Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Several chemical studies described the physiological efficacy of 1,4-dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina. Among the vascular-selective DHPs, nifedipine, felodipine, and isradipine are key representatives, with nifedipine often considered the archetype due to its widespread use and efficacy in promoting vascular relaxation. Significant efforts have been made to modify the structure of nifedipine, the prototype of DHPs to better understand structure-activity relationships (SARs) and amplify calcium-modulating effects.

Objectives

The objective of this study is to explore the SARs of various DHPs and the implications of 1,4-dihydropyrimidines (DHPMs) to block L- (CaV1.2)/T-type (CaV3.1 and CaV3.2) calcium channels subtypes in medicinal chemistry and physiology as calcium channel blockers (CCBs).

Methods

We have searched public databases such as National Library of Medicine (NLM), PubMed, and Google Scholar. Collected information pertinent to these chemical entities from reviews, and original articles. We have used keywords to search in these databases such as ‘calcium channel physiology’, ‘calcium channel blockers’, ‘medicinal chemistry’, ‘1,4-dihydropyridines’, and ‘1,4-dihydropyrimidines’, ‘structure-activity relationship’. We included the original articles, short communications, meta-analysis, and review articles published from the years 1975 to 2024.

Results

Previous efforts by medicinal chemists have made significant strides in the synthesis of DHPs and DHPMs. These researchers have focused on creating CCBs that could effectively replicate the pharmacological properties of those currently in clinical use. While the standard one-pot synthesis of DHPMs typically involves three key components under various reaction conditions, more intricate synthetic routes have also been explored. These include enzyme-catalyzed processes, solvent-free reactions, ultrasonic methods, conventional reactions, acid-catalyzed pathways, and microwave-assisted synthesis, each of which offers distinct advantages and potential for the efficient production of DHPMs. DHPs have been the focus of significant research efforts to improve their potency and selectivity. However, a major limitation identified for this class of compounds is their short plasma half-life, potentially caused by metabolic oxidation to pyridine derivatives. To address these limitations, developing DHPMs through efficient modifications of the DHP scaffold has been explored. This research has also investigated the quantitative structure-activity relationships (QSARs) of C2-substituted DHPMs, fused 1,4-dihydropyrimidines, N3-substituted DHPMs, the bioactive role of fused pyrimidines, and comparison with fourth-generation CCBs, drug combinations considering their impact on calcium channel physiology. Subsequently, we discussed the efficacy of various CCBs, which are in clinical trials, lifestyle modifications, and other emerging technologies to ameliorate cardiovascular diseases.

Conclusion

Ongoing research into DHPs and DHPMs has greatly advanced our understanding of their SARs and potential as CCBs. Diverse synthetic methods, including enzyme-catalyzed, solvent-free, and microwave-assisted techniques, have been developed, enhancing the production and pharmacological properties of DHPMs. Future research should aim to optimize the DHP and DHPM scaffolds to improve potency, selectivity, and metabolic stability. Focus on significant modifications, such as C2 and N3 substitutions, could lead to more selective and potent CCBs. Additionally, integrating QSAR models and high-throughput screening will help identify promising clinical candidates, potentially expanding DHPMs' therapeutic use beyond cardiovascular diseases. In summary, continued exploration of novel DHPMs and innovative synthesis approaches will be key to developing next-generation calcium channel blockers with improved efficacy and safety.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266323908241114064318
2025-01-01
2025-10-09
Loading full text...

Full text loading...

