Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Growth factors and their receptor tyrosine kinases play a central role in regulating vital cellular processes such as proliferation, differentiation, division, and cell survival, and they are closely associated with the development of various types of cancer, particularly in the context of angiogenesis. Although several small chemical compounds targeting tyrosine kinase receptors have been approved by the FDA for cancer treatment by inhibiting angiogenesis, there is still a need for more effective medications. studies are now crucial tools for the design of new drugs, offering considerable advantages such as cost and time reduction. In this review, we examined recent research carried out between 2022 and 2024, focusing on new drug candidates synthesized to fight cancer, in particular by targeting tyrosine kinase receptors involved in the process of angiogenesis.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266312422240712053821
2024-08-07
2025-10-31
Loading full text...

Full text loading...

References

  1. GhoshS. MarroccoI. YardenY. Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment.Advances in Cancer Research.Elsevier202014715710.1016/bs.acr.2020.04.002
    [Google Scholar]
  2. PaulM.K. MukhopadhyayA.K. Tyrosine kinase : Role and significance in Cancer.Int. J. Med. Sci.20041210111510.7150/ijms.1.10115912202
    [Google Scholar]
  3. HuangX.L. KhanM.I. WangJ. AliR. AliS.W. ZahraQ.A. KazmiA. LolaiA. HuangY.L. HussainA. BilalM. LiF. QiuB. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis : New insight and futuristic vision.Int. J. Biol. Macromol.202118073975210.1016/j.ijbiomac.2021.03.07533737188
    [Google Scholar]
  4. AnsariM.J. BokovD. MarkovA. JalilA.T. ShalabyM.N. SuksatanW. ChupraditS. AL-GhamdiH.S. ShomaliN. ZamaniA. MohammadiA. DadashpourM. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review.Cell Commun. Signal.20222014910.1186/s12964‑022‑00838‑y35392964
    [Google Scholar]
  5. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.20181911349110.3390/ijms1911349130404198
    [Google Scholar]
  6. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  7. IvyS.P. WickJ.Y. KaufmanB.M. An overview of small- molecule inhibitors of VEGFR signaling.Nat. Rev. Clin. Oncol.200961056957910.1038/nrclinonc.2009.13019736552
    [Google Scholar]
  8. SitohyB. NagyJ.A. DvorakH.F. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.Cancer Res.20127281909191410.1158/0008‑5472.CAN‑11‑340622508695
    [Google Scholar]
  9. ShibuyaM. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies.Genes Cancer20112121097110510.1177/194760191142303122866201
    [Google Scholar]
  10. WatanabeH. IchiharaE. KayataniH. MakimotoG. NinomiyaK. NishiiK. HigoH. AndoC. OkawaS. NakasukaT. KanoH. HaraN. HirabaeA. KatoY. NinomiyaT. KuboT. RaiK. OhashiK. HottaK. TabataM. MaedaY. KiuraK. VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-cell lung cancers.Cancer Sci.202111251853186410.1111/cas.1480133410241
    [Google Scholar]
  11. SabbahD.A. HajjoR. SweidanK. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors.Curr. Top. Med. Chem.2020201081583410.2174/156802662066620030312310232124699
    [Google Scholar]
  12. UribeM.L. MarroccoI. YardenY. EGFR in Cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers20211311274810.3390/cancers1311274834206026
    [Google Scholar]
  13. RomanoR. BucciC. Role of EGFR in the nervous system.Cells202098188710.3390/cells908188732806510
    [Google Scholar]
