Skip to content
2000
image of An Updated Review on Nipah Virus Infection with a Focus on Encephalitis, Vasculitis, and Therapeutic Approaches

Abstract

Nipah virus (NiV), a member of the Paramyxoviridae family, has gained global attention owing to its high mortality rate and destructive potential. NiV has a Biosafety Level 4 (BSL-4) rating and has repeatedly precipitated devastating outbreaks associated with severe respiratory infections, often accompanied by encephalitis and systemic vasculitis. Several studies have been conducted to understand the mechanisms involved in its pathogenesis and to effectively produce new medications to treat this zoonotic virus. However, the cruelty of NiV and its propensity to elude existing treatments underscores the need to elucidate better therapeutics to manage NiV infection more effectively. Therefore, this review highlights the fundamental mechanisms involved in the etiology of NiV, specifically fatal encephalitis and systemic vasculitis. Furthermore, this study investigated promising therapeutic strategies to mitigate the clinical consequences of NiV infections.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347761250515082453
2025-06-04
2025-09-13
Loading full text...

Full text loading...

References

  1. Sharma V. Kaushik S. Kumar R. Yadav J.P. Kaushik S. Emerging trends of nipah virus: A review. Rev. Med. Virol. 2019 29 1 e2010 30251294
    [Google Scholar]
  2. Sayed A. Bottu A. Qaisar M. Mane M.P. Acharya Y. Nipah virus: A narrative review of viral characteristics and epidemiological determinants. Public Health 2019 173 97 104 10.1016/j.puhe.2019.05.019 31261032
    [Google Scholar]
  3. Mishra G. Prajapat V. Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024 171 2 155 169 37712243
    [Google Scholar]
  4. Garbuglia A.R. Lapa D. Pauciullo S. Raoul H. Pannetier D. Nipah virus: An overview of the current status of diagnostics and their role in preparedness in endemic countries. Viruses 2023 15 10 2062 10.3390/v15102062 37896839
    [Google Scholar]
  5. Sun B. Jia L. Liang B. Chen Q. Liu D. Phylogeography, transmission, and viral proteins of Nipah virus. Virol. Sin. 2018 33 5 385 393 10.1007/s12250‑018‑0050‑1 30311101
    [Google Scholar]
  6. Bossart K.N. Broder C.C. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev. Anti Infect. Ther. 2006 4 1 43 55 10.1586/14787210.4.1.43 16441208
    [Google Scholar]
  7. Singh R.K. Dhama K. Chakraborty S. Tiwari R. Natesan S. Khandia R. Munjal A. Vora K.S. Latheef S.K. Karthik K. Malik S.Y. Singh R. Chaicumpa W. Mourya D.T. Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Vet. Q. 2019 39 1 26 55 10.1080/01652176.2019.1580827 31006350
    [Google Scholar]
  8. Mahedi M.R. Rawat A. Rabbi F. Babu K.S. Tasayco E.S. Areche F.O. Pacovilca-Alejo O.V. Flores D.D. Aguilar S.V. Orosco F.L. Syrmos N. Understanding the global transmission and demographic distribution of Nipah virus (NiV). Res. J. Pharma. Technol. 2023 16 8 3588 3594 10.52711/0974‑360X.2023.00592
    [Google Scholar]
  9. Li H. Kim J.Y.V. Pickering B.S. Henipavirus zoonosis: Outbreaks, animal hosts and potential new emergence. Front. Microbiol. 2023 14 1167085 10.3389/fmicb.2023.1167085 37529329
    [Google Scholar]
  10. Faus-Cotino J. Reina G. Pueyo J. Nipah virus: A multidimensional update. Viruses 2024 16 2 179 10.3390/v16020179 38399954
    [Google Scholar]
  11. Barua S. Dénes A. Global dynamics of a compartmental model to assess the effect of transmission from deceased. Math. Biosci. 2023 364 109059 10.1016/j.mbs.2023.109059 37619887
    [Google Scholar]
  12. Parija SC Miscellaneous viruses. Textbook of Microbiology and Immunology Cham Springer 2023 921 943 10.1007/978‑981‑19‑3315‑8_64
    [Google Scholar]
  13. Liew Y.J.M. Ibrahim P.A.S. Ong H.M. Chong C.N. Tan C.T. Schee J.P. Román G.R. Cherian N.G. Wong W.F. Chang L.Y. The immunobiology of Nipah virus. Microorganisms 2022 10 6 1162 10.3390/microorganisms10061162 35744680
    [Google Scholar]
  14. Bruno L. Nappo M.A. Ferrari L. Lecce D.R. Guarnieri C. Cantoni A.M. Corradi A. Nipah virus disease: Epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis. Animals 2022 13 1 159 10.3390/ani13010159 36611767
    [Google Scholar]
  15. Bengis R.G. Leighton F.A. Fischer J.R. Artois M. Mörner T. Tate C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. 2004 23 2 497 511 15702716
    [Google Scholar]
  16. Ambat A.S. Zubair S.M. Prasad N. Pundir P. Rajwar E. Patil D.S. Mangad P. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making. J. Infect. Public Health 2019 12 5 634 639 10.1016/j.jiph.2019.02.013 30808593
    [Google Scholar]
  17. Mounts A.W. Kaur H. Parashar U.D. Ksiazek T.G. Cannon D. Arokiasamy J.T. Anderson L.J. Lye M.S. A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999. J. Infect. Dis. 2001 183 5 810 813 10.1086/318822 11181159
    [Google Scholar]
  18. Looi L.M. Chua K.B. Lessons from the Nipah virus outbreak in Malaysia. Malays. J. Pathol. 2007 29 2 63 67 19108397
    [Google Scholar]
  19. Chua K.B. Lam S.K. Goh K.J. Hooi P.S. Ksiazek T.G. Kamarulzaman A. Olson J. Tan C.T. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J. Infect. 2001 42 1 40 43 10.1053/jinf.2000.0782 11243752