References

  1. ZohnyY.M. AwadS.M. RabieM.A. Al-SaidanO.A. Synthesis of dihydropyrimidines: Isosteres of nifedipine and evaluation of their calcium channel blocking efficiency.Molecules202328278410.3390/molecules28020784 36677842
    [Google Scholar]
  2. OzerE.K. GunduzM.G. El-KhoulyA. SaraY. SimsekR. IskitA.B. SafakC. Synthesis of fused 1,4-dihydropyridines as potential calcium channel blockers.Turk Biyokim. Derg.201843657858610.1515/tjb‑2016‑0247
    [Google Scholar]
  3. DolphinA.C. A short history of voltage‐gated calcium channels.Br. J. Pharmacol.2006147S1Suppl. 1S56S6210.1038/sj.bjp.0706442 16402121
    [Google Scholar]
  4. CamerinoD.C. DesaphyJ.F. TricaricoD. PiernoS. LiantonioA. Therapeutic approaches to ion channel diseases.Adv. Genet.2008648114510.1016/S0065‑2660(08)00804‑3 19161833
    [Google Scholar]
  5. CarafoliE. Special issue: Calcium signaling and disease.Biochem. Biophys. Res. Commun.20043224109710.1016/j.bbrc.2004.08.049
    [Google Scholar]
  6. ZamponiG.W. Antagonist binding sites of voltage-dependent calcium channels.Drug Dev. Res.1997423-413114310.1002/(SICI)1098‑2299(199711/12)42:3/4<131:AID‑DDR4>3.0.CO;2‑R
    [Google Scholar]
  7. SchleiferK.J. Stereoselective characterization of the 1,4-dihydropyridine binding site at L-type calcium channels in the resting state and the opened/inactivated state.J. Med. Chem.199942122204221110.1021/jm981114c 10377225
    [Google Scholar]
  8. EdrakiN. MehdipourA.R. KhoshneviszadehM. MiriR. Dihydropyridines: Evaluation of their current and future pharmacological applications.Drug Discov. Today20091421-221058106610.1016/j.drudis.2009.08.004 19729074
    [Google Scholar]
  9. TriggleD.J. 1,4‐dihydropyridine calcium channel ligands: Selectivity of action. The roles of pharmacokinetics, state‐dependent interactions, channel isoforms, and other factors.Drug Dev. Res.200358151710.1002/ddr.10124
    [Google Scholar]
  10. SafakC. SimsekR. Fused 1,4-dihydropyridines as potential calcium modulatory compounds.Mini Rev. Med. Chem.20066774775510.2174/138955706777698606 16842124
    [Google Scholar]
  11. GoldmannS. StoltefussJ. 1, 4‐dihydropyridines: Effects of chirality and conformation on the calcium antagonist and calcium agonist activities.Angew. Chem. Int. Ed. Engl.199130121559157810.1002/anie.199115591
    [Google Scholar]
  12. GordeevM.F. PatelD.V. EnglandB.P. JonnalagaddaS. CombsJ.D. GordonE.M. Combinatorial synthesis and screening of a chemical library of 1,4-dihydropyridine calcium channel blockers.Bioorg. Med. Chem.19986788388910.1016/S0968‑0896(98)00048‑0 9730224
    [Google Scholar]
  13. ŞafakC. GündüzM.G. İlhanS.Ö. ŞimşekR. İşliF. YıldırımŞ. FincanG.S.Ö. SarıoğluY. LindenA. Synthesis and myorelaxant activity of fused 1,4‐dihydropyridines on isolated rabbit gastric fundus.Drug Dev. Res.201273633234210.1002/ddr.21024
    [Google Scholar]
  14. RoseU. 5‐Oxo‐1,4‐dihydroindenopyridines: Calcium modulators with partial calcium agonistic activity.J. Heterocycl. Chem.199027223724210.1002/jhet.5570270223
    [Google Scholar]
  15. TuS. MiaoC. FangF. YoujianF. LiT. ZhuangQ. ZhangX. ZhuS. ShiD. New potential calcium channel modulators: design and synthesis of compounds containing two pyridine, pyrimidine, pyridone, quinoline and acridine units under microwave irradiation.Bioorg. Med. Chem. Lett.20041461533153610.1016/j.bmcl.2003.12.092 15006397
    [Google Scholar]
