C. EnterleinS. WangW. MühlbergerE. SuS.V. Bertolotti-CiarletA. FlickR. LeeB. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus.PLoS Pathog.200622e716477309
    [Google Scholar]
  59. BonaparteM.I. DimitrovA.S. BossartK.N. CrameriG. MungallB.A. BishopK.A. ChoudhryV. DimitrovD.S. WangL.F. EatonB.T. BroderC.C. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus.Proc. Natl. Acad. Sci. USA200510230106521065715998730
    [Google Scholar]
  60. XuK BroderCC NikolovDB Ephrin-B2 and ephrin-B3 as functional henipavirus receptors.Semin. Cell. Dev. Biol.201223111612310.1016/j.semcdb.2011.12.005
    [Google Scholar]
  61. SkowronK. Bauza-KaszewskaJ. Grudlewska-BudaK. Wiktorczyk-KapischkeN. ZacharskiM. BernaciakZ. Gospodarek-KomkowskaE. Nipah Virus–Another Threat From the World of Zoonotic Viruses.Front. Microbiol.20221281115710.3389/fmicb.2021.81115735145498
    [Google Scholar]
  62. BaiJ. WangY. LiuL. ZhaoY. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation.J. Int. Med. Res.201442240541510.1177/030006051347809124517927
    [Google Scholar]
  63. AvanzatoV.A. OguntuyoK.Y. Escalera-ZamudioM. GutierrezB. GoldenM. PondK.S.L. PryceR. WalterT.S. SeowJ. DooresK.J. PybusO.G. MunsterV.J. LeeB. BowdenT.A. A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex.Proc. Natl. Acad. Sci. USA201911650250572506731767754
    [Google Scholar]
  64. AguilarH.C. AspericuetaV. RobinsonL.R. AanensenK.E. LeeB. A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade.J. Virol.201084168033804120519383
    [Google Scholar]
  65. WangH.U. ChenZ.F. AndersonD.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.Cell199893574175310.1016/s0092‑8674(00)81436‑19630219
    [Google Scholar]
  66. WongK.T. GrosjeanI. BrissonC. BlanquierB. Fevre-MontangeM. BernardA. LothP. Georges-CourbotM.C. ChevallierM. AkaokaH. MarianneauP. LamS.K. WildT.F. DeubelV. A golden hamster model for human acute Nipah virus infection.Am. J. Pathol.200316352127213710.1016/S0002‑9440(10)63569‑914578210
    [Google Scholar]
  67. LeeB. AtamanZ.A. Modes of paramyxovirus fusion: A Henipavirus perspective.Trends Microbiol.201119838939921511478
    [Google Scholar]
  68. LeeB. RotaP.A. , Eds.; Henipavirus: Ecology, molecular virology, and pathogenesis.ChamSpringer201218
    [Google Scholar]
  69. XuK. ChanY.P. Bradel-TrethewayB. Akyol-AtamanZ. ZhuY. DuttaS. YanL. FengY. WangL.F. SkiniotisG. LeeB. ZhouZ.H. BroderC.C. AguilarH.C. NikolovD.B. Crystal structure of the pre-fusion Nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly.PLoS Pathog.20151112e100532210.1371/journal.ppat.100532226646856
    [Google Scholar]
  70. AguilarH.C. AtamanZ.A. AspericuetaV. FangA.Q. StroudM. NegreteO.A. KammererR.A. LeeB. A novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F).J. Biol. Chem.200928431628163510.1074/jbc.M80746920019019819
    [Google Scholar]
  71. MollM. DiederichS. KlenkH.D. CzubM. MaisnerA. Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site.J. Virol.200478189705971210.1128/JVI.78.18.9705‑9712.200415331703
    [Google Scholar]
  72. ZamoraJ.L.R. OrtegaV. JohnstonG.P. LiJ. AguilarH.C. Novel roles of the N1 loop and N4 alpha-helical region of the Nipah virus fusion glycoprotein in modulating early and late steps of the membrane fusion cascade.J. Virol.2021959e01707-2010.1128/JVI.01707‑2033568505
    [Google Scholar]