  14. RobichauxJ.P. LeX. VijayanR.S.K. HicksJ.K. HeekeS. ElaminY.Y. LinH.Y. UdagawaH. SkoulidisF. TranH. VargheseS. HeJ. ZhangF. NilssonM.B. HuL. PoteeteA. RinsurongkawongW. ZhangX. RenC. LiuX. HongL. ZhangJ. DiaoL. MadisonR. SchrockA.B. SaamJ. RaymondV. FangB. WangJ. HaM.J. CrossJ.B. GrayJ.E. HeymachJ.V. Structure-based classification predicts drug response in EGFR-mutant NSCLC.Nature2021597787873273710.1038/s41586‑021‑03898‑134526717
    [Google Scholar]
  15. TouatM. IleanaE. Postel-VinayS. AndréF. SoriaJ.C. Targeting FGFR signaling in cancer.Clin. Cancer Res.201521122684269410.1158/1078‑0432.CCR‑14‑232926078430
    [Google Scholar]
  16. XieY. SuN. YangJ. TanQ. HuangS. JinM. NiZ. ZhangB. ZhangD. LuoF. ChenH. SunX. FengJ.Q. QiH. ChenL. FGF/FGFR signaling in health and disease.Signal Transduct. Target. Ther.20205118110.1038/s41392‑020‑00222‑732879300
    [Google Scholar]
  17. BabinaI.S. TurnerN.C. Advances and challenges in targeting FGFR signalling in cancer.Nat. Rev. Cancer201717531833210.1038/nrc.2017.828303906
    [Google Scholar]
  18. PapadopoulosN. LennartssonJ. The PDGF/PDGFR pathway as a drug target.Mol. Aspects Med.201862758810.1016/j.mam.2017.11.00729137923
    [Google Scholar]
  19. ZouX. TangX.Y. QuZ.Y. SunZ.W. JiC.F. LiY.J. GuoS.D. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review.Int. J. Biol. Macromol.202220253955710.1016/j.ijbiomac.2022.01.11335074329
    [Google Scholar]
  20. PandeyP. KhanF. UpadhyayT.K. SeungjoonM. ParkM.N. KimB. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies.Biomed. Pharmacother.202316111449110.1016/j.biopha.2023.11449137002577
    [Google Scholar]
  21. HuaH. KongQ. YinJ. ZhangJ. JiangY. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: A challenge for cancer therapy.J. Hematol. Oncol.20201316410.1186/s13045‑020‑00904‑332493414
    [Google Scholar]
  22. RiegerL. O’ConnorR. Controlled signaling—insulin-like growth factor receptor endocytosis and presence at intracellular compartments.Front. Endocrinol.20211162001310.3389/fendo.2020.62001333584548
    [Google Scholar]
  23. TurveyS.J. McPhillieM.J. KearneyM.T. MuenchS.P. SimmonsK.J. FishwickC.W.G. Recent developments in the structural characterisation of the IR and IGF1R: implications for the design of IR–IGF1R hybrid receptor modulators.RSC Med. Chem.202213436037410.1039/D1MD00300C35647546
    [Google Scholar]
  24. Esteban-VillarrubiaJ. Soto-CastilloJ.J. PozasJ. San Román-GilM. Orejana-MartínI. Torres-JiménezJ. CarratoA. Alonso-GordoaT. Molina-CerrilloJ. Tyrosine kinase receptors in oncology.Int. J. Mol. Sci.20202122852910.3390/ijms2122852933198314
    [Google Scholar]
  25. OguntadeA.S. Al-AmodiF. AlrumayhA. AlobaidaM. BwalyaM. Anti-angiogenesis in cancer therapeutics: the magic bullet.J. Egypt. Natl. Canc. Inst.20213311510.1186/s43046‑021‑00072‑633258396
    [Google Scholar]
  26. MaduC.O. WangS. MaduC.O. LuY. Angiogenesis in breast cancer progression, diagnosis, and treatment.J. Cancer202011154474449410.7150/jca.4431332489466
    [Google Scholar]
  27. IoannidouE. MoschettaM. ShahS. ParkerJ.S. OzturkM.A. Pappas-GogosG. SheriffM. RassyE. BoussiosS. Angiogenesis and anti-angiogenic treatment in prostate cancer: Mechanisms of action and molecular targets.Int. J. Mol. Sci.20212218992610.3390/ijms2218992634576107
    [Google Scholar]
  28. TilakM. HolbornJ. NewL.A. LalondeJ. JonesN. Receptor tyrosine kinase signaling and targeting in glioblastoma multiforme.Int. J. Mol. Sci.2021224183110.3390/ijms2204183133673213
    [Google Scholar]