    [Google Scholar]
  20. Devnath P. Masud H.M.A.A. Nipah virus: A potential pandemic agent in the context of the current severe acute respiratory syndrome coronavirus 2 pandemic. New Microbes New Infect. 2021 41 100873 10.1016/j.nmni.2021.100873 33758670
    [Google Scholar]
  21. Rahman M.A. Hossain M.J. Sultana S. Homaira N. Khan S.U. Rahman M. Gurley E.S. Rollin P.E. Lo M.K. Comer J.A. Lowe L. Rota P.A. Ksiazek T.G. Kenah E. Sharker Y. Luby S.P. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis. 2012 12 1 65 72 10.1089/vbz.2011.0656 21923274
    [Google Scholar]
  22. Ramphul K. Mejias S.G. Agumadu V.C. Sombans S. Sonaye R. Lohana P. The killer virus called Nipah: A review. Cureus 2018 10 8 e3168 10.7759/cureus.3168 30416895
    [Google Scholar]
  23. DeBuysscher B.L. Scott D. Marzi A. Prescott J. Feldmann H. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine 2014 32 22 2637 2644 10.1016/j.vaccine.2014.02.087 24631094
    [Google Scholar]
  24. Muzeniek T. Studies on the prevalence of viral pathogens in bat species inhabiting Wavul Galge cave. 2023 Available from: https://core.ac.uk/outputs/553570157/?source=oai 10.17169/REFUBIUM‑37441
  25. Gouglas D. Christodoulou M. Plotkin S.A. Hatchett R. CEPI: Driving progress toward epidemic preparedness and response. Epidemiol. Rev. 2019 41 1 28 33 10.1093/epirev/mxz012 31673694
    [Google Scholar]
  26. Williamson E.D. Westlake G.E. Vaccines for emerging pathogens: Prospects for licensure. Clin. Exp. Immunol. 2019 198 2 170 183 10.1111/cei.13284 30972733
    [Google Scholar]
  27. Gautam S Kumar M. Targeted computational approaches to identify potential inhibitors for nipah virus. Current Trends in Computational Modeling for Drug Cham Springer 2023 1 6 10.1007/978‑3‑031‑33871‑7_5
    [Google Scholar]
  28. Kalbhor M.S. Bhowmick S. Alanazi A.M. Patil P.C. Islam M.A. Multi-step molecular docking and dynamics simulation-based screening of large antiviral specific chemical libraries for identification of Nipah virus glycoprotein inhibitors. Biophys. Chem. 2021 270 106537 10.1016/j.bpc.2020.106537 33450550
    [Google Scholar]
  29. Nevers Q. Albertini A.A. Lagaudrière-Gesbert C. Gaudin Y. Negri bodies and other virus membrane-less replication compartments. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 12 118831 10.1016/j.bbamcr.2020.118831 32835749
    [Google Scholar]
  30. Harcourt B.H. Lowe L. Tamin A. Liu X. Bankamp B. Bowden N. Rollin P.E. Comer J.A. Ksiazek T.G. Hossain M.J. Gurley E.S. Breiman R.F. Bellini W.J. Rota P.A. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 2005 11 10 1594 1597 10.3201/eid1110.050513 16318702
    [Google Scholar]
  31. Baseler L. Scott D.P. Saturday G. Horne E. Rosenke R. Thomas T. Meade-White K. Haddock E. Feldmann H. Wit D.E. Identifying early target cells of Nipah virus infection in Syrian hamsters. PLoS Negl. Trop. Dis. 2016 10 11 e0005120 27812087
    [Google Scholar]
  32. AbuBakar S. Chang L.Y. Ali A.R. Sharifah S.H. Yusoff K. Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg. Infect. Dis. 2004 10 12 2228 2230 15663869
    [Google Scholar]
  33. Clayton B.A. Middleton D. Arkinstall R. Frazer L. Wang L.F. Marsh G.A. The nature of exposure drives transmission of Nipah viruses from Malaysia and Bangladesh in ferrets. PLoS Negl. Trop. Dis. 2016 10 6 e0004775 10.1371/journal.pntd.0004775 27341030
    [Google Scholar]
  34. Yadav P.D. Shete A.M. Kumar G.A. Sarkale P. Sahay R.R. Radhakrishnan C. Lakra R. Pardeshi P. Gupta N. Gangakhedkar R.R. Rajendran V.R. Sadanandan R. Mourya D.T. Nipah virus sequences from humans and bats during Nipah outbreak, Kerala, India, 2018. Emerg. Infect. Dis. 2019 25 5 1003 1006 31002049
    [Google Scholar]
  35. Tan F.H. Sukri A. Idris N. Ong K.C. Schee J.P. Tan C.T. Tan S.H. Wong K.T. Wong L.P. Tee K.K. Chang L.Y. A systematic review on Nipah virus: Global molecular epidemiology and medical countermeasures development. Virus Evol. 2024 10 1 veae048 10.1093/ve/veae048 39119137
    [Google Scholar]
  36. Mire C.E. Satterfield B.A. Geisbert J.B. Agans K.N. Borisevich V. Yan L. Chan Y.P. Cross R.W. Fenton K.A. Broder C.C. Geisbert T.W. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: Implications for antibody therapy. Sci. Rep. 2016 6 1 30916 10.1038/srep30916 27484128
    [Google Scholar]
  37. Wong J.J. Chen Z. Chung J.K. Groves J.T. Jardetzky T.S. EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer–cell interfaces. Sci. Adv. 2021 7 5 eabe1235 10.1126/sciadv.abe1235 33571127
    [Google Scholar]
  38. Liu Q. Bradel-Tretheway B. Monreal A.I. Saludes J.P. Lu X. Nicola A.V. Aguilar H.C. Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J. Virol. 2015 89 3 1838 1850 10.1128/JVI.02277‑14 25428863
    [Google Scholar]
  39. Hauser N. Gushiken A.C. Narayanan S. Kottilil S. Chua J.V. Evolution of Nipah virus infection: Past, present, and future considerations. Trop. Med. Infect. Dis. 2021 6 1 24 10.3390/tropicalmed6010024 33672796
    [Google Scholar]
  40. Diederich S. Thiel L. Maisner A. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 2008 375 2 391 400 10.1016/j.virol.2008.02.019 18342904
    [Google Scholar]