  16. LipkindG.M. FozzardH.A. Molecular modeling of interactions of dihydropyridines and phenylalkylamines with the inner pore of the L-type Ca2+ channel.Mol. Pharmacol.200363349951110.1124/mol.63.3.499 12606756
    [Google Scholar]
  17. El-KhoulyA. GündüzM. ÇengelliÇ. ŞimşekR. ErolK. ŞafakC. YıldırımS. ButcherR. Microwave-assisted synthesis and spasmolytic activity of 4-indolylhexahydroquinoline derivatives.Drug Res. (Stuttg.)2013631157958510.1055/s‑0033‑1348261 23804251
    [Google Scholar]
  18. BisiA. BudriesiR. RampaA. FabbriG. ChiariniA. ValentiP. Synthesis and pharmacological profile of some chloroxanthone-1, 4-dihydropyridine derivatives.Arzneimittelforschung1996469848851 8876931
    [Google Scholar]
  19. ErmondiG. VisentinS. BoschiD. FrutteroR. GascoA. Structural investigation of Ca 2+ antagonists benzofurazanyl and benzofuroxanyl-1,4-dihydropyridines.J. Mol. Struct.20005231-314916210.1016/S0022‑2860(99)00386‑5
    [Google Scholar]
  20. CoburnR.A. WierzbaM. SutoM.J. SoloA.J. TriggleA.M. TriggleD.J. 1,4-Dihydropyridine antagonist activities at the calcium channel: A quantitative structure-activity relationship approach.J. Med. Chem.198831112103210710.1021/jm00119a009 2846838
    [Google Scholar]
  21. MiriR. JavidniaK. SarkarzadehH. HemmateenejadB. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1,4-dihydropyridines as calcium channel antagonist.Bioorg. Med. Chem.200614144842484910.1016/j.bmc.2006.03.016 16603367
    [Google Scholar]
  22. IoanP. CarosatiE. MicucciM. CrucianiG. BroccatelliF. ZhorovB.S. ChiariniA. BudriesiR. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): Action in ion channels and GPCRs.Curr. Med. Chem.201118324901492210.2174/092986711797535173 22050742
    [Google Scholar]
  23. LeonardiA. MottaG. PenniniR. TestaR. SironiG. CattoA. CerriA. ZappaM. BianchiG. NardiD. Asymmetric N-(3,3-diphenylpropyl)aminoalkyl esters of 4-aryl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acids with antihypertensive activity.Eur. J. Med. Chem.199833539942010.1016/S0223‑5234(98)80015‑9
    [Google Scholar]
  24. TamazawaK. ArimaH. KojimaT. IsomuraY. OkadaM. FujitaS. FuruyaT. TakenakaT. InagakiO. TeraiM. Stereoselectivity of a potent calcium antagonist, 1-benzyl-3-pyrrolidinyl methyl 2,6-dimethyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.J. Med. Chem.198629122504251110.1021/jm00162a013 3023614
    [Google Scholar]
  25. GkogkosK. PavlidisG. KarakozoglouA. KoprasA. MemiE. TsoutsouliV. Barnidipine: Assessment of safety and efficacy: 1 year experience.Proceedings of the Journal Of Hypertension2006S32S32
    [Google Scholar]
  26. TelebM. ZhangF.X. FarghalyA.M. Aboul WafaO.M. FronczekF.R. ZamponiG.W. FahmyH. Synthesis of new N3- substituted dihydropyrimidine derivatives as L-/T- type calcium channel blockers.Eur. J. Med. Chem.2017134526110.1016/j.ejmech.2017.03.080 28399450
    [Google Scholar]
  27. BakrisG.L. SorrentinoM. Hypertension: A companion to braunwald’s heart disease e-book.Endocrinology, Diabetes and MetabolismElsevier Health Sciences: Chicago, Illinois201747549710.1016/C2015‑0‑01752‑X
    [Google Scholar]
  28. TelebM. RizkO.H. ZhangF.X. FronczekF.R. ZamponiG.W. FahmyH. Synthesis of some new C2 substituted dihydropyrimidines and their electrophysiological evaluation as L-/T-type calcium channel blockers.Bioorg. Chem.20198810291510.1016/j.bioorg.2019.04.009 31005784
    [Google Scholar]