  29. NardiM. CanoN.C.H. SimeonovS. BenceR. KurutosA. ScarpelliR. WunderlinD. ProcopioA. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities.Catalysts202313239210.3390/catal13020392
    [Google Scholar]
  30. LeelanandaS.P. LindertS. Computational methods in drug discovery.Beilstein J. Org. Chem.20161212694271810.3762/bjoc.12.26728144341
    [Google Scholar]
  31. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  32. VermaJ. KhedkarV. CoutinhoE. 3D-QSAR in drug design a review.Curr. Top. Med. Chem.20101019511510.2174/15680261079023226019929826
    [Google Scholar]
  33. TropshaA. Best practices for QSAR model development, validation, and exploitation.Mol. Inform.2010296-747648810.1002/minf.20100006127463326
    [Google Scholar]
  34. TandonH. ChakrabortyT. SuhagV. A brief review on importance of DFT in drug design.Res Med Eng Sci.201974RMES.000668
    [Google Scholar]
  35. AdekoyaO.C. AdekoyaG.J. SadikuE.R. HamamY. RayS.S. Application of DFT calculations in designing polymer-based drug delivery systems: An overview.Pharmaceutics2022149197210.3390/pharmaceutics1409197236145719
    [Google Scholar]
  36. MorrisG.M. Lim-WilbyM. Molecular Docking.Methods Mol Biol200844336538210.1007/978‑1‑59745‑177‑2_19
    [Google Scholar]
  37. AgarwalS. MehrotraR. Mini review : An overview of molecular docking.JSM Chem.201621024
    [Google Scholar]
  38. HollingsworthS.A. DrorR.O. Molecular Dynamics Simulation for All.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  39. JoshiT. JoshiT. SharmaP. ChandraS. PandeV. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase.J. Biomol. Struct. Dyn.202139382384010.1080/07391102.2020.171920031965918
    [Google Scholar]
  40. PollastriM.P. Overview on the Rule of Five.Curr. Protocols Pharmacol.20104911210.1002/0471141755.ph0912s4922294375
    [Google Scholar]
  41. EbenezerO. Oyetunde-JoshuaF. OmotosoO.D. ShapiM. Benzimidazole and its derivatives: Recent Advances (2020–2022).Results Chem.2023510092510.1016/j.rechem.2023.100925
    [Google Scholar]
  42. GhoshN.S. MukhijaM. KambojS. SinghR. Development of benzimidazole a promising scaffold against breast cancer via in silico approaches.J. Integr. Sci. Technol.2024121714714
    [Google Scholar]
  43. ElmaatyA.A. DarwishK.M. ChroudaA. BoseilaA.A. TantawyM.A. ElhadyS.S. ShaikA.B. MustafaM. Al-karmalawyA.A. in silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity.ACS Omega20227187589910.1021/acsomega.1c0551935036753
    [Google Scholar]
  44. YoussifB.G.M. MorcossM.M. BräseS. Abdel-AzizM. Abdel-RahmanH.M. Abou El-EllaD.A. AbdelhafezE.S.M.N. Benzimidazole-based derivatives as apoptotic antiproliferative agents: design, synthesis, docking, and mechanistic studies.Molecules202429244610.3390/molecules2902044638257358
    [Google Scholar]
  45. Abd El-LateefH.M. ElbastawesyM.A.I. Abdelghani IbrahimT.M. KhalafM.M. GoudaM. WahbaM.G.F. ZakiI. MorcossM.M. Design, synthesis, docking study, and antiproliferative evaluation of novel schiff base–benzimidazole hybrids with VEGFR-2 inhibitory activity.Molecules202328248110.3390/molecules2802048136677536
    [Google Scholar]
  46. HagarF.F. AbbasS.H. GomaaH.A.M. YoussifB.G.M. SayedA.M. AbdelhamidD. Abdel-AzizM. Chalcone/1,3,4-Oxadiazole/Benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR BRAFV600E.BMC Chem.202317111610.1186/s13065‑023‑01003‑337716963
    [Google Scholar]
  47. AlbrattyM. AlhazmiH.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review.Arab. J. Chem.202215610384610.1016/j.arabjc.2022.103846
    [Google Scholar]
