Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Anti-angiogenic therapy represents a promising approach to cancer treatment by targeting the vascular support systems of tumors rather than the tumor cells themselves. Antiangiogenic agents face numerous obstacles that impede their efficacy, notwithstanding their potential: mechanistic complexity, toxicity, resistance, and the lack of validated predictive biomarkers. Resistance mechanisms may encompass genetic modifications, alternative angiogenic pathways, or the recruitment of cells derived from bone marrow. This work examines present problems and approaches to overcome resistance against anti-angiogenic treatment. Treatment response is predicted by biomarker-guided therapy; patterns of circulating endothelial cells, IL-8 levels, and VEGFR expression indicate possible therapeutic monitoring value. Multi-targeted approaches including drugs that block VEGFR, PDGFR, FGFR, and c-MET concurrently have shown more efficacy than single-pathway inhibition. Additional research indicates that combining treatments has positive results. Combining anti-angiogenic agents with cancer vaccines increases immune responses and tumour regulation. Combining radiotherapy with chemotherapy increases drug delivery and efficacy utilizing vascular normalisation. Techniques based on nanotechnology such as gold nanoparticles and carbon-based materials may enhance medicinal efficacy and delivery. These results reveal that to overcome resistance mechanisms and enhance patient outcomes anti-angiogenic therapy must combine focused therapies with precision medicine approaches.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266324868250123052818
2025-02-06
2025-12-30
Loading full text...

Full text loading...

References

  1. LiekensS. De ClercqE. NeytsJ. Angiogenesis: Regulators and clinical applications.Biochem. Pharmacol.200161325327010.1016/S0006‑2952(00)00529‑311172729
    [Google Scholar]
  2. CarmelietP. JainR.K. Molecular mechanisms and clinical applications of angiogenesis.Nature2011473734729830710.1038/nature1014421593862
    [Google Scholar]
  3. HaibeY. KreidiehM. El HajjH. KhalifehI. MukherjiD. TemrazS. ShamseddineA. Resistance mechanisms to anti-angiogenic therapies in cancer.Front. Oncol.20201022110.3389/fonc.2020.0022132175278
    [Google Scholar]
  4. OtrockZ. MahfouzR. MakaremJ. ShamseddineA. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms.Blood Cells Mol. Dis.200739221222010.1016/j.bcmd.2007.04.00117553709
    [Google Scholar]
  5. KazerounianS. LawlerJ. Integration of pro- and anti-angiogenic signals by endothelial cells.J. Cell Commun. Signal.201812117117910.1007/s12079‑017‑0433‑329264709
    [Google Scholar]
  6. El-KenawiA.E. El-RemessyA.B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales.Br. J. Pharmacol.2013170471272910.1111/bph.1234423962094
    [Google Scholar]
  7. MarechI. LeporiniC. AmmendolaM. PorcelliM. GadaletaC.D. RussoE. De SarroG. RanieriG. Classical and non-classical proangiogenic factors as a target of antiangiogenic therapy in tumor microenvironment.Cancer Lett.2016380121622610.1016/j.canlet.2015.07.02826238184
    [Google Scholar]
  8. GroblewskaM. MroczkoB. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities.Int. J. Mol. Sci.20212211612610.3390/ijms2211612634200145
    [Google Scholar]
  9. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑137169756
    [Google Scholar]
  10. GhalehbandiS. YuzugulenJ. PranjolM.Z.I. PourgholamiM.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF.Eur. J. Pharmacol.202394917558610.1016/j.ejphar.2023.17558636906141
    [Google Scholar]
  11. ThijssenV.L.J.L. PaulisY.W.J. Nowak-SliwinskaP. DeumelandtK.L. HosakaK. SoetekouwP.M.M.B. CimpeanA.M. RaicaM. PauwelsP. van den OordJ.J. Tjan-HeijnenV.C.G. HendrixM.J. HeldinC.H. CaoY. GriffioenA.W. Targeting PDGF‐mediated recruitment of pericytes blocks vascular mimicry and tumor growth.J. Pathol.2018246444745810.1002/path.515230101525
    [Google Scholar]
  12. GeindreauM. BruchardM. VegranF. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context.Cancers (Basel)20221410244610.3390/cancers1410244635626056