  29. BetzenhauserM. PittG. AntzelevitchC. Calcium channel mutations in cardiac arrhythmia syndromes.Curr. Mol. Pharmacol.20158213314210.2174/1874467208666150518114857 25981977
    [Google Scholar]
  30. LamA. KarekarP. ShahK. HariharanG. FleyshmanM. KaurH. SinghH. Gururaja RaoS. Drosophila voltage-gated calcium channel α1-subunits regulate cardiac function in the aging heart.Sci. Rep.201881691010.1038/s41598‑018‑25195‑0 29720608
    [Google Scholar]
  31. BersD. Perez-ReyesE. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release.Cardiovasc. Res.199942233936010.1016/S0008‑6363(99)00038‑3 10533572
    [Google Scholar]
  32. Pachòn AngonaI. DanielS. MartinH. BonetA. WnorowskiA. MajM. JóźwiakK. SilvaT.B. RefouveletB. BorgesF. Marco-ContellesJ. IsmailiL. Design, synthesis and biological evaluation of new antioxidant and neuroprotective multitarget directed ligands able to block calcium channels.Molecules2020256132910.3390/molecules25061329 32183349
    [Google Scholar]
  33. KowalskaM. FijałkowskiŁ. KubackaM. SałatK. GrześkG. NowaczykJ. NowaczykA. Antiepileptic drug tiagabine does not directly target key cardiac ion channels Kv11. 1, Nav1. 5 and Cav1. 2.Molecules20212612352210.3390/molecules26123522 34207748
    [Google Scholar]
  34. KushnerJ. FerrerX. MarxS. Roles and regulation of voltage-gated calcium channels in arrhythmias.J. Innov. Card. Rhythm Manag.201910103874388010.19102/icrm.2019.101006 32494407
    [Google Scholar]
  35. NargeotJ. LoryP. RichardS. Molecular basis of the diversity of calcium channels in cardiovascular tissues.Eur. Heart J.199718Suppl. A152610.1093/eurheartj/18.suppl_A.15 9049536
    [Google Scholar]
  36. AndradeF. Rangel-SandovalC. Rodríguez-HernándezA. López-DyckE. ElizaldeA. Virgen-OrtizA. Bonales-AlatorreE. Valencia-CruzG. Sánchez-PastorE. Capsaicin causes vasorelaxation of rat aorta through blocking of L-type Ca2+ channels and activation of CB1 receptors.Molecules20202517395710.3390/molecules25173957 32872656
    [Google Scholar]
  37. WuJ. YanZ. LiZ. YanC. LuS. DongM. YanN. Structure of the voltage-gated calcium channel Ca v 1.1 complex.Science20153506267aad239510.1126/science.aad2395 26680202
    [Google Scholar]
  38. OnoK. IijimaT. Cardiac T-type Ca2+ channels in the heart.J. Mol. Cell. Cardiol.2010481657010.1016/j.yjmcc.2009.08.021 19729018
    [Google Scholar]
  39. WeissN. ZamponiG.W. T-type calcium channels: From molecule to therapeutic opportunities.Int. J. Biochem. Cell Biol.2019108343910.1016/j.biocel.2019.01.008 30648620
    [Google Scholar]
  40. HansenP.B.L. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: News from the world of knockout mice.Am. J. Physiol. Regul. Integr. Comp. Physiol.20153084R227R23710.1152/ajpregu.00276.2014 25519728
    [Google Scholar]
  41. HofmannF. FlockerziV. KahlS. WegenerJ.W. L-type CaV1.2 calcium channels: From in vitro findings to in vivo function.Physiol. Rev.201494130332610.1152/physrev.00016.2013 24382889
    [Google Scholar]
  42. MoosmangS. LenhardtP. HaiderN. HofmannF. WegenerJ.W. Mouse models to study L-type calcium channel function.Pharmacol. Ther.2005106334735510.1016/j.pharmthera.2004.12.003 15922017
    [Google Scholar]
  43. LiaoP. YongT. LiangM. YueD. SoongT. Splicing for alternative structures of Ca1.2 Ca channels in cardiac and smooth muscles.Cardiovasc. Res.200568219720310.1016/j.cardiores.2005.06.024 16051206
    [Google Scholar]