  73. MunsterV.J. PrescottJ.B. BushmakerT. LongD. RosenkeR. ThomasT. ScottD. FischerE.R. FeldmannH. WitD.E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route.Sci. Rep.20122173610.1038/srep0073623071900
    [Google Scholar]
  74. MathieuC. PohlC. SzecsiJ. Trajkovic-BodennecS. DevergnasS. RaoulH. CossetF.L. GerlierD. WildT.F. HorvatB. Nipah virus uses leukocytes for efficient dissemination within a host.J. Virol.201185157863787110.1128/JVI.00549‑1121593145
    [Google Scholar]
  75. LiuJ. CoffinK.M. JohnstonS.C. BabkaA.M. BellT.M. LongS.Y. HonkoA.N. KuhnJ.H. ZengX. Nipah virus persists in the brains of nonhuman primate survivors.JCI Insight2019414e12962910.1172/jci.insight.12962931341108
    [Google Scholar]
  76. EscaffreO. BorisevichV. RockxB. Pathogenesis of Hendra and Nipah virus infection in humans.J. Infect. Dev. Ctries.20137430831110.3855/jidc.364823592639
    [Google Scholar]
  77. ClaytonB.A. Nipah virus: Transmission of a zoonotic paramyxovirus.Curr. Opin. Virol.2017229710428088124
    [Google Scholar]
  78. LidarM. LipschitzN. LangevitzP. ShoenfeldY. The infectious etiology of vasculitis.Autoimmunity200942543243810.1080/0891693080261321019811260
    [Google Scholar]
  79. DevnathP. WajedS. DasC.R. KarS. IslamI. MasudH.M.A.A. The pathogenesis of Nipah virus: A review.Microb. Pathog.202217010569310.1016/j.micpath.2022.10569335940443
    [Google Scholar]
  80. BhattacharyaS. DharS. BanerjeeA. RayS. Detailed molecular biochemistry for novel therapeutic design against Nipah and Hendra virus: A systematic review.Curr. Mol. Pharmacol.202013210812510.2174/187446721266619102312373231657692
    [Google Scholar]
  81. AbbottN.J. PatabendigeA.A. DolmanD.E. YusofS.R. BegleyD.J. Structure and function of the blood-brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  82. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159624309662
    [Google Scholar]
  83. StachowiakB. WeingartlH.M. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells.PLoS One201271e3085510.1371/journal.pone.003085522303463
    [Google Scholar]
  84. PatabendigeA. JanigroD. The role of the blood–brain barrier during neurological disease and infection.Biochem. Soc. Trans.202351261362610.1042/BST2022083036929707
    [Google Scholar]
  85. TiongV. ShuM.H. WongW.F. AbuBakarS. ChangL.Y. Nipah virus infection of immature dendritic cells increases its transendothelial migration across human brain microvascular endothelial cells.Front. Microbiol.20189274710.3389/fmicb.2018.0274730483242
    [Google Scholar]
  86. MishraR. BanerjeaA.C. Neurological damage by coronaviruses: A catastrophe in the queue!Front. Immunol.20201156552110.3389/fimmu.2020.56552133013930
    [Google Scholar]
  87. FosseJ.H. HaraldsenG. FalkK. EdelmannR. Endothelial cells in emerging viral infections.Front. Cardiovasc. Med.2021861969033718448
    [Google Scholar]
  88. SalimiH KleinRS Disruption of the blood-brain barrier during neuroinflammatory and neuroinfectious diseases.Neuroi. Disea.202419523410.1007/978‑3‑030‑19515‑1_7
    [Google Scholar]
  89. EatonB.T. BroderC.C. MiddletonD. WangL.F. Hendra and Nipah viruses: Different and dangerous.Nat. Rev. Microbiol.200641233516357858
    [Google Scholar]
  90. KonradtC. HunterC.A. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity.Eur. J. Immunol.201848101607162010.1002/eji.20164678930160302