    [Google Scholar]
  13. Abou KhouzamR. BrodaczewskaK. FilipiakA. ZeinelabdinN.A. BuartS. SzczylikC. KiedaC. ChouaibS. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies.Front. Immunol.20211161311410.3389/fimmu.2020.61311433552076
    [Google Scholar]
  14. OguntadeA.S. Al-AmodiF. AlrumayhA. AlobaidaM. BwalyaM. Anti-angiogenesis in cancer therapeutics: the magic bullet.J. Egypt. Natl. Canc. Inst.20213311510.1186/s43046‑021‑00072‑634212275
    [Google Scholar]
  15. CarmelietP. VEGF as a key mediator of angiogenesis in cancer.Oncology200569Suppl. 341010.1159/00008847816301830
    [Google Scholar]
  16. FerraraN. GerberH.P. LeCouterJ. The biology of VEGF and its receptors.Nat. Med.20039666967610.1038/nm0603‑66912778165
    [Google Scholar]
  17. Kazazi-HyseniF. BeijnenJ.H. SchellensJ.H.M. Bevacizumab.Oncologist201015881982510.1634/theoncologist.2009‑031720688807
    [Google Scholar]
  18. TaberneroJ. YoshinoT. CohnA.L. ObermannovaR. BodokyG. Garcia-CarboneroR. CiuleanuT.E. PortnoyD.C. Van CutsemE. GrotheyA. PrausováJ. Garcia-AlfonsoP. YamazakiK. ClinganP.R. LonardiS. KimT.W. SimmsL. ChangS.C. NasroulahF. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study.Lancet Oncol.201516549950810.1016/S1470‑2045(15)70127‑025877855
    [Google Scholar]
  19. TaberneroJ. Van CutsemE. LakomýR. PrausováJ. RuffP. van HazelG.A. MoiseyenkoV.M. FerryD.R. McKendrickJ.J. Soussan-LazardK. ChevalierS. AllegraC.J. Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: Prespecified subgroup analyses from the VELOUR trial.Eur. J. Cancer201450232033110.1016/j.ejca.2013.09.01324140268
    [Google Scholar]
  20. AndraeJ. GalliniR. BetsholtzC. Role of platelet-derived growth factors in physiology and medicine.Genes Dev.200822101276131210.1101/gad.165370818483217
    [Google Scholar]
  21. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  22. Lopes-CoelhoF. MartinsF. PereiraS.A. SerpaJ. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives.Int. J. Mol. Sci.2021227376510.3390/ijms2207376533916438
    [Google Scholar]
  23. ZahraF.T. SajibM.S. MikelisC.M. Role of bFGF in Acquired Resistance upon Anti-VEGF Therapy in Cancer.Cancers (Basel)2021136142210.3390/cancers1306142233804681
    [Google Scholar]
  24. De FalcoS. The discovery of placenta growth factor and its biological activity.Exp. Mol. Med.20124411910.3858/emm.2012.44.1.02522228176
    [Google Scholar]
  25. AutieroM. LuttunA. TjwaM. CarmelietP. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders.J. Thromb. Haemost.2003171356137010.1046/j.1538‑7836.2003.00263.x12871269
    [Google Scholar]
  26. MonkB.J. PovedaA. VergoteI. RaspagliesiF. FujiwaraK. BaeD.S. OakninA. Ray-CoquardI. ProvencherD.M. KarlanB.Y. LhomméC. RichardsonG. RincónD.G. ColemanR.L. HerzogT.J. MarthC. BrizeA. FabbroM. RedondoA. BamiasA. TassoudjiM. NavaleL. WarnerD.J. OzaA.M. Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial.Lancet Oncol.201415879980810.1016/S1470‑2045(14)70244‑X24950985
    [Google Scholar]
  27. PickA.M. NystromK.K. Pazopanib for the treatment of metastatic renal cell carcinoma.Clin. Ther.201234351152010.1016/j.clinthera.2012.01.01422341567
    [Google Scholar]
  28. GrotheyA. CutsemE.V. SobreroA. SienaS. FalconeA. YchouM. HumbletY. BouchéO. MineurL. BaroneC. AdenisA. TaberneroJ. YoshinoT. LenzH.J. GoldbergR.M. SargentD.J. CihonF. CupitL. WagnerA. LaurentD. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial.Lancet2013381986330331210.1016/S0140‑6736(12)61900‑X23177514
    [Google Scholar]
  29. RiveraL.B. MeyronetD. HervieuV. FrederickM.J. BergslandE. BergersG. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy.Cell Rep.201511457759110.1016/j.celrep.2015.03.05525892230
    [Google Scholar]
  30. MaisonpierreP.C. SuriC. JonesP.F. BartunkovaS. WiegandS.J. RadziejewskiC. ComptonD. McClainJ. AldrichT.H. PapadopoulosN. DalyT.J. DavisS. SatoT.N. YancopoulosG.D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.Science19972775322556010.1126/science.277.5322.559204896
    [Google Scholar]