  44. MesircaP. TorrenteA.G. MangoniM.E. Functional role of voltage gated Ca2+ channels in heart automaticity.Front. Physiol.201561910.3389/fphys.2015.00019 25698974
    [Google Scholar]
  45. KuoI.Y.T. HowittL. SandowS.L. McFarlaneA. HansenP.B. HillC.E. Role of T-type channels in vasomotor function: team player or chameleon?Pflugers Arch.2014466476777910.1007/s00424‑013‑1430‑x 24482062
    [Google Scholar]
  46. MangoniM.E. TraboulsieA. LeoniA.L. CouetteB. MargerL. Le QuangK. KupferE. Cohen-SolalA. VilarJ. ShinH.S. EscandeD. CharpentierF. NargeotJ. LoryP. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/α1G T-type calcium channels.Circ. Res.200698111422143010.1161/01.RES.0000225862.14314.49 16690884
    [Google Scholar]
  47. ChiangC.S. HuangC.H. ChiengH. ChangY.T. ChangD. ChenJ.J. ChenY.C. ChenY.H. ShinH.S. CampbellK.P. ChenC.C. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice.Circ. Res.2009104452253010.1161/CIRCRESAHA.108.184051 19122177
    [Google Scholar]
  48. HansenP.B.L. Functional and pharmacological consequences of the distribution of voltage‐gated calcium channels inthe renal blood vessels.Acta Physiol. (Oxf.)2013207469069910.1111/apha.12070 23351056
    [Google Scholar]
  49. HommaK. HayashiK. YamaguchiS. FujishimaS. HoriS. ItohH. Renal microcirculation and calcium channel subtypes.Curr. Hypertens. Rev.20149318218610.2174/1573402110666140131160617 24479750
    [Google Scholar]
  50. KeefK.D. HumeJ.R. ZhongJ. Regulation of cardiac and smooth muscle Ca 2+ channels (Ca V 1.2a,b) by protein kinases.Am. J. Physiol. Cell Physiol.20012816C1743C175610.1152/ajpcell.2001.281.6.C1743 11698232
    [Google Scholar]
  51. HughesA. Calcium channel blockers.Hypertension.Elsevier202425225710.1016/B978‑0‑323‑88369‑6.00021‑9
    [Google Scholar]
  52. VikramH.P. KumarT.P. KumarG. BeerakaN.M. DekaR. SuhailS.M. JatS. BannimathN. PadmanabhanG. ChandanR.S. Nitrosamines crisis in pharmaceuticals-insights on toxicological implications, root causes and risk assessment: A systematic review.J. Pharm. Anal.2023 38799236
    [Google Scholar]
  53. CataldiM. BrunoF. 4-Dihydropyridines: The multiple personalities of a blockbuster drug family.Translational Medicine@ UniSa2012412
    [Google Scholar]
  54. SoRelleR. Withdrawal of Posicor from market.Circulation199898983183210.1161/01.CIR.98.9.831 9738634
    [Google Scholar]
  55. OhashiN. MitamuraH. OgawaS. Development of newer calcium channel antagonists: Therapeutic potential of efonidipine in preventing electrical remodelling during atrial fibrillation.Drugs2009691213010.2165/00003495‑200969010‑00002 19192934
    [Google Scholar]
  56. ChengR.C.K. TikhonovD.B. ZhorovB.S. Structural model for phenylalkylamine binding to L-type calcium channels.J. Biol. Chem.200928441283322834210.1074/jbc.M109.027326 19700404
    [Google Scholar]
  57. BeechD.J. MurakiK. FlemmingR. Non‐selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP.J. Physiol.2004559368570610.1113/jphysiol.2004.068734 15272031
    [Google Scholar]
  58. CribbsL. T-type Ca2+ channels in vascular smooth muscle: Multiple functions.Cell Calcium200640222123010.1016/j.ceca.2006.04.026 16797699
    [Google Scholar]
  59. MasonR.P. Mechanisms of plaque stabilization for the dihydropyridine calcium channel blocker amlodipine: Review of the evidence.Atherosclerosis2002165219119910.1016/S0021‑9150(01)00729‑8 12417269
    [Google Scholar]