    [Google Scholar]
  91. MathieuC. GuillaumeV. SabineA. OngK.C. WongK.T. Legras-LachuerC. HorvatB. Lethal Nipah virus infection induces rapid overexpression of CXCL10.PLoS One201272e3215710.1371/journal.pone.003215722393386
    [Google Scholar]
  92. MathieuC. GuillaumeV. VolchkovaV.A. PohlC. JacquotF. LooiR.Y. WongK.T. Legras-LachuerC. VolchkovV.E. LachuerJ. HorvatB. Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence.J. Virol.20128619107661077510.1128/JVI.01203‑1222837207
    [Google Scholar]
  93. ChuaK.B. Nipah virus outbreak in Malaysia.J. Clin. Virol.200326326527510.1016/S1386‑6532(02)00268‑812637075
    [Google Scholar]
  94. OchaniR.K. BatraS. ShaikhA. AsadA. Nipah virus - the rising epidemic: A review.Infez. Med.201927211712731205033
    [Google Scholar]
  95. RocamondeB. HasanU. MathieuC. DutartreH. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses.Front. Neurosci.202317110821210.3389/fnins.2023.110821236937670
    [Google Scholar]
  96. MisraU.K. TanC.T. KalitaJ. Seizures in encephalitis.Neurol. Asia200813113
    [Google Scholar]
  97. XuM.S. TanC.B. UmapathiT. LimC.C.T. Susac syndrome: Serial diffusion-weighted MR imaging.Magn. Reson. Imaging20042291295129810.1016/j.mri.2004.08.00615607101
    [Google Scholar]
  98. AlamA.M. Nipah virus, an emerging zoonotic disease causing fatal encephalitis.Clin. Med.202222434835210.7861/clinmed.2022‑016635760448
    [Google Scholar]
  99. WoukJ. RechenchoskiD.Z. RodriguesB.C.D. RibelatoE.V. Faccin-GalhardiL.C. Viral infections and their relationship to neurological disorders.Arch. Virol.2021166373375310.1007/s00705‑021‑04959‑633502593
    [Google Scholar]
  100. GuatteoE. BerrettaN. MondaV. LedonneA. MercuriN.B. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease.Int. J. Mol. Sci.2022239450810.3390/ijms2309450835562898
    [Google Scholar]
  101. SchapiraA.H. JennerP. Etiology and pathogenesis of Parkinson’s disease.Mov. Disord.20112661049105510.1002/mds.2373221626550
    [Google Scholar]
  102. BossartK.N. CrameriG. DimitrovA.S. MungallB.A. FengY.R. PatchJ.R. ChoudharyA. WangL.F. EatonB.T. BroderC.C. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus.J. Virol.200579116690670210.1128/JVI.79.11.6690‑6702.200515890907
    [Google Scholar]
  103. SmithE.C. PopaA. ChangA. MasanteC. DutchR.E. Viral entry mechanisms: The increasing diversity of paramyxovirus entry.FEBS J.2009276247217722710.1111/j.1742‑4658.2009.07401.x19878307
    [Google Scholar]
  104. PigeaudD.D. GeisbertT.W. WoolseyC. Animal models for henipavirus research.Viruses20231510198010.3390/v1510198037896758
    [Google Scholar]
  105. MouryaD.T. BadoleS.L. YadavP.D. PatilD.R. Animal models for some important RNA viruses of public health concern in SEARO countries: Viral hemorrhagic fever.J. Vector Borne Dis.201552111010.4103/0972‑9062.15413925815861
    [Google Scholar]
  106. ClaytonB.A. MiddletonD. BergfeldJ. HainingJ. ArkinstallR. WangL. MarshG.A. Transmission routes for nipah virus from Malaysia and Bangladesh.Emerg. Infect. Dis.201218121983199310.3201/eid1812.12087523171621
    [Google Scholar]
  107. WongK.T. RobertsonT. OngB.B. ChongJ.W. YaiwK.C. WangL.F. AnsfordA.J. TannenbergA. Human Hendra virus infection causes acute and relapsing encephalitis.Neuropathol. Appl. Neurobiol.200935329630510.1111/j.1365‑2990.2008.00991.x19473296