  48. Al-WarhiT. Al-KarmalawyA.A. ElmaatyA.A. AlshubramyM.A. Abdel-MotaalM. MajrashiT.A. AsemM. NabilA. EldehnaW.M. SharakyM. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors.J. Enzyme Inhib. Med. Chem.202338117619110.1080/14756366.2022.213551236317648
    [Google Scholar]
  49. TodsapornD. ZubenkoA. KartsevV. AiebchunT. MahalapbutrP. PetrouA. GeronikakiA. DivaevaL. ChekrishevaV. YildizI. ChoowongkomonK. RungrotmongkolT. Discovery of novel EGFR inhibitor targeting wild-type and mutant forms of EGFR: in silico and in vitro study.Molecules2023287301410.3390/molecules2807301437049777
    [Google Scholar]
  50. ElsebaieH.A. El-BastawissyE.A. ElberemballyK.M. KhaleelE.F. BadiR.M. ShaldamM.A. EldehnaW.M. TawfikH.O. El-MoselhyT.F. Novel 4-(2-arylidenehydrazineyl)thienopyrimidine derivatives as anticancer EGFR inhibitors: Design, synthesis, biological evaluation, kinome selectivity and in silico insights.Bioorg. Chem.202314010679910.1016/j.bioorg.2023.10679937625210
    [Google Scholar]
  51. ElmongyE.I. BinjubairF.A. AlshehriO.Y. BaeshenK.A. AlmukhalfiZ.A. HenidiH.A. in silico screening and anticancer-apoptotic evaluation of newly synthesized thienopyrimidine/sulfonamide hybrids.Int. J. Mol. Sci.202324131082710.3390/ijms24131082737446005
    [Google Scholar]
  52. ElsebaieH.A. El-MoselhyT.F. El-BastawissyE.A. ElberemballyK.M. BadiR.M. ElkaeedE.B. ShaldamM.A. EldehnaW.M. TawfikH.O. Development of new thieno[2,3-d]pyrimidines as dual EGFR and STAT3 inhibitors endowed with anticancer and pro-apoptotic activities.Bioorg. Chem.202414310710110.1016/j.bioorg.2024.10710138183682
    [Google Scholar]
  53. FirouziM. HaghighijooZ. EskandariM. MohabbatiM. MiriR. JameiM.H. PoustforooshA. NazariS. FiruziO. KhoshneviszadehM. EdrakiN. Synthesis and cytotoxic activity evaluation of novel imidazopyridine carbohydrazide derivatives.BMC Chem.2024181610.1186/s13065‑023‑01073‑338184605
    [Google Scholar]
  54. AjaniO.O. NlebemuoM.T. AdekoyaJ.A. OgunniranK.O. SiyanbolaT.O. AjanakuC.O. Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents.Acta Pharm.201969217719610.2478/acph‑2019‑001331259731
    [Google Scholar]
  55. AlanaziM.M. ElwanA. AlsaifN.A. ObaidullahA.J. AlkahtaniH.M. Al-MehiziaA.A. AlsubaieS.M. TaghourM.S. EissaI.H. Discovery of new 3-methylquinoxalines as potential anti- cancer agents and apoptosis inducers targeting VEGFR-2: design, synthesis, and in silico studies.J. Enzyme Inhib. Med. Chem.20213611732175010.1080/14756366.2021.194559134325596
    [Google Scholar]
  56. AlsaifN.A. MahdyH.A. AlanaziM.M. ObaidullahA.J. AlkahtaniH.M. Al-HossainiA.M. Al-MehiziA.A. ElwanA. TaghourM.S. Targeting VEGFR-2 by new quinoxaline derivatives: Design, synthesis, antiproliferative assay, apoptosis induction, and in silico studies.Arch. Pharm.20223552210035910.1002/ardp.20210035934862634
    [Google Scholar]
  57. ElsakkaM. TawfikM. BarakatL. NafieM. Molecular docking approach of some quinoxaline derivatives as anticancer agents targeting VEGFR-2.Alfarama J. Basic Appl. Sci.202351768210.21608/ajbas.2023.225602.1163
    [Google Scholar]
  58. AbdullahiS.H. UzairuA. DanazumiA.U. Finbarrs-BelloE. UmarA.B. ShallangwaG.A. UbaS. Computational design of quinoxaline molecules as VEGFR-2 inhibitors: QSAR modelling, pharmacokinetics, molecular docking, and dynamics simulation studies.Biocatal. Agric. Biotechnol.20235110278710.1016/j.bcab.2023.102787
    [Google Scholar]
  59. IsmailM.M.F. ShawerT.Z. IbrahimR.S. AbusaifM.S. KamalM.M. AllamR.M. AmmarY.A. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers.RSC Advances20231345319083192410.1039/D3RA05066A37915441