  41. Ranadheera C. Proulx R. Chaiyakul M. Jones S. Grolla A. Leung A. Rutherford J. Kobasa D. Carpenter M. Czub M. The interaction between the Nipah virus nucleocapsid protein and phosphoprotein regulates virus replication. Sci. Rep. 2018 8 1 15994 10.1038/s41598‑018‑34484‑7 30375468
    [Google Scholar]
  42. Dietzel E. Kolesnikova L. Sawatsky B. Heiner A. Weis M. Kobinger G.P. Becker S. Messling V.V. Maisner A. Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability. J. Virol. 2016 90 5 2514 2522 10.1128/JVI.02920‑15 26676785
    [Google Scholar]
  43. Ludlow M. Kortekaas J. Herden C. Hoffmann B. Tappe D. Trebst C. Griffin D.E. Brindle H.E. Solomon T. Brown A.S. Riel V.D. Wolthers K.C. Pajkrt D. Wohlsein P. Martina B.E.E. Baumgärtner W. Verjans G.M. Osterhaus A.D.M.E. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016 131 2 159 184 10.1007/s00401‑015‑1511‑3 26659576
    [Google Scholar]
  44. Cain M.D. Salimi H. Diamond M.S. Klein R.S. Mechanisms of pathogen invasion into the central nervous system. Neuron 2019 103 5 771 783 10.1016/j.neuron.2019.07.015 31487528
    [Google Scholar]
  45. Satterfield B.A. Cross R.W. Fenton K.A. Borisevich V. Agans K.N. Deer D.J. Graber J. Basler C.F. Geisbert T.W. Mire C.E. Nipah virus C and W proteins contribute to respiratory disease in ferrets. J. Virol. 2016 90 14 6326 6343 27147733
    [Google Scholar]
  46. Porotto M. Rockx B. Yokoyama C.C. Talekar A. Devito I. Palermo L.M. Liu J. Cortese R. Lu M. Feldmann H. Pessi A. Moscona A. Inhibition of Nipah virus infection in vivo: Targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog. 2010 6 10 e1001168 21060819
    [Google Scholar]
  47. Lamp B. Dietzel E. Kolesnikova L. Sauerhering L. Erbar S. Weingartl H. Maisner A. Nipah virus entry and egress from polarized epithelial cells. J. Virol. 2013 87 6 3143 3154 23283941
    [Google Scholar]
  48. Morrison T.G. Structure and function of a paramyxovirus fusion protein. Biochimica et Biophysica Acta (BBA)-. Biomembranes 2003 1614 1 73 84
    [Google Scholar]
  49. Weis M. Maisner A. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur. J. Cell Biol. 2015 94 7-9 316 322 26059400
    [Google Scholar]
  50. Iorio R.M. Melanson V.R. Mahon P.J. Glycoprotein interactions in paramyxovirus fusion. Future Virol. 2009 4 4 335 351 20161127
    [Google Scholar]
  51. Tamin A. Harcourt B.H. Ksiazek T.G. Rollin P.E. Bellini W.J. Rota P.A. Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 2002 296 1 190 200 12036330
    [Google Scholar]
  52. Maisner A. Neufeld J. Weingartl H. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb. Haemost. 2009 102 6 1014 1023 19967130
    [Google Scholar]
  53. Wong KT Shieh WJ Zaki SR Tan CT Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin. Immunopathol. 2002 24 2 215 228 10.1007/s00281‑002‑0106‑y
    [Google Scholar]
  54. Hooper P. Zaki S. Daniels P. Middleton D. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect. 2001 3 4 315 322 11334749
    [Google Scholar]
  55. Xu K. Rajashankar K.R. Chan Y.P. Himanen J.P. Broder C.C. Nikolov D.B. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc. Natl. Acad. Sci. USA 2008 105 29 9953 9958 18632560
    [Google Scholar]
  56. Bossart KN Fusco DL Broder CC Paramyxovirus entry. Adv. Exp. Med. Biol. 2013 790 95 127 10.1007/978‑1‑4614‑7651‑1_6
    [Google Scholar]
  57. Sauerhering L. Zickler M. Elvert M. Behner L. Matrosovich T. Erbar S. Matrosovich M. Maisner A. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells. J. Gen. Virol. 2016 97 7 1511 1519 27075405
    [Google Scholar]
  58. Negrete O.A. Wolf M.C. Aguilar H.C. Enterlein S. Wang W. Mühlberger E. Su S.V. Bertolotti-Ciarlet A. Flick R. Lee B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog. 2006 2 2 e7 16477309
    [Google Scholar]
  59. Bonaparte M.I. Dimitrov A.S. Bossart K.N. Crameri G. Mungall B.A. Bishop K.A. Choudhry V. Dimitrov D.S. Wang L.F. Eaton B.T. Broder C.C. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. USA 2005 102 30 10652 10657 15998730
    [Google Scholar]
  60. Xu K Broder CC Nikolov DB Ephrin-B2 and ephrin-B3 as functional henipavirus receptors. Semin. Cell. Dev. Biol. 2012 23 1 116 123 10.1016/j.semcdb.2011.12.005
    [Google Scholar]
  61. Skowron K. Bauza-Kaszewska J. Grudlewska-Buda K. Wiktorczyk-Kapischke N. Zacharski M. Bernaciak Z. Gospodarek-Komkowska E. Nipah Virus–Another Threat From the World of Zoonotic Viruses. Front. Microbiol. 2022 12 811157 10.3389/fmicb.2021.811157 35145498
    [Google Scholar]
  62. Bai J. Wang Y. Liu L. Zhao Y. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J. Int. Med. Res. 2014 42 2 405 415 10.1177/0300060513478091 24517927
    [Google Scholar]
  63. Avanzato V.A. Oguntuyo K.Y. Escalera-Zamudio M. Gutierrez B. Golden M. Pond K.S.L. Pryce R. Walter T.S. Seow J. Doores K.J. Pybus O.G. Munster V.J. Lee B. Bowden T.A. A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc. Natl. Acad. Sci. USA 2019 116 50 25057 25067 31767754
    [Google Scholar]
  64. Aguilar H.C. Aspericueta V. Robinson L.R. Aanensen K.E. Lee B. A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J. Virol. 2010 84 16 8033 8041 20519383
    [Google Scholar]
  65. Wang H.U. Chen Z.F. Anderson D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998 93 5 741 753 10.1016/s0092‑8674(00)81436‑1 9630219