    [Google Scholar]
  108. WongK.T. ShiehW.J. KumarS. NorainK. AbdullahW. GuarnerJ. GoldsmithC.S. ChuaK.B. LamS.K. TanC.T. GohK.J. ChongH.T. JusohR. RollinP.E. KsiazekT.G. ZakiS.R. Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis.Am. J. Pathol.200216162153216710.1016/S0002‑9440(10)64493‑812466131
    [Google Scholar]
  109. WongK.T. Nipah and Hendra viruses: Recent advances in pathogenesis.Future Virol.20105212913110.2217/fvl.10.7
    [Google Scholar]
  110. JordanP.C. LiuC. RaynaudP. LoM.K. SpiropoulouC.F. SymonsJ.A. BeigelmanL. DevalJ. Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase.PLoS Pathog.2018142e100688910.1371/journal.ppat.100688929425244
    [Google Scholar]
  111. CiancanelliM.J. VolchkovaV.A. ShawM.L. VolchkovV.E. BaslerC.F. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism.J. Virol.200983167828784110.1128/JVI.02610‑0819515782
    [Google Scholar]
  112. QuarleriJ. GalvanV. DelpinoM.V. Henipaviruses: An expanding global public health concern?Geroscience20224452447245910.1007/s11357‑022‑00670‑936219280
    [Google Scholar]
  113. SatterfieldB.A. CrossR.W. FentonK.A. AgansK.N. BaslerC.F. GeisbertT.W. MireC.E. The immunomodulating V and W proteins of Nipah virus determine disease course.Nat. Commun.201561748310.1038/ncomms848326105519
    [Google Scholar]
  114. SenN. KanitkarT.R. RoyA.A. SoniN. AmritkarK. SupekarS. NairS. SinghG. MadhusudhanM.S. Predicting and designing therapeutics against the Nipah virus.PLoS Negl. Trop. Dis.20191312e000741910.1371/journal.pntd.000741931830030
    [Google Scholar]
  115. DawesB.E. KalveramB. IkegamiT. JuelichT. SmithJ.K. ZhangL. ParkA. LeeB. KomenoT. FurutaY. FreibergA.N. Favipiravir (T-705) protects against Nipah virus infection in the hamster model.Sci. Rep.201881760410.1038/s41598‑018‑25780‑329765101
    [Google Scholar]
  116. GabraM.D. GhaithH.S. EbadaM.A. Nipah virus: An updated review and emerging challenges.Infect. Disord. Drug Targets2022224e17012220029610.2174/187152652266622011712085935078400
    [Google Scholar]
  117. SinclairS.M. JonesJ.K. MillerR.K. GreeneM.F. KwoP.Y. MaddreyW.C. The ribavirin pregnancy registry: An interim analysis of potential teratogenicity at the mid-point of enrollment.Drug Saf.201740121205121810.1007/s40264‑017‑0566‑628689333
    [Google Scholar]
  118. JohnsonK. VuM. FreibergA.N. Recent advances in combating Nipah virus.Fac. Rev.2021107410.12703/r/10‑7434632460
    [Google Scholar]
  119. BalajiMS ChandrashekarHC KeshavamurthyCD RamyaR MaitiD.M A succinct review article on “nipah virus infection (NIV).Nursing20221132277816010.36106/gjra
    [Google Scholar]
  120. NiliA. FarbodA. NeishabouriA. MozafarihashjinM. TavakolpourS. MahmoudiH. Remdesivir: A beacon of hope from Ebola virus disease to COVID ‐19.Rev. Med. Virol.202030611310.1002/rmv.213333210457
    [Google Scholar]
  121. SaxenaS.K. MauryaV.K. KumarS. BhattM.L. Nipah virus.South AmericaAnimal-Origin Viral Zoonoses20206979
    [Google Scholar]
  122. GohK.J. TanC.T. ChewN.K. TanP.S.K. KamarulzamanA. SarjiS.A. WongK.T. AbdullahB.J.J. ChuaK.B. LamS.K. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia.N. Engl. J. Med.2000342171229123510.1056/NEJM20000427342170110781618
    [Google Scholar]