    [Google Scholar]
  60. MatadaB.S. PattanashettarR. YernaleN.G. A comprehensive review on the biological interest of quinoline and its derivatives.Bioorg. Med. Chem.20213211597310.1016/j.bmc.2020.11597333444846
    [Google Scholar]
  61. ManR-J. JeelaniN. ZhouC. YangY-S. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents.Anticancer. Agents Med. Chem.20202010.2174/187152062066620051615034532416703
    [Google Scholar]
  62. HengphasatpornK. AiebchunT. MahalapbutrP. AuepattanapongA. KhaikateO. ChoowongkomonK. KuhakarnC. MeesinJ. ShigetaY. RungrotmongkolT. Sulfonylated indeno[1,2- c ]quinoline derivatives as potent EGFR tyrosine kinase inhibitors.ACS Omega2023822196451965510.1021/acsomega.3c0119537305292
    [Google Scholar]
  63. ElkaeedE.B. TaghourM.S. MahdyH.A. EldehnaW.M. El-DeebN.M. KenawyA.M. A AlsfoukB. DahabM.A. MetwalyA.M. EissaI.H. El-ZahabiM.A. New quinoline and isatin derivatives as apoptotic VEGFR-2 inhibitors: design, synthesis, anti-proliferative activity, docking, ADMET, toxicity, and MD simulation studies.J. Enzyme Inhib. Med. Chem.20223712191220510.1080/14756366.2022.211086935975321
    [Google Scholar]
  64. KardileR.A. SarkateA.P. LokwaniD.K. TiwariS.V. AzadR. ThopateS.R. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: in vitro screening and ADME predictions.Eur. J. Med. Chem.2023245Pt 111488910.1016/j.ejmech.2022.11488936375337
    [Google Scholar]
  65. GovindaraoK. SrinivasanN. SureshR. RahejaR.K. AnnaduraiS. BhandareR.R. ShaikA.B. Quinoline conjugated 2-azetidinone derivatives as prospective anti-breast cancer agents: in vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies.J. Saudi Chem. Soc.202226310147110.1016/j.jscs.2022.101471
    [Google Scholar]
  66. EL-ZAHABIM. Review on the significance of quinazoline derivatives as broad spectrum anti-cancer agents.Al-Azhar J. Pharmac. Sci.2021642214010.21608/ajps.2021.187748
    [Google Scholar]
  67. KaranR. AgarwalP. SinhaM. MahatoN. Recent advances on quinazoline derivatives: A potential bioactive scaffold in medicinal chemistry.Chem.Eng.2021547310.3390/chemengineering5040073
    [Google Scholar]
  68. MortazaviM. EskandariM. MoosaviF. DamghaniT. KhoshneviszadehM. PirhadiS. SasoL. EdrakiN. FiruziO. Novel quinazoline-1,2,3-triazole hybrids with anticancer and MET kinase targeting properties.Sci. Rep.20231311468510.1038/s41598‑023‑41283‑237673888
    [Google Scholar]
  69. Abd El-KarimS.S. SyamY.M. El KerdawyA.M. Abdel-MohsenH.T. Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents.Bioorg. Chem.202414210692010.1016/j.bioorg.2023.10692037898082
    [Google Scholar]
  70. AbdullahiS.H. UzairuA. ShallangwaG.A. UbaS. UmarA.B. in-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line.Bull. Natl. Res. Cent.2022461210.1186/s42269‑021‑00690‑z
    [Google Scholar]
  71. HasanvandZ. Oghabi BakhshaieshT. PeytamF. FiroozpourL. HosseinzadehE. MotahariR. MoghimiS. NazeriE. ToolabiM. MomeniF. BijanzadehH. KhalajA. BaratteB. JosselinB. RobertT. BachS. EsmaeiliR. ForoumadiA. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies.Bioorg. Chem.202313310638310.1016/j.bioorg.2023.10638336764231
    [Google Scholar]
  72. MonksT. JonesD. The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers.Curr. Drug Metab.20023442543810.2174/138920002333738812093358
    [Google Scholar]
  73. DuloB. PhanK. GithaigaJ. RaesK. De MeesterS. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential.Waste Biomass Valoriz.202112126339637410.1007/s12649‑021‑01443‑9
    [Google Scholar]