    [Google Scholar]
  66. Wong K.T. Grosjean I. Brisson C. Blanquier B. Fevre-Montange M. Bernard A. Loth P. Georges-Courbot M.C. Chevallier M. Akaoka H. Marianneau P. Lam S.K. Wild T.F. Deubel V. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 2003 163 5 2127 2137 10.1016/S0002‑9440(10)63569‑9 14578210
    [Google Scholar]
  67. Lee B. Ataman Z.A. Modes of paramyxovirus fusion: A Henipavirus perspective. Trends Microbiol. 2011 19 8 389 399 21511478
    [Google Scholar]
  68. Lee B. Rota P.A. Henipavirus: Ecology, molecular virology, and pathogenesis. Cham Springer 2012 1 8
    [Google Scholar]
  69. Xu K. Chan Y.P. Bradel-Tretheway B. Akyol-Ataman Z. Zhu Y. Dutta S. Yan L. Feng Y. Wang L.F. Skiniotis G. Lee B. Zhou Z.H. Broder C.C. Aguilar H.C. Nikolov D.B. Crystal structure of the pre-fusion Nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog. 2015 11 12 e1005322 10.1371/journal.ppat.1005322 26646856
    [Google Scholar]
  70. Aguilar H.C. Ataman Z.A. Aspericueta V. Fang A.Q. Stroud M. Negrete O.A. Kammerer R.A. Lee B. A novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). J. Biol. Chem. 2009 284 3 1628 1635 10.1074/jbc.M807469200 19019819
    [Google Scholar]
  71. Moll M. Diederich S. Klenk H.D. Czub M. Maisner A. Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J. Virol. 2004 78 18 9705 9712 10.1128/JVI.78.18.9705‑9712.2004 15331703
    [Google Scholar]
  72. Zamora J.L.R. Ortega V. Johnston G.P. Li J. Aguilar H.C. Novel roles of the N1 loop and N4 alpha-helical region of the Nipah virus fusion glycoprotein in modulating early and late steps of the membrane fusion cascade. J. Virol. 2021 95 9 e01707-20 10.1128/JVI.01707‑20 33568505
    [Google Scholar]
  73. Munster V.J. Prescott J.B. Bushmaker T. Long D. Rosenke R. Thomas T. Scott D. Fischer E.R. Feldmann H. Wit D.E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci. Rep. 2012 2 1 736 10.1038/srep00736 23071900
    [Google Scholar]
  74. Mathieu C. Pohl C. Szecsi J. Trajkovic-Bodennec S. Devergnas S. Raoul H. Cosset F.L. Gerlier D. Wild T.F. Horvat B. Nipah virus uses leukocytes for efficient dissemination within a host. J. Virol. 2011 85 15 7863 7871 10.1128/JVI.00549‑11 21593145
    [Google Scholar]
  75. Liu J. Coffin K.M. Johnston S.C. Babka A.M. Bell T.M. Long S.Y. Honko A.N. Kuhn J.H. Zeng X. Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight 2019 4 14 e129629 10.1172/jci.insight.129629 31341108
    [Google Scholar]
  76. Escaffre O. Borisevich V. Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J. Infect. Dev. Ctries. 2013 7 4 308 311 10.3855/jidc.3648 23592639
    [Google Scholar]
  77. Clayton B.A. Nipah virus: Transmission of a zoonotic paramyxovirus. Curr. Opin. Virol. 2017 22 97 104 28088124
    [Google Scholar]
  78. Lidar M. Lipschitz N. Langevitz P. Shoenfeld Y. The infectious etiology of vasculitis. Autoimmunity 2009 42 5 432 438 10.1080/08916930802613210 19811260
    [Google Scholar]
  79. Devnath P. Wajed S. Das C.R. Kar S. Islam I. Masud H.M.A.A. The pathogenesis of Nipah virus: A review. Microb. Pathog. 2022 170 105693 10.1016/j.micpath.2022.105693 35940443
    [Google Scholar]
  80. Bhattacharya S. Dhar S. Banerjee A. Ray S. Detailed molecular biochemistry for novel therapeutic design against Nipah and Hendra virus: A systematic review. Curr. Mol. Pharmacol. 2020 13 2 108 125 10.2174/1874467212666191023123732 31657692
    [Google Scholar]
  81. Abbott N.J. Patabendige A.A. Dolman D.E. Yusof S.R. Begley D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010 37 1 13 25 10.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  82. Obermeier B. Daneman R. Ransohoff R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013 19 12 1584 1596 24309662
    [Google Scholar]
  83. Stachowiak B. Weingartl H.M. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. PLoS One 2012 7 1 e30855 10.1371/journal.pone.0030855 22303463
    [Google Scholar]
  84. Patabendige A. Janigro D. The role of the blood–brain barrier during neurological disease and infection. Biochem. Soc. Trans. 2023 51 2 613 626 10.1042/BST20220830 36929707
    [Google Scholar]
  85. Tiong V. Shu M.H. Wong W.F. AbuBakar S. Chang L.Y. Nipah virus infection of immature dendritic cells increases its transendothelial migration across human brain microvascular endothelial cells. Front. Microbiol. 2018 9 2747 10.3389/fmicb.2018.02747 30483242
    [Google Scholar]
  86. Mishra R. Banerjea A.C. Neurological damage by coronaviruses: A catastrophe in the queue! Front. Immunol. 2020 11 565521 10.3389/fimmu.2020.565521 33013930
    [Google Scholar]
  87. Fosse J.H. Haraldsen G. Falk K. Edelmann R. Endothelial cells in emerging viral infections. Front. Cardiovasc. Med. 2021 8 619690 33718448
    [Google Scholar]
  88. Salimi H Klein RS Disruption of the blood-brain barrier during neuroinflammatory and neuroinfectious diseases. Neuroi. Disea. 2024 195 234 10.1007/978‑3‑030‑19515‑1_7
    [Google Scholar]
  89. Eaton B.T. Broder C.C. Middleton D. Wang L.F. Hendra and Nipah viruses: Different and dangerous. Nat. Rev. Microbiol. 2006 4 1 23 35 16357858
    [Google Scholar]