  123. HotardA.L. HeB. NicholS.T. SpiropoulouC.F. LoM.K. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency.Antiviral Res.201714414715210.1016/j.antiviral.2017.06.01128629988
    [Google Scholar]
  124. FreibergA.N. WorthyM.N. LeeB. HolbrookM.R. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection.J. Gen. Virol.201091376577210.1099/vir.0.017269‑019889926
    [Google Scholar]
  125. ZhuZ. BossartK.N. BishopK.A. CrameriG. DimitrovA.S. McEachernJ.A. FengY. MiddletonD. WangL.F. BroderC.C. DimitrovD.S. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody.J. Infect. Dis.2008197684685310.1086/52880118271743
    [Google Scholar]
  126. GeevargheseA.V. ChristiV.E.I. Recent advances in vaccines and therapeutics for Nipah virus.Global J. Health Sci. Res.20231131110.25259/GJHSR_2_2022
    [Google Scholar]
  127. PlayfordE.G. MunroT. MahlerS.M. ElliottS. GeromettaM. HogerK.L. JonesM.L. GriffinP. LynchK.D. CarrollH. SaadiE.D. GilmourM.E. HughesB. HughesK. HuangE. BakkerD.C. KleinR. ScherM.G. SmithI.L. WangL.F. LambertS.B. DimitrovD.S. GrayP.P. BroderC.C. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study.Lancet Infect. Dis.202020444545410.1016/S1473‑3099(19)30634‑632027842
    [Google Scholar]
  128. DhillonJ. BanerjeeA. Controlling Nipah virus encephalitis in Bangladesh: Policy options.J. Public Health Policy201536327028210.1057/jphp.2015.1325925087
    [Google Scholar]
  129. DongJ. CrossR.W. DoyleM.P. KoseN. MousaJ.J. AnnandE.J. BorisevichV. AgansK.N. SuttonR. NargiR. MajediM. FentonK.A. ReichardW. BombardiR.G. GeisbertT.W. CroweJ.E. Potent henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein.Cell2020183615361550.e1710.1016/j.cell.2020.11.02333306954
    [Google Scholar]
  130. MireC.E. ChanY.P. BorisevichV. CrossR.W. YanL. AgansK.N. DangH.V. VeeslerD. FentonK.A. GeisbertT.W. BroderC.C. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection.J. Infect. Dis.2020221S471S47910.1093/infdis/jiz51531686101
    [Google Scholar]
  131. PandeyP. KhanF. ChauhanP. BardakciF. AlmuzainiN. SaeedM. AlmuzainiN. AbdallaR.A.H. SinghS.K. SaeedM. Elucidation of the inhibitory potential of flavonoids against PKP1 protein in non-small cell lung cancer.Cell. Mol. Biol.20226811909610.14715/cmb/2022.68.11.1537114302
    [Google Scholar]
  132. RababiD NagA Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study.3 Biotech.202313617410.1007/s13205‑023‑03595‑y
    [Google Scholar]
  133. AnushaB.S. BagchiP. Establishing phylogeny, functional profile and novel drug for nipah virus encephalitis.Proceedings of the Joint 3rd International Conference on Bioinformatics and Data Science (ICBDS 2022)ChamSpringer Nature2023239
    [Google Scholar]
  134. AbhinandC.S. IbrahimJ. PrasadK.T.S. RajuR. OommenO.V. NairA.S. Molecular docking and dynamics studies for the identification of Nipah virus glycoprotein inhibitors from Indian medicinal plants.J. Biomol. Struct. Dyn.202341199211921810.1080/07391102.2022.215316936473711
    [Google Scholar]
  135. SureshanM. PrabhuD. JoshuaS.N. SasikumarS.V. RajamanikandanS. GovindhapriyaM. UmadeviV. KadhirvelS. Discovery of plant-based phytochemical as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods.J. Biomol. Struct. Dyn.20244273568357810.1080/07391102.2023.221423637222609
    [Google Scholar]