  60. HardinghamG.E. CruzaleguiF.H. ChawlaS. BadingH. Mechanisms controlling gene expression by nuclear calcium signals.Cell Calcium1998232-313113410.1016/S0143‑4160(98)90111‑7 9601608
    [Google Scholar]
  61. XieL. ClunnG.F. LymnJ.S. HughesA.D. Role of intracellular calcium ([Ca2+]i) and tyrosine phosphorylation in adhesion of cultured vascular smooth muscle cells to fibrinogen.Cardiovasc. Res.199839247548410.1016/S0008‑6363(98)00079‑0 9798532
    [Google Scholar]
  62. ScherberichA. Campos-ToimilM. RondéP. TakedaK. BeretzA. Migration of human vascular smooth muscle cells involves serum-dependent repeated cytosolic calcium transients.J. Cell Sci.2000113465366210.1242/jcs.113.4.653 10652258
    [Google Scholar]
  63. ShuklaN. RoweD. HintonJ. AngeliniG.D. JeremyJ.Y. Calcium and the replication of human vascular smooth muscle cells: studies on the activation and translocation of extracellular signal regulated kinase (ERK) and cyclin D1 expression.Eur. J. Pharmacol.20055091213010.1016/j.ejphar.2004.12.036 15713425
    [Google Scholar]
  64. H.V.; BeerakaN.M. KumarP. PatelH.B. GurupadayyaB. UPLC-MS-based Method Development, Validation, and Optimization of Dissolution Using Quality by Design Approach for Low Dose Digoxin: A Novel Strategy.Curr. Pharm. Anal.20221884185110.2174/1573412918666220530100529
    [Google Scholar]
  65. NaylerW.G. Review of preclinical data of calcium channel blockers and atherosclerosis.J. Cardiovasc. Pharmacol.199933Suppl. 2S7S1110.1097/00005344‑199900002‑00003 10071257
    [Google Scholar]
  66. HandleyD.A. Van ValenR.G. MeldenM.K. SaundersR.N. Suppression of rat carotid lesion development by the calcium channel blocker PN 200-110.Am. J. Pathol.198612418893 2942038
    [Google Scholar]
  67. JacksonC.L. BushR.C. BowyerD.E. Inhibitory effect of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size.Atherosclerosis1988692-311512210.1016/0021‑9150(88)90004‑4 3348836
    [Google Scholar]
  68. JacksonC. BushR. BowyerD. Mechanism of antiatherogenic action of calcium antagonists.Atherosclerosis1989801172610.1016/0021‑9150(89)90063‑4 2604753
    [Google Scholar]
  69. ClunnG.F. SeverP.S. HughesA.D. Calcium channel regulation in vascular smooth muscle cells: Synergistic effects of statins and calcium channel blockers.Int. J. Cardiol.201013912610.1016/j.ijcard.2009.05.019 19523699
    [Google Scholar]
  70. MasonR.P. MarcheP. HintzeT.H. Novel vascular biology of third-generation L-type calcium channel antagonists: Ancillary actions of amlodipine.Arterioscler. Thromb. Vasc. Biol.200323122155216310.1161/01.ATV.0000097770.66965.2A 14512371
    [Google Scholar]
  71. RovnyakG.C. KimballS.D. BeyerB. CucinottaG. DiMarcoJ.D. GougoutasJ. HedbergA. MalleyM. McCarthyJ.P. ZhangR. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators.J. Med. Chem.199538111912910.1021/jm00001a017 7837222
    [Google Scholar]
  72. MilediR. ParkerI. ZhuP.H. Extracellular ions and excitation‐contraction coupling in frog twitch muscle fibres.J. Physiol.1984351168771010.1113/jphysiol.1984.sp015271 6747880
    [Google Scholar]
  73. BrumG. StefaniE. RiosE. Simultaneous measurements of Ca 2+ currents and intracellular Ca 2+ concentrations in single skeletal muscle fibers of the frog.Can. J. Physiol. Pharmacol.198765468168510.1139/y87‑112 2440542
    [Google Scholar]
  74. MartyI. RobertM. VillazM. De JonghK. LaiY. CatterallW.A. RonjatM. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle.Proc. Natl. Acad. Sci. USA19949162270227410.1073/pnas.91.6.2270 8134386