  31. AugustinH.G. Young KohG. ThurstonG. AlitaloK. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system.Nat. Rev. Mol. Cell Biol.200910316517710.1038/nrm263919234476
    [Google Scholar]
  32. HoodJ.D. ChereshD.A. Role of integrins in cell invasion and migration.Nat. Rev. Cancer2002229110010.1038/nrc72712635172
    [Google Scholar]
  33. DesgrosellierJ.S. ChereshD.A. Integrins in cancer: biological implications and therapeutic opportunities.Nat. Rev. Cancer201010192210.1038/nrc274820029421
    [Google Scholar]
  34. Noguera-TroiseI. DalyC. PapadopoulosN. J. CoetzeeS. BolandP. GaleN. W. LinH. C. YancopoulosG. D. ThurstonG. Blockade of Dll4 Inhibits Tumour Growth by Promoting Non‐Productive Angiogenesis.Vascular Development: Novartis Foundation Symposium 283200710612510.1002/9780470319413.ch9
    [Google Scholar]
  35. MonteroA.J. EscobarM. LopesG. GlückS. VogelC. Bevacizumab in the treatment of metastatic breast cancer: friend or foe?Curr. Oncol. Rep.201214111110.1007/s11912‑011‑0202‑z22012632
    [Google Scholar]
  36. GaccheR.N. MeshramR.J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy.Biochim. Biophys. Acta Rev. Cancer20141846116117910.1016/j.bbcan.2014.05.00224836679
    [Google Scholar]
  37. BertinoE.M. OttersonG.A. Benefits and limitations of antiangiogenic agents in patients with non-small cell lung cancer.Lung Cancer201070323324610.1016/j.lungcan.2010.08.01820888062
    [Google Scholar]
  38. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  39. VasudevN.S. ReynoldsA.R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions.Angiogenesis201417347149410.1007/s10456‑014‑9420‑y24482243
    [Google Scholar]
  40. MaS. PradeepS. HuW. ZhangD. ColemanR. SoodA. The role of tumor microenvironment in resistance to anti-angiogenic therapy.F1000 Res.2018732610.12688/f1000research.11771.129560266
    [Google Scholar]
  41. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑532993787
    [Google Scholar]
  42. HuangQ. Duan QianX. FanJ. LvZ. ZhangX. HanJ. WuF. GuoM. HuG. DuJ. ChenC. JinY. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.Sci. Rep.2016613655110.1038/srep3655127819281
    [Google Scholar]
  43. RapisardaA. HollingsheadM. UranchimegB. BonomiC.A. BorgelS.D. CarterJ.P. GehrsB. RaffeldM. KindersR.J. ParchmentR. AnverM.R. ShoemakerR.H. MelilloG. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition.Mol. Cancer Ther.2009871867187710.1158/1535‑7163.MCT‑09‑027419584228
    [Google Scholar]
  44. YangY. SunM. WangL. JiaoB. HIFs, angiogenesis, and cancer.J. Cell. Biochem.2013114596797410.1002/jcb.2443823225225
    [Google Scholar]
  45. NiuY. BaoL. ChenY. WangC. LuoM. ZhangB. ZhouM. WangJ.E. FangY.V. KumarA. XingC. WangY. LuoW. HIF2-Induced Long Noncoding RNA RAB11B-AS1 Promotes Hypoxia-Mediated Angiogenesis and Breast Cancer Metastasis.Cancer Res.202080596497510.1158/0008‑5472.CAN‑19‑153231900259
    [Google Scholar]
  46. ChanmeeT. OntongP. KonnoK. ItanoN. Tumor-associated macrophages as major players in the tumor microenvironment.Cancers2014631670169010.3390/cancers603167025125485
    [Google Scholar]
  47. AnsariM.J. BokovD. MarkovA. JalilA.T. ShalabyM.N. SuksatanW. ChupraditS. AL-GhamdiH.S. ShomaliN. ZamaniA. MohammadiA. DadashpourM. Cancer combination therapies by angiogenesis inhibitors; A comprehensive review.Cell Commun. Signal.20222014910.1186/s12964‑022‑00838‑y35392964
    [Google Scholar]
  48. WangL. HeT. LiuJ. TaiJ. WangB. ChenZ. QuanZ. Pan-cancer analysis reveals tumor-associated macrophage communication in the tumor microenvironment.Exp. Hematol. Oncol.20211013110.1186/s40164‑021‑00226‑133971970
    [Google Scholar]
  49. JainR.K. DudaD.G. WillettC.G. SahaniD.V. ZhuA.X. LoefflerJ.S. BatchelorT.T. SorensenA.G. Biomarkers of response and resistance to antiangiogenic therapy.Nat. Rev. Clin. Oncol.20096632733810.1038/nrclinonc.2009.6319483739
    [Google Scholar]
  50. CetinB. KaplanM.A. BerkV. OzturkS.C. BenekliM. IsikdoganA. OzkanM. CoskunU. BuyukberberS. Prognostic factors for overall survival in patients with metastatic colorectal carcinoma treated with vascular endothelial growth factor-targeting agents.Asian Pac. J. Cancer Prev.20121331059106310.7314/APJCP.2012.13.3.105922631638