  136. GhimireS. ShahrearS. SaigaonkarS.K. HarrisL.K. Identification of potential inhibitors against attachment glycoprotein G of nipah virus using comprehensive drug repurposing approach.Int. J. Biom. Bioinformatics.20221511
    [Google Scholar]
  137. RandhawaV. PathaniaS. KumarM. Computational identification of potential multitarget inhibitors of nipah virus by molecular docking and molecular dynamics.Microorganisms2022106118110.3390/microorganisms1006118135744699
    [Google Scholar]
  138. MahfuzA. KhanM.A. SajibE.H. DebA. MahmudS. HasanM. SahaO. IslamA. RahamanM.M. Designing potential siRNA molecules for silencing the gene of the nucleocapsid protein of Nipah virus: A computational investigation.Infect. Genet. Evol.202210210531010.1016/j.meegid.2022.10531035636695
    [Google Scholar]
  139. OanyAR HossainMU AhmadSA Computational approach to design a potential SiRNA molecule to silence the Nucleocapsid gene of different Nipah virus strains of Bangladesh.Biores. Communicat.2015114040
    [Google Scholar]
  140. PagerC.T. CraftW.W. PatchJ. DutchR.E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L.Virology2006346225125710.1016/j.virol.2006.01.00716460775
    [Google Scholar]
  141. DsouzaN. GuptaD.B. ChellasamyS.K. Distinct host gene targets and mode of action in the microRNA of nipah virus from malaysia and bangladesh: A comparative in-silico based analysis.Biomed. Biotechnol. Res. J.202373340350
    [Google Scholar]
  142. SainiS. ThakurC.J. KumarV. TandonS. BhardwajV. MaggarS. NamgyalS. KaurG. Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis.Mol. Biol. Res. Commun.20187310711810.22099/mbrc.2018.29577.132230426028
    [Google Scholar]
  143. LoomisR.J. DiPiazzaA.T. FalconeS. RuckwardtT.J. MorabitoK.M. AbionaO.M. ChangL.A. CaringalR.T. PresnyakV. NarayananE. TsybovskyY. NairD. HutchinsonG.B. Stewart-JonesG.B.E. KueltzoL.A. HimansuS. MascolaJ.R. CarfiA. GrahamB.S. Chimeric fusion (F) and attachment (G) glycoprotein antigen delivery by mRNA as a candidate Nipah vaccine.Front. Immunol.20211277286434956199
    [Google Scholar]
  144. PrescottJ. DeBuysscherB.L. FeldmannF. GardnerD.J. HaddockE. MartellaroC. ScottD. FeldmannH. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease.Vaccine201533242823282910.1016/j.vaccine.2015.03.08925865472
    [Google Scholar]
  145. YonedaM. Georges-CourbotM.C. IkedaF. IshiiM. NagataN. JacquotF. RaoulH. SatoH. KaiC. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.PLoS One201383e5841410.1371/journal.pone.005841423516477
    [Google Scholar]
  146. BossartK.N. RockxB. FeldmannF. BriningD. ScottD. LaCasseR. GeisbertJ.B. FengY.R. ChanY.P. HickeyA.C. BroderC.C. FeldmannH. GeisbertT.W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge.Sci. Transl. Med.20124146146ra10710.1126/scitranslmed.300424122875827
    [Google Scholar]
  147. MireC.E. VersteegK.M. CrossR.W. AgansK.N. FentonK.A. WhittM.A. GeisbertT.W. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease.Virol. J.20131035310.1186/1743‑422X‑10‑35324330654
    [Google Scholar]
  148. ShuaiL. GeJ. WenZ. WangJ. WangX. BuZ. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines.Vet. Microbiol.202024110854931928698
    [Google Scholar]
  149. PloquinA. SzécsiJ. MathieuC. GuillaumeV. BarateauV. OngK.C. WongK.T. CossetF.L. HorvatB. SalvettiA. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines.J. Infect. Dis.2013207346947823175762
    [Google Scholar]