  74. WellingtonK.W. UnderstandingK. Understanding cancer and the anticancer activities of naphthoquinones a review.RSC Adv.2015526203092033810.1039/C4RA13547D
    [Google Scholar]
  75. RahmanM.M. IslamM.R. AkashS. ShohagS. AhmedL. SuptiF.A. RaufA. AljohaniA.S.M. Al AbdulmonemW. KhalilA.A. SharmaR. ThiruvengadamM. Naphthoquinones and derivatives as potential anticancer agents: An updated review.Chem. Biol. Interact.202236811019810.1016/j.cbi.2022.11019836179774
    [Google Scholar]
  76. MahalapbutrP. LeechaisitR. ThongnumA. TodsapornD. PrachayasittikulV. RungrotmongkolT. PrachayasittikulS. RuchirawatS. PrachayasittikulV. PingaewR. Discovery of anilino-1,4-naphthoquinones as potent EGFR tyrosine kinase inhibitors: Synthesis, biological evaluation, and comprehensive molecular modeling.ACS Omega2022721178811789310.1021/acsomega.2c0118835664590
    [Google Scholar]
  77. LeechaisitR. MahalapbutrP. BoonsriP. KarnchanapandhK. RungrotmongkolT. PrachayasittikulV. PrachayasittikulS. RuchirawatS. PrachayasittikulV. PingaewR. Discovery of novel naphthoquinone–chalcone hybrids as potent FGFR1 tyrosine kinase inhibitors: Synthesis, biological evaluation, and molecular modeling.ACS Omega2023836325933260510.1021/acsomega.3c0317637720749
    [Google Scholar]
  78. AlamM.J. AlamO. NaimM.J. NawazF. ManaithiyaA. ImranM. ThabetH.K. AlshehriS. GhoneimM.M. AlamP. ShakeelF. Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics.Molecules20222724870810.3390/molecules2724870836557840
    [Google Scholar]
  79. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY.N. Al-aizariF.A. AnsarM. Synthesis and pharmacological activities of pyrazole derivatives: A review.Molecules201823113410.3390/molecules2301013429329257
    [Google Scholar]
  80. MertS. KasimogullariR. OkS. A short review on pyrazole derivatives and their applications.J. Postdr. Res201426472
    [Google Scholar]
  81. HajalsiddigT.T.H. OsmanA.B.M. SaeedA.E.M. 2D-QSAR modeling and molecular docking studies on 1 H -pyrazole-1-carbothioamide derivatives as EGFR kinase inhibitors.ACS Omega2020530186621867410.1021/acsomega.0c0132332775868
    [Google Scholar]
  82. KurbanB. SağlıkB.N. OsmaniyeD. LeventS. ÖzkayY. KaplancıklıZ.A. Synthesis and anticancer activities of pyrazole–thiadiazole-based EGFR inhibitors.ACS Omega2023834315003150910.1021/acsomega.3c0463537663500
    [Google Scholar]
  83. SolimanD.H. NafieM.S. Design, synthesis, and docking studies of novel pyrazole-based scaffolds and their evaluation as VEGFR2 inhibitors in the treatment of prostate cancer.RSC Adv.20231330204432045610.1039/D3RA02579A37435371
    [Google Scholar]
  84. EtengM.U. EyongE.U. AkpanyungE.O. AgiangM.A. AremuC.Y. Recent advances in caffeine and theobromine toxicities: A review.Plant Foods Hum. Nutr.199751323124310.1023/A:10079768316849629863
    [Google Scholar]
  85. Martínez-PinillaE. Oñatibia-AstibiaA. FrancoR. The relevance of theobromine for the beneficial effects of cocoa consumption.Front. Pharmacol.201563010.3389/fphar.2015.0003025750625
    [Google Scholar]
  86. EissaI.H. YousefR.G. ElkadyH. ElkaeedE.B. AlsfoukA.A. HuseinD.Z. IbrahimI.M. ElhendawyM.A. GodfreyM. MetwalyA.M. Identification of new theobromine-based derivatives as potent VEGFR-2 inhibitors: design, semi-synthesis, biological evaluation, and in silico studies.RSC Advances20231333232852330710.1039/D3RA04007K37538515
    [Google Scholar]
  87. EissaI.H. YousefR.G. ElkadyH. ElkaeedE.B. AlsfoukA.A. HuseinD.Z. IbrahimI.M. RadwanM.M. MetwalyA.M. A Theobromine derivative with anticancer properties targeting VEGFR-2: Semisynthesis, in silico and in vitro studies.ChemistryOpen20231210e20230006610.1002/open.20230006637803417