    [Google Scholar]
  51. GoedeV. CoutelleO. NeuneierJ. Reinacher-SchickA. SchnellR. KoslowskyT.C. WeihrauchM.R. CremerB. KashkarH. OdenthalM. AugustinH.G. SchmiegelW. HallekM. HackerU.T. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy.Br. J. Cancer201010391407141410.1038/sj.bjc.660592520924372
    [Google Scholar]
  52. SinghH. PohlA. El-KhoueiryA. LurjeG. ZhangW. YangD. NingY. ShrikiJ. IqbalS. LenzH. Use of genetic variants to predict clinical outcome in patients (pts) with metastatic colorectal cancer (mCRC) treated with first-line 5-FU or capecitabine in combination with oxaliplatin and bevacizumab (FOLFOX/BV or XELOX/BV).J. Clin. Oncol.20092715_supplSuppl.40704070[DOI.].10.1200/jco.2009.27.15_suppl.4070
    [Google Scholar]
  53. FountzilasG. KoureaH.P. BobosM. TelevantouD. KotoulaV. PapadimitriouC. PapazisisK.T. TimotheadouE. EfstratiouI. KoutrasA. PentheroudakisG. ChristodoulouC. AravantinosG. MiliarasD. PetrakiK. PapandreouC.N. PapakostasP. BafaloukosD. RepanaD. RazisE. PectasidesD. DimopoulosA.M. Paclitaxel and bevacizumab as first line combined treatment in patients with metastatic breast cancer: the Hellenic Cooperative Oncology Group experience with biological marker evaluation.Anticancer Res.201131930073018[DOI.].21868552
    [Google Scholar]
  54. EisenT. BukowskiR.M. StaehlerM. SzczylikC. OudardS. StadlerW.M. SchwartzB. SimantovR. ShanM. EscudierB. Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): Impact of crossover on survival.J. Clin. Oncol.20062418_supplSuppl.45244524[DOI.].10.1200/jco.2006.24.18_suppl.4524
    [Google Scholar]
  55. EllisP.M. Al-SalehK. Multitargeted anti-angiogenic agents and NSCLC: Clinical update and future directions.Crit. Rev. Oncol. Hematol.2012841475810.1016/j.critrevonc.2012.02.00422405734
    [Google Scholar]
  56. PatelV.K. ShirbhateE. TiwariP. KoreR. VeerasamyR. MishraA. RajakH. Multi-targeted HDAC inhibitors as Anticancer Agents: Current Status and Future Prospective.Curr. Med. Chem.202210.2174/092986732966622092210561536154583
    [Google Scholar]
  57. EscudierB. EisenT. StadlerW.M. SzczylikC. OudardS. SiebelsM. NegrierS. ChevreauC. SolskaE. DesaiA.A. RollandF. DemkowT. HutsonT.E. GoreM. FreemanS. SchwartzB. ShanM. SimantovR. BukowskiR.M. Sorafenib in advanced clear-cell renal-cell carcinoma.N. Engl. J. Med.2007356212513410.1056/NEJMoa06065517215530
    [Google Scholar]
  58. MotzerR.J. EscudierB. GannonA. FiglinR.A. Sunitinib: Ten Years of Successful Clinical Use and Study in Advanced Renal Cell Carcinoma.Oncologist2017221415210.1634/theoncologist.2016‑019727807302
    [Google Scholar]
  59. WindS. SchmidU. FreiwaldM. MarzinK. LotzR. EbnerT. StopferP. DallingerC. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib.Clin. Pharmacokinet.20195891131114710.1007/s40262‑019‑00766‑031016670
    [Google Scholar]
  60. FramptonJ.E. Pazopanib: a Review in Advanced Renal Cell Carcinoma.Target. Oncol.201712454355410.1007/s11523‑017‑0511‑828664385
    [Google Scholar]
  61. AyoubN. Al-ShamiK. AlqudahM.A.Y. MhaidatN. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents.OncoTargets Ther.2017104869488310.2147/OTT.S14860429042798
    [Google Scholar]
  62. GrüllichC. Cabozantinib: Multi-kinase Inhibitor of MET, AXL, RET, and VEGFR2.Recent Results Cancer Res.2018211677510.1007/978‑3‑319‑91442‑8_530069760
    [Google Scholar]
  63. RomanD. WhitesideR. Regorafenib: Adding to the Armamentarium for Refractory Colorectal Cancer and GIST.J. Adv. Pract. Oncol.20134211812210.6004/jadpro.2013.4.2.725031991
    [Google Scholar]
  64. SinghA.D. ParmarS. Ramucirumab (Cyramza): A Breakthrough Treatment for Gastric Cancer.P&T2015407430468[DOI.].26185403
    [Google Scholar]
  65. DeshpandeH. RomanS. ThumarJ. SosaJ.A. Vandetanib (ZD6474) in the Treatment of Medullary Thyroid Cancer.Clin. Med. Insights Oncol.20115CMO.S619710.4137/CMO.S619721836817
    [Google Scholar]
  66. LiuJ. FuM. WangM. WanD. WeiY. WeiX. Cancer vaccines as promising immuno-therapeutics: platforms and current progress.J. Hematol. Oncol.20221512810.1186/s13045‑022‑01247‑x35303904
    [Google Scholar]