  150. DoremalenV.N. LambeT. SebastianS. BushmakerT. FischerR. FeldmannF. HaddockE. LetkoM. AvanzatoV.A. RissanenI. LaCasseR. ScottD. BowdenT.A. GilbertS. MunsterV. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters.PLoS Negl. Trop. Dis.2019136e000746231170144
    [Google Scholar]
  151. KongD. WenZ. SuH. GeJ. ChenW. WangX. WuC. YangC. ChenH. BuZ. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs.Virology2012432232733522726244
    [Google Scholar]
  152. WeingartlH.M. BerhaneY. CaswellJ.L. LoosmoreS. AudonnetJ.C. RothJ.A. CzubM. Recombinant nipah virus vaccines protect pigs against challenge.J. Virol.200680167929793810.1128/JVI.00263‑0616873250
    [Google Scholar]
  153. LoM.K. SpenglerJ.R. WelchS.R. HarmonJ.R. Coleman-McCrayJ.D. ScholteF.E.M. Shrivastava-RanjanP. MontgomeryJ.M. NicholS.T. WeissmanD. SpiropoulouC.F. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding Hendra virus-soluble glycoprotein against lethal Nipah virus challenge in Syrian hamsters.J. Infect. Dis.2020221Suppl. 4S493S49810.1093/infdis/jiz55331751453
    [Google Scholar]
  154. TigabuB. RasmussenL. WhiteE.L. TowerN. SaeedM. BukreyevA. RockxB. LeDucJ.W. NoahJ.W. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.Assay Drug Dev. Technol.201412315516110.1089/adt.2013.56724735442
    [Google Scholar]
  155. AqshaZ.M. DharmawanM.A. KharismaV.D. AnsoriA.N.M. SumantriN.I. Reverse vaccinology analysis of B-cell Epitope against Nipah Virus using Fusion protein.Jordan J. Pharm. Sci.202316349950710.35516/jjps.v16i3.1602
    [Google Scholar]
  156. PickeringB.S. HardhamJ.M. SmithG. WeingartlE.T. DominowskiP.J. FossD.L. MwangiD. BroderC.C. RothJ.A. WeingartlH.M. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response.Vaccine201634404777478610.1016/j.vaccine.2016.08.02827544586
    [Google Scholar]
  157. WelchS.R. SpenglerJ.R. HarmonJ.R. Coleman-McCrayJ.D. ScholteF.E.M. GenzerS.C. LoM.K. MontgomeryJ.M. NicholS.T. SpiropoulouC.F. Defective interfering viral particle treatment reduces clinical signs and protects hamsters from lethal Nipah virus disease.MBio2022132e03294-2110.1128/mbio.03294‑2135297677
    [Google Scholar]
  158. KerryR.G. MalikS. ReddaY.T. SahooS. PatraJ.K. MajhiS. Nano-based approach to combat emerging viral (NIPAH virus) infection.Nanomedicine20191819622010.1016/j.nano.2019.03.00430904587
    [Google Scholar]
  159. LoomisR.J. Stewart-JonesG.B.E. TsybovskyY. CaringalR.T. MorabitoK.M. McLellanJ.S. ChamberlainA.L. NugentS.T. HutchinsonG.B. KueltzoL.A. MascolaJ.R. GrahamB.S. Structure-based design of Nipah virus vaccines: A generalizable approach to paramyxovirus immunogen development.Front. Immunol.20201184210.3389/fimmu.2020.0084232595632
    [Google Scholar]
  160. MonathT.P. NicholsR. FeldmannF. GriffinA. HaddockE. CallisonJ. Meade-WhiteK. OkumuraA. LovaglioJ. HanleyP.W. ClancyC.S. ShaiaC. RidaW. FuscoJ. Immunological correlates of protection afforded by PHV02 live, attenuated recombinant vesicular stomatitis virus vector vaccine against Nipah virus disease.Front. Immunol.202314121622510.3389/fimmu.2023.121622537731485
    [Google Scholar]
  161. FrenckR NaficyA FeserJ EganM ChenT DickeyM EldridgeJH Sciotto-BrownS HermidaL Leyva-GradoV PromeneurDH Safety and immunogenicity of a nipah virus vaccine (Hev-Sg-V) in adults: A single-centre, randomised, observer-blind, placebo-controlled, phase 1 study.2024Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4845156