  90. Konradt C. Hunter C.A. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur. J. Immunol. 2018 48 10 1607 1620 10.1002/eji.201646789 30160302
    [Google Scholar]
  91. Mathieu C. Guillaume V. Sabine A. Ong K.C. Wong K.T. Legras-Lachuer C. Horvat B. Lethal Nipah virus infection induces rapid overexpression of CXCL10. PLoS One 2012 7 2 e32157 10.1371/journal.pone.0032157 22393386
    [Google Scholar]
  92. Mathieu C. Guillaume V. Volchkova V.A. Pohl C. Jacquot F. Looi R.Y. Wong K.T. Legras-Lachuer C. Volchkov V.E. Lachuer J. Horvat B. Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. J. Virol. 2012 86 19 10766 10775 10.1128/JVI.01203‑12 22837207
    [Google Scholar]
  93. Chua K.B. Nipah virus outbreak in Malaysia. J. Clin. Virol. 2003 26 3 265 275 10.1016/S1386‑6532(02)00268‑8 12637075
    [Google Scholar]
  94. Ochani R.K. Batra S. Shaikh A. Asad A. Nipah virus - the rising epidemic: A review. Infez. Med. 2019 27 2 117 127 31205033
    [Google Scholar]
  95. Rocamonde B. Hasan U. Mathieu C. Dutartre H. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front. Neurosci. 2023 17 1108212 10.3389/fnins.2023.1108212 36937670
    [Google Scholar]
  96. Misra U.K. Tan C.T. Kalita J. Seizures in encephalitis. Neurol. Asia 2008 13 1 1 3
    [Google Scholar]
  97. Xu M.S. Tan C.B. Umapathi T. Lim C.C.T. Susac syndrome: Serial diffusion-weighted MR imaging. Magn. Reson. Imaging 2004 22 9 1295 1298 10.1016/j.mri.2004.08.006 15607101
    [Google Scholar]
  98. Alam A.M. Nipah virus, an emerging zoonotic disease causing fatal encephalitis. Clin. Med. 2022 22 4 348 352 10.7861/clinmed.2022‑0166 35760448
    [Google Scholar]
  99. Wouk J. Rechenchoski D.Z. Rodrigues B.C.D. Ribelato E.V. Faccin-Galhardi L.C. Viral infections and their relationship to neurological disorders. Arch. Virol. 2021 166 3 733 753 10.1007/s00705‑021‑04959‑6 33502593
    [Google Scholar]
  100. Guatteo E. Berretta N. Monda V. Ledonne A. Mercuri N.B. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. Int. J. Mol. Sci. 2022 23 9 4508 10.3390/ijms23094508 35562898
    [Google Scholar]
  101. Schapira A.H. Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 2011 26 6 1049 1055 10.1002/mds.23732 21626550
    [Google Scholar]
  102. Bossart K.N. Crameri G. Dimitrov A.S. Mungall B.A. Feng Y.R. Patch J.R. Choudhary A. Wang L.F. Eaton B.T. Broder C.C. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol. 2005 79 11 6690 6702 10.1128/JVI.79.11.6690‑6702.2005 15890907
    [Google Scholar]
  103. Smith E.C. Popa A. Chang A. Masante C. Dutch R.E. Viral entry mechanisms: The increasing diversity of paramyxovirus entry. FEBS J. 2009 276 24 7217 7227 10.1111/j.1742‑4658.2009.07401.x 19878307
    [Google Scholar]
  104. Pigeaud D.D. Geisbert T.W. Woolsey C. Animal models for henipavirus research. Viruses 2023 15 10 1980 10.3390/v15101980 37896758
    [Google Scholar]
  105. Mourya D.T. Badole S.L. Yadav P.D. Patil D.R. Animal models for some important RNA viruses of public health concern in SEARO countries: Viral hemorrhagic fever. J. Vector Borne Dis. 2015 52 1 1 10 10.4103/0972‑9062.154139 25815861
    [Google Scholar]
  106. Clayton B.A. Middleton D. Bergfeld J. Haining J. Arkinstall R. Wang L. Marsh G.A. Transmission routes for nipah virus from Malaysia and Bangladesh. Emerg. Infect. Dis. 2012 18 12 1983 1993 10.3201/eid1812.120875 23171621
    [Google Scholar]
  107. Wong K.T. Robertson T. Ong B.B. Chong J.W. Yaiw K.C. Wang L.F. Ansford A.J. Tannenberg A. Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol. Appl. Neurobiol. 2009 35 3 296 305 10.1111/j.1365‑2990.2008.00991.x 19473296
    [Google Scholar]
  108. Wong K.T. Shieh W.J. Kumar S. Norain K. Abdullah W. Guarner J. Goldsmith C.S. Chua K.B. Lam S.K. Tan C.T. Goh K.J. Chong H.T. Jusoh R. Rollin P.E. Ksiazek T.G. Zaki S.R. Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 2002 161 6 2153 2167 10.1016/S0002‑9440(10)64493‑8 12466131
    [Google Scholar]
  109. Wong K.T. Nipah and Hendra viruses: Recent advances in pathogenesis. Future Virol. 2010 5 2 129 131 10.2217/fvl.10.7
    [Google Scholar]
  110. Jordan P.C. Liu C. Raynaud P. Lo M.K. Spiropoulou C.F. Symons J.A. Beigelman L. Deval J. Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase. PLoS Pathog. 2018 14 2 e1006889 10.1371/journal.ppat.1006889 29425244
    [Google Scholar]
  111. Ciancanelli M.J. Volchkova V.A. Shaw M.L. Volchkov V.E. Basler C.F. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J. Virol. 2009 83 16 7828 7841 10.1128/JVI.02610‑08 19515782
    [Google Scholar]
  112. Quarleri J. Galvan V. Delpino M.V. Henipaviruses: An expanding global public health concern? Geroscience 2022 44 5 2447 2459 10.1007/s11357‑022‑00670‑9 36219280
    [Google Scholar]
  113. Satterfield B.A. Cross R.W. Fenton K.A. Agans K.N. Basler C.F. Geisbert T.W. Mire C.E. The immunomodulating V and W proteins of Nipah virus determine disease course. Nat. Commun. 2015 6 1 7483 10.1038/ncomms8483 26105519
    [Google Scholar]
  114. Sen N. Kanitkar T.R. Roy A.A. Soni N. Amritkar K. Supekar S. Nair S. Singh G. Madhusudhan M.S. Predicting and designing therapeutics against the Nipah virus. PLoS Negl. Trop. Dis. 2019 13 12 e0007419 10.1371/journal.pntd.0007419 31830030
    [Google Scholar]