  67. PardollD.M. Cancer vaccines.Nat. Med.19984S5Suppl.52553110.1038/nm0598supp‑5259585204
    [Google Scholar]
  68. FinnO.J. Cancer vaccines: between the idea and the reality.Nat. Rev. Immunol.20033863064110.1038/nri115012974478
    [Google Scholar]
  69. Gatti-MaysM.E. RedmanJ.M. CollinsJ.M. BilusicM. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations.Hum. Vaccin. Immunother.201713112561257410.1080/21645515.2017.136432228857666
    [Google Scholar]
  70. BoseA. LoweD.B. RaoA. StorkusW.J. Combined vaccine+axitinib therapy yields superior antitumor efficacy in a murine melanoma model.Melanoma Res.201222323624310.1097/CMR.0b013e328353829322504156
    [Google Scholar]
  71. SahaD. WakimotoH. PetersC.W. AntoszczykS.J. RabkinS.D. MartuzaR.L. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models.Clin. Cancer Res.201824143409342210.1158/1078‑0432.CCR‑17‑171729599413
    [Google Scholar]
  72. JhaB.K. DongB. NguyenC.T. PolyakovaI. SilvermanR.H. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy.Mol. Ther.20132191749175710.1038/mt.2013.11223732991
    [Google Scholar]
  73. TanG. KasuyaH. SahinT.T. YamamuraK. WuZ. KoideY. HottaY. ShikanoT. YamadaS. KanzakiA. FujiiT. SugimotoH. NomotoS. NishikawaY. TanakaM. TsurumaruN. KuwaharaT. FukudaS. IchinoseT. KikumoriT. TakedaS. NakaoA. KoderaY. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft.Int. J. Cancer201513671718173010.1002/ijc.2916325156870
    [Google Scholar]
  74. TomitaY. KurozumiK. YooJ.Y. FujiiK. IchikawaT. MatsumotoY. UnedaA. HattoriY. ShimizuT. OtaniY. OkaT. KaurB. DateI. Oncolytic Herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways.Mol. Cancer Ther.20191881418142910.1158/1535‑7163.MCT‑18‑079931092561
    [Google Scholar]
  75. VoM.C. Nguyen-PhamT.N. LeeH.J. LakshmiT.J. YangS. JungS.H. KimH.J. LeeJ.J. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model.Oncotarget2017816272522726210.18632/oncotarget.1591728460478
    [Google Scholar]
  76. SakamakiI. KwakL.W. ChaS. YiQ. LermanB. ChenJ. SurapaneniS. BatemanS. QinH. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas.Leukemia201428232933710.1038/leu.2013.17723765229
    [Google Scholar]
  77. WronaA. DziadziuszkoR. JassemJ. Combining radiotherapy with targeted therapies in non-small cell lung cancer: focus on anti-EGFR, anti-ALK and anti-angiogenic agents.Transl. Lung Cancer Res.20211042032204710.21037/tlcr‑20‑55234012812
    [Google Scholar]
  78. BowH. HwangL.S. SchildhausN. XingJ. MurrayL. SalditchQ. YeX. ZhangY. WeingartJ. BremH. TylerB. Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma.J. Neurosurg.2014120366266910.3171/2013.11.JNS1355624359008
    [Google Scholar]
  79. AmanoM. SuzukiM. AndohS. MonzenH. TeraiK. WilliamsB. SongC.W. MayoK.H. HasegawaT. DingsR.P.M. GriffinR.J. Antiangiogenesis therapy using a novel angiogenesis inhibitor, anginex, following radiation causes tumor growth delay.Int. J. Clin. Oncol.2007121424710.1007/s10147‑006‑0625‑y17380440
    [Google Scholar]
  80. WilliamsK.J. TelferB.A. BraveS. KendrewJ. WhittakerL. StratfordI.J. WedgeS.R. ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: schedule-dependent enhancement of antitumor activity.Clin. Cancer Res.200410248587859310.1158/1078‑0432.CCR‑04‑114715623642
    [Google Scholar]
  81. HuJ. ChenL. LiuL. ChenX. ChenP. YangG. HouW. TangM. ZhangF. WangX. ZhaoX. WeiY. Liposomal honokiol, a potent anti-angiogenesis agent, in combination with radiotherapy produces a synergistic antitumor efficacy without increasing toxicity.Exp. Mol. Med.200840661762810.3858/emm.2008.40.6.61719116447
    [Google Scholar]
  82. HeZ. SubramaniamD. RamalingamS. DharA. PostierR.G. UmarS. ZhangY. AnantS. Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects.Am. J. Physiol. Gastrointest. Liver Physiol.20113015G929G93710.1152/ajpgi.00159.201121836060
    [Google Scholar]
  83. WangX. BeitlerJ.J. HuangW. ChenG. QianG. MaglioccaK. PatelM.R. ChenA.Y. ZhangJ. NannapaneniS. KimS. ChenZ. DengX. SabaN.F. ChenZ.G. ArbiserJ.L. ShinD.M. Honokiol Radiosensitizes Squamous Cell Carcinoma of the Head and Neck by Downregulation of Survivin.Clin. Cancer Res.201824485886910.1158/1078‑0432.CCR‑17‑034529180609