    [Google Scholar]
  88. EissaI.H. YousefR.G. ElkaeedE.B. AlsfoukA.A. HuseinD.Z. IbrahimI.M. AlesawyM.S. ElkadyH. MetwalyA.M. Anticancer derivative of the natural alkaloid, theobromine, inhibiting EGFR protein: Computer-aided drug discovery approach.PLoS One2023183e028258610.1371/journal.pone.028258636893122
    [Google Scholar]
  89. EissaI.H. YousefR.G. ElkadyH. AlsfoukA.A. AlsfoukB.A. HuseinD.Z. IbrahimI.M. ElkaeedE.B. MetwalyA.M. A new anticancer semisynthetic theobromine derivative targeting EGFR protein: CADDD study.Life202313119110.3390/life1301019136676140
    [Google Scholar]
  90. ElkaeedE.B. YousefR.G. ElkadyH. AlsfoukA.A. HuseinD.Z. IbrahimI.M. MetwalyA.M. EissaI.H. New anticancer theobromine derivative targeting EGFRWT and EGFRT790M: Design, semi-synthesis, in silico, and in vitro anticancer studies.Molecules20222718585910.3390/molecules2718585936144596
    [Google Scholar]
  91. HassanO.M. KubbaA. TahtamouniL.H. Novel 5-bromoindole-2-carboxylic acid derivatives as EGFR inhibitors: Synthesis, docking study, and structure activity relationship.Anticancer. Agents Med. Chem.202323111336134810.2174/187152062366623022715344936847231
    [Google Scholar]
  92. ElkaeedE.B. YousefR.G. ElkadyH. GobaaraI.M.M. AlsfoukA.A. HuseinD.Z. IbrahimI.M. MetwalyA.M. EissaI.H. The assessment of anticancer and VEGFR-2 inhibitory activities of a new 1H-indole derivative: in silico and in vitro approaches.Processes2022107139110.3390/pr10071391
    [Google Scholar]
  93. ElsawiA.E. ShahinM.I. ElbendaryH.A. Al-WarhiT. HassanF.E. EldehnaW.M. 1,2,4-triazole-tethered indolinones as new cancer-fighting small molecules targeting VEGFR-2: Synthesis, biological evaluations and molecular docking.Pharmaceuticals20241718110.3390/ph1701008138256914
    [Google Scholar]
  94. Al-WahaibiL.H. MohammedA.F. AbdelrahmanM.H. TrembleauL. YoussifB.G.M. Design, synthesis, and antiproliferative activity of new 5-chloro-indole-2-carboxylate and pyrrolo[3,4-b]indol-3-one derivatives as potent inhibitors of EGFRT790M/BRAFV600E pathways.Molecules2023283126910.3390/molecules2803126936770936
    [Google Scholar]
  95. Al-WahaibiL.H. MohammedA.F. AbdelrahmanM.H. TrembleauL. YoussifB.G.M. Design, synthesis, and biological evaluation of indole-2-carboxamides as potential multi-target antiproliferative agents.Pharmaceuticals2023167103910.3390/ph1607103937513950
    [Google Scholar]
  96. Al-WahaibiL.H. MohammedA.F. Abdel RahmanF.E.Z.S. AbdelrahmanM.H. GuX. TrembleauL. YoussifB.G.M. Design, synthesis, apoptotic, and antiproliferative effects of 5-chloro-3- (2-methoxyvinyl)-indole-2-carboxamides and pyrido[3,4-b]indol-1-ones as potent EGFR WT/ EGFR T790M inhibitors.J. Enzyme Inhib. Med. Chem.2023381221860210.1080/14756366.2023.221860237254958
    [Google Scholar]
  97. KhalilullahH. AgarwalD.K. AhsanM.J. JadavS.S. MohammedH.A. KhanM.A. MohammedS.A.A. KhanR. Synthesis and anti-cancer activity of new pyrazolinyl-indole derivatives: Pharmacophoric interactions and docking studies for identifying new EGFR inhibitors.Int. J. Mol. Sci.20222312654810.3390/ijms2312654835742992
    [Google Scholar]
  98. FakhryM.M. MattarA.A. AlsulaimanyM. Al-OlayanE.M. Al-RashoodS.T. Abdel-AzizH.A. New thiazolyl-pyrazoline derivatives as potential dual EGFR/HER2 inhibitors: Design, synthesis, anticancer activity evaluation and in silico study.Molecules20232821745510.3390/molecules2821745537959874
    [Google Scholar]