  115. Dawes B.E. Kalveram B. Ikegami T. Juelich T. Smith J.K. Zhang L. Park A. Lee B. Komeno T. Furuta Y. Freiberg A.N. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci. Rep. 2018 8 1 7604 10.1038/s41598‑018‑25780‑3 29765101
    [Google Scholar]
  116. Gabra M.D. Ghaith H.S. Ebada M.A. Nipah virus: An updated review and emerging challenges. Infect. Disord. Drug Targets 2022 22 4 e170122200296 10.2174/1871526522666220117120859 35078400
    [Google Scholar]
  117. Sinclair S.M. Jones J.K. Miller R.K. Greene M.F. Kwo P.Y. Maddrey W.C. The ribavirin pregnancy registry: An interim analysis of potential teratogenicity at the mid-point of enrollment. Drug Saf. 2017 40 12 1205 1218 10.1007/s40264‑017‑0566‑6 28689333
    [Google Scholar]
  118. Johnson K. Vu M. Freiberg A.N. Recent advances in combating Nipah virus. Fac. Rev. 2021 10 74 10.12703/r/10‑74 34632460
    [Google Scholar]
  119. Balaji MS Chandrashekar HC Keshavamurthy CD Ramya R Maiti D.M A succinct review article on “nipah virus infection (NIV). Nursing 2022 11 3 2277 8160 10.36106/gjra
    [Google Scholar]
  120. Nili A. Farbod A. Neishabouri A. Mozafarihashjin M. Tavakolpour S. Mahmoudi H. Remdesivir: A beacon of hope from Ebola virus disease to COVID ‐19. Rev. Med. Virol. 2020 30 6 1 13 10.1002/rmv.2133 33210457
    [Google Scholar]
  121. Saxena S.K. Maurya V.K. Kumar S. Bhatt M.L. Nipah virus. South America Animal-Origin Viral Zoonoses 2020 69 79
    [Google Scholar]
  122. Goh K.J. Tan C.T. Chew N.K. Tan P.S.K. Kamarulzaman A. Sarji S.A. Wong K.T. Abdullah B.J.J. Chua K.B. Lam S.K. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med. 2000 342 17 1229 1235 10.1056/NEJM200004273421701 10781618
    [Google Scholar]
  123. Hotard A.L. He B. Nichol S.T. Spiropoulou C.F. Lo M.K. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Res. 2017 144 147 152 10.1016/j.antiviral.2017.06.011 28629988
    [Google Scholar]
  124. Freiberg A.N. Worthy M.N. Lee B. Holbrook M.R. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J. Gen. Virol. 2010 91 3 765 772 10.1099/vir.0.017269‑0 19889926
    [Google Scholar]
  125. Zhu Z. Bossart K.N. Bishop K.A. Crameri G. Dimitrov A.S. McEachern J.A. Feng Y. Middleton D. Wang L.F. Broder C.C. Dimitrov D.S. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis. 2008 197 6 846 853 10.1086/528801 18271743
    [Google Scholar]
  126. Geevarghese A.V. Christi V.E.I. Recent advances in vaccines and therapeutics for Nipah virus. Global J. Health Sci. Res. 2023 1 1 3 11 10.25259/GJHSR_2_2022
    [Google Scholar]
  127. Playford E.G. Munro T. Mahler S.M. Elliott S. Gerometta M. Hoger K.L. Jones M.L. Griffin P. Lynch K.D. Carroll H. Saadi E.D. Gilmour M.E. Hughes B. Hughes K. Huang E. Bakker D.C. Klein R. Scher M.G. Smith I.L. Wang L.F. Lambert S.B. Dimitrov D.S. Gray P.P. Broder C.C. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 2020 20 4 445 454 10.1016/S1473‑3099(19)30634‑6 32027842
    [Google Scholar]
  128. Dhillon J. Banerjee A. Controlling Nipah virus encephalitis in Bangladesh: Policy options. J. Public Health Policy 2015 36 3 270 282 10.1057/jphp.2015.13 25925087
    [Google Scholar]
  129. Dong J. Cross R.W. Doyle M.P. Kose N. Mousa J.J. Annand E.J. Borisevich V. Agans K.N. Sutton R. Nargi R. Majedi M. Fenton K.A. Reichard W. Bombardi R.G. Geisbert T.W. Crowe J.E. Jr Potent henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein. Cell 2020 183 6 1536 1550.e17 10.1016/j.cell.2020.11.023 33306954
    [Google Scholar]
  130. Mire C.E. Chan Y.P. Borisevich V. Cross R.W. Yan L. Agans K.N. Dang H.V. Veesler D. Fenton K.A. Geisbert T.W. Broder C.C. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J. Infect. Dis. 2020 221 S471 S479 10.1093/infdis/jiz515 31686101
    [Google Scholar]
  131. Pandey P. Khan F. Chauhan P. Bardakci F. Almuzaini N. Saeed M. Almuzaini N. Abdalla R.A.H. Singh S.K. Saeed M. Elucidation of the inhibitory potential of flavonoids against PKP1 protein in non-small cell lung cancer. Cell. Mol. Biol. 2022 68 11 90 96 10.14715/cmb/2022.68.11.15 37114302
    [Google Scholar]
  132. Rababi D Nag A Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech. 2023 13 6 174 10.1007/s13205‑023‑03595‑y
    [Google Scholar]
  133. Anusha B.S. Bagchi P. Establishing phylogeny, functional profile and novel drug for nipah virus encephalitis. Proceedings of the Joint 3rd International Conference on Bioinformatics and Data Science (ICBDS 2022) Cham Springer Nature 2023 239
    [Google Scholar]
  134. Abhinand C.S. Ibrahim J. Prasad K.T.S. Raju R. Oommen O.V. Nair A.S. Molecular docking and dynamics studies for the identification of Nipah virus glycoprotein inhibitors from Indian medicinal plants. J. Biomol. Struct. Dyn. 2023 41 19 9211 9218 10.1080/07391102.2022.2153169 36473711
    [Google Scholar]
  135. Sureshan M. Prabhu D. Joshua S.N. Sasikumar S.V. Rajamanikandan S. Govindhapriya M. Umadevi V. Kadhirvel S. Discovery of plant-based phytochemical as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods. J. Biomol. Struct. Dyn. 2024 42 7 3568 3578 10.1080/07391102.2023.2214236 37222609
    [Google Scholar]
  136. Ghimire S. Shahrear S. Saigaonkar S.K. Harris L.K. Identification of potential inhibitors against attachment glycoprotein G of nipah virus using comprehensive drug repurposing approach. Int. J. Biom. Bioinformatics. 2022 15 1 1