    [Google Scholar]
  84. ChadhaA.S. SkinnerH.D. GuntherJ.R. MunsellM.F. DasP. MinskyB.D. DelclosM.E. ChatterjeeD. WangH. ClemonsM. GeorgeG. SinghP.K. KatzM.H. FlemingJ.B. JavleM.M. WolffR.A. VaradhacharyG.R. CraneC.H. KrishnanS. PhaseI. Phase I Trial of Consolidative Radiotherapy with Concurrent Bevacizumab, Erlotinib and Capecitabine for Unresectable Pancreatic Cancer.PLoS One2016116e015691010.1371/journal.pone.015691027336466
    [Google Scholar]
  85. SalazarR. CapdevilaJ. ManzanoJ.L. PericayC. Martínez-VillacampaM. LópezC. LosaF. SafontM.J. Gómez-EspañaA. Alonso-OrduñaV. EscuderoP. GallegoJ. García-ParedesB. PalaciosA. BiondoS. GrávalosC. ArandaE. Phase II randomized trial of capecitabine with bevacizumab and external beam radiation therapy as preoperative treatment for patients with resectable locally advanced rectal adenocarcinoma: long term results.BMC Cancer2020201116410.1186/s12885‑020‑07661‑z33246428
    [Google Scholar]
  86. YinP. MaX. ZhangY. SongY. WangY. LuZ. Primary vaginal malignant melanoma successfully treated with combination therapy: A case report.Oncol. Lett.202224643010.3892/ol.2022.1355036311689
    [Google Scholar]
  87. LennernäsB. AlbertssonP. LennernäsH. NorrbyK. Chemotherapy and Antiangiogenesis.Acta Oncol.200342429430310.1080/0284186031000183512899500
    [Google Scholar]
  88. MaJ. WaxmanD.J. Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib.Mol. Cancer Ther.200871798910.1158/1535‑7163.MCT‑07‑058418202011
    [Google Scholar]
  89. OlivaP. DecioA. CastiglioniV. BassiA. PesentiE. CescaM. ScanzianiE. BelottiD. GiavazziR. Cisplatin plus paclitaxel and maintenance of bevacizumab on tumour progression, dissemination, and survival of ovarian carcinoma xenograft models.Br. J. Cancer2012107236036910.1038/bjc.2012.26122713663
    [Google Scholar]
  90. ShishidoT. YasoshimaT. DennoR. MukaiyaM. SatoN. HirataK. Inhibition of liver metastasis of human pancreatic carcinoma by angiogenesis inhibitor TNP-470 in combination with cisplatin.Jpn. J. Cancer Res.199889996396910.1111/j.1349‑7006.1998.tb00655.x9818033
    [Google Scholar]
  91. CarvalhoB. LopesJ.M. SilvaR. PeixotoJ. LeitãoD. SoaresP. FernandesA.C. LinharesP. VazR. LimaJ. The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab.Sci. Rep.2021111606710.1038/s41598‑021‑85385‑133727583
    [Google Scholar]
  92. OkudaT. TasakiT. NakataS. YamashitaK. YoshiokaH. IzumotoS. KatoA. FujitaM. Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma.Anticancer Res.20173773871387610.21873/anticanres.1176728668888
    [Google Scholar]
  93. ZhangY. XiaM. JinK. WangS. WeiH. FanC. WuY. LiX. LiX. LiG. ZengZ. XiongW. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities.Mol. Cancer20181714510.1186/s12943‑018‑0796‑y29455668
    [Google Scholar]
  94. ChenX. GuanZ. LuJ. WangH. ZuoZ. YeF. HuangJ. TengL. Synergistic antitumor effects of cMet inhibitor in combination with anti-VEGF in colorectal cancer patient-derived xenograft models.J. Cancer2018971207121710.7150/jca.2096429675102
    [Google Scholar]
  95. ZhangJ. JiangX. JiangY. GuoM. ZhangS. LiJ. HeJ. LiuJ. WangJ. OuyangL. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs.Eur. J. Med. Chem.201610849550410.1016/j.ejmech.2015.12.01626717201
    [Google Scholar]
  96. ZhangQ. ZhengP. ZhuW. Research Progress of Small Molecule VEGFR/c-Met Inhibitors as Anticancer Agents (2016–Present).Molecules20202511266610.3390/molecules2511266632521825
    [Google Scholar]
  97. GyanchandaniR. Ortega AlvesM.V. MyersJ.N. KimS. A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma.Mol. Cancer Res.201311121585159610.1158/1541‑7786.MCR‑13‑035824092775
    [Google Scholar]
  98. BhideR.S. LombardoL.J. HuntJ.T. CaiZ. BarrishJ.C. GalbraithS. JeyaseelanR.Sr MortilloS. WautletB.S. KrishnanB. KukralD. MaloneH. LewinA.C. HenleyB.J. FargnoliJ. The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases.Mol. Cancer Ther.20109236937810.1158/1535‑7163.MCT‑09‑047220103604
    [Google Scholar]
  99. DempkeW.C. ZippelR. Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor.Anticancer Res.2010301144774483[DOI.].21115896