  99. BaammiS. El AllaliA. DaoudR. Potent VEGFR-2 inhibitors for resistant breast cancer: A comprehensive 3D-QSAR, ADMET, molecular docking and MMPBSA calculation on triazolopyrazine derivatives.Front. Mol. Biosci.202310128865210.3389/fmolb.2023.128865238074087
    [Google Scholar]
  100. D ShankaraS. IsloorA.M. JayaswamyP.K. ShettyP. ChakrabortyD. VenugopalP.P. Vetting of new 2,5-bis (2,2,2-trifluoroethoxy) phenyl-linked 1,3-thiazolidine-4-one derivatives as AURKA and VEGFR-2 inhibitor antiglioma agents assisted with in vitro and in silico studies.ACS Omega2023846435964360910.1021/acsomega.3c0466238027362
    [Google Scholar]
  101. HassanA.Y. El DeebM.A. El-ZoghbiM.S. El-SebaeyS.A. MohamedN.M. Novel thioxoimidazolidinone derivatives as dual EGFR and CDK2 inhibitors: Design, synthesis, anticancer evaluation with in silico study.J. Mol. Struct.2023129113602210.1016/j.molstruc.2023.136022
    [Google Scholar]
  102. AlminderejF. GhannayS. ElsamaniM. AlhawdayF. AlbadriA. ElbehairiS. AlfaifiM. KadriA. AouadiK. in vitro and in silico evaluation of antiproliferative activity of new isoxazolidine derivatives targeting EGFR: Design, synthesis, cell cycle analysis, and apoptotic inducers.Pharmaceuticals2023167102510.3390/ph1607102537513936
    [Google Scholar]
  103. Canh PhamE. TruongT.N. Design, microwave-assisted synthesis, antimicrobial and anticancer evaluation, and in silico studies of some 2-naphthamide derivatives as DHFR and VEGFR-2 inhibitors.ACS Omega2022737336143362810.1021/acsomega.2c0520636157776
    [Google Scholar]
  104. MegawatiD.S. EkowatiJ. SiswandonoS. Quantitative structure-activity relationship (QSAR) of N-Benzoyl-N'- naphtylthiourea derivative compounds by in silico as anticancer through inhibition of VEGFR2 receptors.Adv. Eng. Res.202322113714810.2991/978‑94‑6463‑148‑7_15
    [Google Scholar]
  105. EmamS.M. RayesS.M.E. AliI.A.I. SolimanH.A. NafieM.S. Synthesis of phthalazine-based derivatives as selective anti-breast cancer agents through EGFR-mediated apoptosis: in vitro and in silico studies.BMC Chem.20231719010.1186/s13065‑023‑00995‑237501139
    [Google Scholar]
  106. SinghS. GhoshP. RoyR. BeheraA. SahadevanR. KarP. SadhukhanS. SonawaneA. 4″-Alkyl EGCG derivatives induce cytoprotective autophagy response by inhibiting EGFR in glioblastoma cells.ACS Omega2024922286230110.1021/acsomega.3c0611038250397
    [Google Scholar]
  107. AhmedS.A. KamelM.S. AboelezM.O. MaX. Al-KarmalawyA.A. MousaS.A.S. ShokrE.K. Abdel-GhanyH. BelalA. El HamdM.A. Al ShehriZ.S. El Aleem Ali Ali El-RemailyM.A. Thieno[2,3- b ]thiophene derivatives as potential EGFR WT and EGFRT 790M inhibitors with antioxidant activities: Microwave-assisted synthesis and quantitative in vitro and in silico studies.ACS Omega2022749455354554410.1021/acsomega.2c0621936530244
    [Google Scholar]
  108. UddinK.M. SakibM. SirajiS. UddinR. RahmanS. AlodhaybA. AlibrahimK.A. KumerA. MatinM.M. BhuiyanM.M.H. Synthesis of new derivatives of benzylidinemalononitrile and ethyl 2-cyano-3-phenylacrylate: in silico anticancer evaluation.ACS Omega2023829258172583110.1021/acsomega.3c0112337521603
    [Google Scholar]
  109. KurniawanY.S. FatmasariN. JuminaJ. PranowoH.D. SholikhahE.N. Evaluation of the anticancer activity of hydroxyxanthones against human liver carcinoma cell line.J. Multidiscipl. Appl. Nat. Sci.20234111510.47352/jmans.2774‑3047.165
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266312422240712053821
Loading
/content/journals/ctmc/10.2174/0115680266312422240712053821
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test