    [Google Scholar]
  137. Randhawa V. Pathania S. Kumar M. Computational identification of potential multitarget inhibitors of nipah virus by molecular docking and molecular dynamics. Microorganisms 2022 10 6 1181 10.3390/microorganisms10061181 35744699
    [Google Scholar]
  138. Mahfuz A. Khan M.A. Sajib E.H. Deb A. Mahmud S. Hasan M. Saha O. Islam A. Rahaman M.M. Designing potential siRNA molecules for silencing the gene of the nucleocapsid protein of Nipah virus: A computational investigation. Infect. Genet. Evol. 2022 102 105310 10.1016/j.meegid.2022.105310 35636695
    [Google Scholar]
  139. Oany AR Hossain MU Ahmad SA Computational approach to design a potential SiRNA molecule to silence the Nucleocapsid gene of different Nipah virus strains of Bangladesh. Biores. Communicat. 2015 1 1 40 40
    [Google Scholar]
  140. Pager C.T. Craft W.W. Jr Patch J. Dutch R.E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006 346 2 251 257 10.1016/j.virol.2006.01.007 16460775
    [Google Scholar]
  141. Dsouza N. Gupta D.B. Chellasamy S.K. Distinct host gene targets and mode of action in the microRNA of nipah virus from malaysia and bangladesh: A comparative in-silico based analysis. Biomed. Biotechnol. Res. J. 2023 7 3 340 350
    [Google Scholar]
  142. Saini S. Thakur C.J. Kumar V. Tandon S. Bhardwaj V. Maggar S. Namgyal S. Kaur G. Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis. Mol. Biol. Res. Commun. 2018 7 3 107 118 10.22099/mbrc.2018.29577.1322 30426028
    [Google Scholar]
  143. Loomis R.J. DiPiazza A.T. Falcone S. Ruckwardt T.J. Morabito K.M. Abiona O.M. Chang L.A. Caringal R.T. Presnyak V. Narayanan E. Tsybovsky Y. Nair D. Hutchinson G.B. Stewart-Jones G.B.E. Kueltzo L.A. Himansu S. Mascola J.R. Carfi A. Graham B.S. Chimeric fusion (F) and attachment (G) glycoprotein antigen delivery by mRNA as a candidate Nipah vaccine. Front. Immunol. 2021 12 772864 34956199
    [Google Scholar]
  144. Prescott J. DeBuysscher B.L. Feldmann F. Gardner D.J. Haddock E. Martellaro C. Scott D. Feldmann H. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine 2015 33 24 2823 2829 10.1016/j.vaccine.2015.03.089 25865472
    [Google Scholar]
  145. Yoneda M. Georges-Courbot M.C. Ikeda F. Ishii M. Nagata N. Jacquot F. Raoul H. Sato H. Kai C. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge. PLoS One 2013 8 3 e58414 10.1371/journal.pone.0058414 23516477
    [Google Scholar]
  146. Bossart K.N. Rockx B. Feldmann F. Brining D. Scott D. LaCasse R. Geisbert J.B. Feng Y.R. Chan Y.P. Hickey A.C. Broder C.C. Feldmann H. Geisbert T.W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 2012 4 146 146ra107 10.1126/scitranslmed.3004241 22875827
    [Google Scholar]
  147. Mire C.E. Versteeg K.M. Cross R.W. Agans K.N. Fenton K.A. Whitt M.A. Geisbert T.W. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol. J. 2013 10 353 10.1186/1743‑422X‑10‑353 24330654
    [Google Scholar]
  148. Shuai L. Ge J. Wen Z. Wang J. Wang X. Bu Z. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet. Microbiol. 2020 241 108549 31928698
    [Google Scholar]
  149. Ploquin A. Szécsi J. Mathieu C. Guillaume V. Barateau V. Ong K.C. Wong K.T. Cosset F.L. Horvat B. Salvetti A. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J. Infect. Dis. 2013 207 3 469 478 23175762
    [Google Scholar]
  150. Doremalen V.N. Lambe T. Sebastian S. Bushmaker T. Fischer R. Feldmann F. Haddock E. Letko M. Avanzato V.A. Rissanen I. LaCasse R. Scott D. Bowden T.A. Gilbert S. Munster V. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl. Trop. Dis. 2019 13 6 e0007462 31170144
    [Google Scholar]
  151. Kong D. Wen Z. Su H. Ge J. Chen W. Wang X. Wu C. Yang C. Chen H. Bu Z. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012 432 2 327 335 22726244
    [Google Scholar]
  152. Weingartl H.M. Berhane Y. Caswell J.L. Loosmore S. Audonnet J.C. Roth J.A. Czub M. Recombinant nipah virus vaccines protect pigs against challenge. J. Virol. 2006 80 16 7929 7938 10.1128/JVI.00263‑06 16873250
    [Google Scholar]
  153. Lo M.K. Spengler J.R. Welch S.R. Harmon J.R. Coleman-McCray J.D. Scholte F.E.M. Shrivastava-Ranjan P. Montgomery J.M. Nichol S.T. Weissman D. Spiropoulou C.F. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding Hendra virus-soluble glycoprotein against lethal Nipah virus challenge in Syrian hamsters. J. Infect. Dis. 2020 221 Suppl. 4 S493 S498 10.1093/infdis/jiz553 31751453
    [Google Scholar]
  154. Tigabu B. Rasmussen L. White E.L. Tower N. Saeed M. Bukreyev A. Rockx B. LeDuc J.W. Noah J.W. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev. Technol. 2014 12 3 155 161 10.1089/adt.2013.567 24735442
    [Google Scholar]
  155. Aqsha Z.M. Dharmawan M.A. Kharisma V.D. Ansori A.N.M. Sumantri N.I. Reverse vaccinology analysis of B-cell Epitope against Nipah Virus using Fusion protein. Jordan J. Pharm. Sci. 2023 16 3 499 507 10.35516/jjps.v16i3.1602
    [Google Scholar]
  156. Pickering B.S. Hardham J.M. Smith G. Weingartl E.T. Dominowski P.J. Foss D.L. Mwangi D. Broder C.C. Roth J.A. Weingartl H.M. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 2016 34 40 4777 4786 10.1016/j.vaccine.2016.08.028 27544586