  162. DeBuysscherB.L. ScottD. ThomasT. FeldmannH. PrescottJ. Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine.Vaccines2016111710.1038/npjvaccines.2016.228036070
    [Google Scholar]
  163. Guillaume-VasselinV. LemaitreL. DhondtK.P. TedeschiL. PoulardA. CharreyreC. HorvatB. Protection from Hendra virus infection with Canarypox recombinant vaccine.Vaccines2016111810.1038/npjvaccines.2016.328036070
    [Google Scholar]
  164. LoM.K. JordanP.C. StevensS. TamY. DevalJ. NicholS.T. SpiropoulouC.F. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs.Antiviral Res.201815310111329601894
    [Google Scholar]
  165. MathieuC. HorvatB. Henipavirus pathogenesis and antiviral approaches.Expert Rev. Anti Infect. Ther.201513334335425634624
    [Google Scholar]
  166. LoM.K. FeldmannF. GaryJ.M. JordanR. BannisterR. CroninJ. PatelN.R. KlenaJ.D. NicholS.T. CihlarT. ZakiS.R. FeldmannH. SpiropoulouC.F. WitD.E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge.Sci. Transl. Med.201911494eaau924231142680
    [Google Scholar]
  167. Georges-CourbotM.C. ContaminH. FaureC. LothP. BaizeS. LeyssenP. NeytsJ. DeubelV. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection.Antimicrob. Agents Chemother.20065051768177216641448
    [Google Scholar]
  168. LoM.K. SpenglerJ.R. KrumpeL.R.H. WelchS.R. ChattopadhyayA. HarmonJ.R. Coleman-McCrayJ.D. ScholteF.E.M. HotardA.L. FuquaJ.L. RoseJ.K. NicholS.T. PalmerK.E. O’KeefeB.R. SpiropoulouC.F. Griffithsin inhibits Nipah virus entry and fusion and can protect Syrian golden hamsters from lethal Nipah virus challenge.J. Infect. Dis.2020221S480-S492.(Suppl. 4)32037447
    [Google Scholar]
  169. Ropón-PalaciosG. Chenet-ZutaM.E. Olivos-RamirezG.E. OtazuK. Acurio-SaavedraJ. CampsI. Potential novel inhibitors against emerging zoonotic pathogen Nipah virus: A virtual screening and molecular dynamics approach.J. Biomol. Struct. Dyn.202038113225323431411538
    [Google Scholar]
  170. RajaT. RavikumarP. SrinivasanM.R. VijayaraniK. KumananK. Identification of potential novel inhibitors for nipah virus—an in-silico Approach.Int. J. Curr. Microbiol. Appl. Sci.20209933773390
    [Google Scholar]
  171. WelchS.R. SpenglerJ.R. GenzerS.C. Coleman-McCrayJ.D. HarmonJ.R. SorvilloT.E. ScholteF.E.M. RodriguezS.E. O’NealT.J. RitterJ.M. FicarraG. DaviesK.A. KainulainenM.H. KaraaslanE. BergeronÉ. GoldsmithC.S. LoM.K. NicholS.T. MontgomeryJ.M. SpiropoulouC.F. Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination.Sci. Adv.2023931eadh405710.1126/sciadv.adh405737540755
    [Google Scholar]
  172. RahmanM.M. PuspoJ.A. AdibA.A. HossainM.E. AlamM.M. SultanaS. IslamA. KlenaJ.D. MontgomeryJ.M. SatterS.M. ShirinT. RahmanM.Z. An immunoinformatics prediction of novel multi-epitope vaccines candidate against surface antigens of Nipah Virus.Int. J. Pept. Res. Ther.202228412310.1007/s10989‑022‑10431‑z35761851
    [Google Scholar]
  173. SteffenD.L. XuK. NikolovD.B. BroderC.C. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics.Viruses20124228030810.3390/v402028022470837
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347761250515082453
Loading
/content/journals/ctmc/10.2174/0115680266347761250515082453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test