    [Google Scholar]
  100. BelloE. ColellaG. ScarlatoV. OlivaP. BerndtA. ValbusaG. SerraS.C. D’IncalciM. CavallettiE. GiavazziR. DamiaG. CamboniG. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models.Cancer Res.20117141396140510.1158/0008‑5472.CAN‑10‑270021212416
    [Google Scholar]
  101. SloanB. ScheinfeldN.S. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy.Curr. Opin. Investig. Drugs200891213241335[DOI.].19037839
    [Google Scholar]
  102. HurwitzH. FehrenbacherL. NovotnyW. CartwrightT. HainsworthJ. HeimW. BerlinJ. BaronA. GriffingS. HolmgrenE. FerraraN. FyfeG. RogersB. RossR. KabbinavarF. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N. Engl. J. Med.2004350232335234210.1056/NEJMoa03269115175435
    [Google Scholar]
  103. SaltzL.B. ClarkeS. Díaz-RubioE. ScheithauerW. FigerA. WongR. KoskiS. LichinitserM. YangT.S. RiveraF. CoutureF. SirzénF. CassidyJ. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study.J. Clin. Oncol.200826122013201910.1200/JCO.2007.14.993018421054
    [Google Scholar]
  104. BennounaJ. SastreJ. ArnoldD. ÖsterlundP. GreilR. Van CutsemE. von MoosR. ViéitezJ.M. BouchéO. BorgC. SteffensC.C. Alonso-OrduñaV. SchlichtingC. Reyes-RiveraI. BendahmaneB. AndréT. KubickaS. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial.Lancet Oncol.2013141293710.1016/S1470‑2045(12)70477‑123168366
    [Google Scholar]
  105. ZhouC. GaoG. WangY.N. ZhaoJ. ChenG. LiuZ. GuK. HuangM. HeJ. ChenJ. MaZ. FengJ.F. ShiJ. WangQ. YangY. YuX. ChengY. YaoY. RenS. Efficacy of PD-1 monoclonal antibody SHR-1210 plus apatinib in patients with advanced nonsquamous NSCLC with wild‐type EGFR and ALK.J. Clin. Oncol.20193715_supplSuppl.9112911210.1200/JCO.2019.37.15_suppl.9112
    [Google Scholar]
  106. ZhangP.C. LiuX. LiM.M. MaY.Y. SunH.T. TianX.Y. WangY. LiuM. FuL.S. WangY.F. ChenH.Y. LiuZ. AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo.Biochem. Pharmacol.202017211377110.1016/j.bcp.2019.11377131863779
    [Google Scholar]
  107. BohnK.A. AdkinsC.E. NounouM.I. LockmanP.R. Inhibition of VEGF and Angiopoietin-2 to Reduce Brain Metastases of Breast Cancer Burden.Front. Pharmacol.2017819310.3389/fphar.2017.0019328443023
    [Google Scholar]
  108. EttrichT.J. SeufferleinT. Regorafenib.Recent Results Cancer Res.2018211455610.1007/978‑3‑319‑91442‑8_330069758
    [Google Scholar]
  109. Rodríguez-NogalesC. González-FernándezY. AldazA. CouvreurP. Blanco-PrietoM.J. Nanomedicines for Pediatric Cancers.ACS Nano20181287482749610.1021/acsnano.8b0368430071163
    [Google Scholar]
  110. YangZ. DengW. ZhangX. AnY. LiuY. YaoH. ZhangZ. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies.Front. Oncol.20221178933010.3389/fonc.2021.78933035083147
    [Google Scholar]
  111. AbdallaA.M.E. XiaoL. UllahM.W. YuM. OuyangC. YangG. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics.Theranostics20188253354810.7150/thno.2167429290825
    [Google Scholar]
  112. MukherjeeA. MadamsettyV.S. PaulM.K. MukherjeeS. Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer.Int. J. Mol. Sci.202021245510.3390/ijms2102045531936832
    [Google Scholar]
  113. WangX. LiJ. WangY. KoenigL. GjyreziA. GiannakakouP. ShinE.H. TighiouartM. ChenZ.G. NieS. ShinD.M. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model.ACS Nano2011586184619410.1021/nn200739q21728341
    [Google Scholar]
  114. SongH.B. WiJ.S. JoD.H. KimJ.H. LeeS.W. LeeT.G. KimJ.H. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: inhibitory effect on retinal neovascularization without unbearable toxicity.Nanomedicine20171361901191110.1016/j.nano.2017.03.01628400160
    [Google Scholar]
  115. DarweeshR.S. AyoubN.M. NazzalS. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications.Int. J. Nanomedicine2019147643766310.2147/IJN.S22394131571869
    [Google Scholar]
  116. LiW. LiX. LiuS. YangW. PanF. YangX.Y. DuB. QinL. PanY. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial–mesenchymal transition inhibition.Int. J. Nanomedicine2017123509352010.2147/IJN.S12880228496326
    [Google Scholar]