    [Google Scholar]
  157. Welch S.R. Spengler J.R. Harmon J.R. Coleman-McCray J.D. Scholte F.E.M. Genzer S.C. Lo M.K. Montgomery J.M. Nichol S.T. Spiropoulou C.F. Defective interfering viral particle treatment reduces clinical signs and protects hamsters from lethal Nipah virus disease. MBio 2022 13 2 e03294-21 10.1128/mbio.03294‑21 35297677
    [Google Scholar]
  158. Kerry R.G. Malik S. Redda Y.T. Sahoo S. Patra J.K. Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine 2019 18 196 220 10.1016/j.nano.2019.03.004 30904587
    [Google Scholar]
  159. Loomis R.J. Stewart-Jones G.B.E. Tsybovsky Y. Caringal R.T. Morabito K.M. McLellan J.S. Chamberlain A.L. Nugent S.T. Hutchinson G.B. Kueltzo L.A. Mascola J.R. Graham B.S. Structure-based design of Nipah virus vaccines: A generalizable approach to paramyxovirus immunogen development. Front. Immunol. 2020 11 842 10.3389/fimmu.2020.00842 32595632
    [Google Scholar]
  160. Monath T.P. Nichols R. Feldmann F. Griffin A. Haddock E. Callison J. Meade-White K. Okumura A. Lovaglio J. Hanley P.W. Clancy C.S. Shaia C. Rida W. Fusco J. Immunological correlates of protection afforded by PHV02 live, attenuated recombinant vesicular stomatitis virus vector vaccine against Nipah virus disease. Front. Immunol. 2023 14 1216225 10.3389/fimmu.2023.1216225 37731485
    [Google Scholar]
  161. Frenck R Naficy A Feser J Egan M Chen T Dickey M Eldridge JH Sciotto-Brown S Hermida L Leyva-Grado V Promeneur DH Safety and immunogenicity of a nipah virus vaccine (Hev-Sg-V) in adults: A single-centre, randomised, observer-blind, placebo-controlled, phase 1 study. 2024 Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4845156
  162. DeBuysscher B.L. Scott D. Thomas T. Feldmann H. Prescott J. Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine. Vaccines 2016 1 1 1 7 10.1038/npjvaccines.2016.2 28036070
    [Google Scholar]
  163. Guillaume-Vasselin V. Lemaitre L. Dhondt K.P. Tedeschi L. Poulard A. Charreyre C. Horvat B. Protection from Hendra virus infection with Canarypox recombinant vaccine. Vaccines 2016 1 1 1 8 10.1038/npjvaccines.2016.3 28036070
    [Google Scholar]
  164. Lo M.K. Jordan P.C. Stevens S. Tam Y. Deval J. Nichol S.T. Spiropoulou C.F. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs. Antiviral Res. 2018 153 101 113 29601894
    [Google Scholar]
  165. Mathieu C. Horvat B. Henipavirus pathogenesis and antiviral approaches. Expert Rev. Anti Infect. Ther. 2015 13 3 343 354 25634624
    [Google Scholar]
  166. Lo M.K. Feldmann F. Gary J.M. Jordan R. Bannister R. Cronin J. Patel N.R. Klena J.D. Nichol S.T. Cihlar T. Zaki S.R. Feldmann H. Spiropoulou C.F. Wit D.E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 2019 11 494 eaau9242 31142680
    [Google Scholar]
  167. Georges-Courbot M.C. Contamin H. Faure C. Loth P. Baize S. Leyssen P. Neyts J. Deubel V. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob. Agents Chemother. 2006 50 5 1768 1772 16641448
    [Google Scholar]
  168. Lo M.K. Spengler J.R. Krumpe L.R.H. Welch S.R. Chattopadhyay A. Harmon J.R. Coleman-McCray J.D. Scholte F.E.M. Hotard A.L. Fuqua J.L. Rose J.K. Nichol S.T. Palmer K.E. O’Keefe B.R. Spiropoulou C.F. Griffithsin inhibits Nipah virus entry and fusion and can protect Syrian golden hamsters from lethal Nipah virus challenge. J. Infect. Dis. 2020 221 Suppl. 4 S480 S492 32037447
    [Google Scholar]
  169. Ropón-Palacios G. Chenet-Zuta M.E. Olivos-Ramirez G.E. Otazu K. Acurio-Saavedra J. Camps I. Potential novel inhibitors against emerging zoonotic pathogen Nipah virus: A virtual screening and molecular dynamics approach. J. Biomol. Struct. Dyn. 2020 38 11 3225 3234 31411538
    [Google Scholar]
  170. Raja T. Ravikumar P. Srinivasan M.R. Vijayarani K. Kumanan K. Identification of potential novel inhibitors for nipah virus—an in-silico Approach. Int. J. Curr. Microbiol. Appl. Sci. 2020 9 9 3377 3390
    [Google Scholar]
  171. Welch S.R. Spengler J.R. Genzer S.C. Coleman-McCray J.D. Harmon J.R. Sorvillo T.E. Scholte F.E.M. Rodriguez S.E. O’Neal T.J. Ritter J.M. Ficarra G. Davies K.A. Kainulainen M.H. Karaaslan E. Bergeron É. Goldsmith C.S. Lo M.K. Nichol S.T. Montgomery J.M. Spiropoulou C.F. Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination. Sci. Adv. 2023 9 31 eadh4057 10.1126/sciadv.adh4057 37540755
    [Google Scholar]
  172. Rahman M.M. Puspo J.A. Adib A.A. Hossain M.E. Alam M.M. Sultana S. Islam A. Klena J.D. Montgomery J.M. Satter S.M. Shirin T. Rahman M.Z. An immunoinformatics prediction of novel multi-epitope vaccines candidate against surface antigens of Nipah Virus. Int. J. Pept. Res. Ther. 2022 28 4 123 10.1007/s10989‑022‑10431‑z 35761851
    [Google Scholar]
  173. Steffen D.L. Xu K. Nikolov D.B. Broder C.C. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012 4 2 280 308 10.3390/v4020280 22470837
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347761250515082453
Loading
/content/journals/ctmc/10.2174/0115680266347761250515082453
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: therapeutics interventions ; Nipah Virus ; vasculitis ; encephalitis ; pathophysiology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test