  117. GurunathanS. LeeK.J. KalishwaralalK. SheikpranbabuS. VaidyanathanR. EomS.H. Antiangiogenic properties of silver nanoparticles.Biomaterials200930316341635010.1016/j.biomaterials.2009.08.00819698986
    [Google Scholar]
  118. SunD. LiuY. YuQ. ZhouY. ZhangR. ChenX. HongA. LiuJ. The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling.Biomaterials201334117118010.1016/j.biomaterials.2012.09.03123059005
    [Google Scholar]
  119. MurugesanS. MousaS.A. O’ConnorL.J. LincolnD.W.II LinhardtR.J. Carbon inhibits vascular endothelial growth factor‐ and fibroblast growth factor‐promoted angiogenesis.FEBS Lett.200758161157116010.1016/j.febslet.2007.02.02217331505
    [Google Scholar]
  120. ShahA.A. AhmadS. YadavM.K. RazaK. KamalM.A. AkhtarS. Structure-based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and Metabolic Reactivity Studies of Quinazoline Derivatives for their Anti-EGFR Activity Against Tumor Angiogenesis.Curr. Med. Chem.202431559561910.2174/092986733066623030914371136892124
    [Google Scholar]
  121. NadaH. ElkamhawyA. LeeK. Structure Activity Relationship of Key Heterocyclic Anti-Angiogenic Leads of Promising Potential in the Fight against Cancer.Molecules202126355310.3390/molecules2603055333494492
    [Google Scholar]
  122. TawfikS.S. HamdiA. AliA.R. ElgazarA.A. El-ShafeyH.W. El-AzabA.S. BakheitA.H. HefnawyM.M. GhabbourH.A. Abdel-AzizA.A.M. S -Alkylated quinazolin-4(3 H )-ones as dual EGFR/VEGFR-2 kinases inhibitors: design, synthesis, anticancer evaluation and docking study.RSC Advances20241436263252633910.1039/D4RA04828H39165788
    [Google Scholar]
  123. GaccheR.N. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives.Biochim. Biophys. Acta Rev. Cancer20231878618902010.1016/j.bbcan.2023.18902037951481
    [Google Scholar]
  124. AbdullahiS.H. MoinA.T. UzairuA. UmarA.B. IbrahimM.T. UsmanM.T. NawalN. BayilI. ZubairT. Molecular docking studies of some benzoxazole and benzothiazole derivatives as VEGFR-2 target inhibitors: In silico design, MD simulation, pharmacokinetics and DFT studies.Intelligent Pharmacy20242223225010.1016/j.ipha.2023.11.010
    [Google Scholar]
  125. NakagawaT. TohyamaO. YamaguchiA. MatsushimaT. TakahashiK. FunasakaS. ShirotoriS. AsadaM. ObaishiH. E7050: A dual c‐Met and VEGFR‐2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models.Cancer Sci.2010101121021510.1111/j.1349‑7006.2009.01343.x19832844
    [Google Scholar]
  126. AzimiM. ManaviM.S. AfshinpourM. KhorramR. VafadarR. Rezaei-TazangiF. ArabzadehD. ArabzadehS. EbrahimiN. ArefA.R. Emerging immunologic approaches as cancer anti-angiogenic therapies.Clin. Transl. Oncol.202410.1007/s12094‑024‑03667‑239294514
    [Google Scholar]
  127. AllamR.M. El KerdawyA.M. GoudaA.E. AhmedK.A. Abdel-MohsenH.T. Benzimidazole-oxindole hybrids as multi-kinase inhibitors targeting melanoma.Bioorg. Chem.202414610724310.1016/j.bioorg.2024.10724338457953
    [Google Scholar]
  128. HussainA. FestaJ. SinghH. 2-bromo-2‘5’-dihydroxychalcone analogue inhibits endothelial migration by targeting VEGF-induced ERK 1/2 phosphorylation.bioRxiv20232023.2009.2011.55715410.1101/2023.09.11.557154
    [Google Scholar]
  129. LiY.L. YanL.J. ChenH.X. RuanB.K. DaoP. DuZ.Y. DongC.Z. MeunierB. Design, synthesis and evaluation of novel pyrimidinylaminothiophene derivatives as FGFR1 inhibitors against human glioblastoma multiforme.Eur. J. Med. Chem.202326011576410.1016/j.ejmech.2023.11576437651879
    [Google Scholar]
  130. Abdel-MohsenH.T. NageebA.M. Benzimidazole–dioxoisoindoline conjugates as dual VEGFR-2 and FGFR-1 inhibitors: design, synthesis, biological investigation, molecular docking studies and ADME predictions.RSC Advances20241439288892890310.1039/D4RA05462H39268051
    [Google Scholar]
  131. XuH. WangJ. ChenY. DuY. ChenL. WuC. WangL. ChenG. Design, synthesis and evaluation of the novel chalcone derivatives with 2,2-dimethylbenzopyran as HIF-1 inhibitors that possess anti-angiogenic potential.Eur. J. Med. Chem.202325011517110.1016/j.ejmech.2023.11517136774697
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266324868250123052818
Loading
/content/journals/ctmc/10.2174/0115680266324868250123052818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test