    [Google Scholar]
  75. TanabeT. BeamK.G. PowellJ.A. NumaS. Restoration of excitation—contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA.Nature1988336619513413910.1038/336134a0 2903448
    [Google Scholar]
  76. TanabeT. BeamK.G. AdamsB.A. NiidomeT. NumaS. Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling.Nature1990346628456756910.1038/346567a0 2165570
    [Google Scholar]
  77. FabiatoA. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.J. Mol. Cell. Cardiol.1992242810.1016/0022‑2828(92)90114‑F 1529757
    [Google Scholar]
  78. SudaN. PennerR. Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells.Proc. Natl. Acad. Sci. USA199491125725572910.1073/pnas.91.12.5725 8202554
    [Google Scholar]
  79. HowlettS.E. FerrierG.R. The voltage-sensitive release mechanism: a new trigger for cardiac contraction.Can. J. Physiol. Pharmacol.19977591044105710.1139/y97‑137 9365812
    [Google Scholar]
  80. ChavisP. FagniL. LansmanJ.B. BockaertJ. Functional coupling between ryanodine receptors and L-type calcium channels in neurons.Nature1996382659371972210.1038/382719a0 8751443
    [Google Scholar]
  81. AtwalK.S. O’REILLY, B.C.; Gougoutas, J.Z.; Malley, M.F. Synthesis of substituted 1, 2, 3, 4-tetrahydro-6-methyl-2-thioxo-5-pyrimidinecarboxylic acid esters.Heterocycles (Sendai)1987261189119210.3987/R‑1987‑05‑1189
    [Google Scholar]
  82. MishinaT. TsudaN. InuiA. MiuraY. Kokai Tokkyo Koho.J.P. Patent 621697931987
  83. AtwalK.S. RovnyakG.C. SchwartzJ. MorelandS. HedbergA. GougoutasJ.Z. MalleyM.F. FloydD.M. Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines.J. Med. Chem.19903351510151510.1021/jm00167a035 2329573
    [Google Scholar]
  84. MahgoubS. Kotb El-SayedM.I. El-ShehryM.F. Mohamed AwadS. MansourY.E. FatahalaS.S. Synthesis of novel calcium channel blockers with ACE2 inhibition and dual antihypertensive/anti-inflammatory effects: A possible therapeutic tool for COVID-19.Bioorg. Chem.202111610527210.1016/j.bioorg.2021.105272 34474305
    [Google Scholar]
  85. GjörstrupP. HårdingH. IsakssonR. WesterlundC. The enantiomers of the dihydropyridine derivative H 160/51 show opposite effects of stimulation and inhibition.Eur. J. Pharmacol.1986122335736110.1016/0014‑2999(86)90417‑6 3754814
    [Google Scholar]
  86. BühlerF.R. HulthénU.L. KiowskiW. MüllerF.B. BolliP. The place of the calcium antagonist verapamil in antihypertensive therapy.J. Cardiovasc. Pharmacol.19824Suppl. 3S350S357
    [Google Scholar]
  87. MoradM. GoldmanY.E. TrenthamD.R. Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart.Nature1983304592763563810.1038/304635a0 6308474
    [Google Scholar]
  88. ChoH. UedaM. MizunoA. IshiharaT. AisakaK. NoguchiT. Synthesis of novel 2-chloro-1,4-dihydropyridines by chlorination of 2-hydroxy-1,4-dihydropyridines with phosphorus oxychloride.Chem. Pharm. Bull. (Tokyo)19893782117212110.1248/cpb.37.2117 2598311
    [Google Scholar]
  89. SinghK. AroraD. SinghK. SinghS. Genesis of dihydropyrimidinone(psi) calcium channel blockers: recent progress in structure-activity relationships and other effects.Mini Rev. Med. Chem.2009919510610.2174/138955709787001686 19149663
    [Google Scholar]
  90. MishraR. TomarI. Pyrimidine: the molecule of diverse biological and medicinal importance.Int. J. Pharm. Sci. Res.20112758
    [Google Scholar]
  91. GongK. WangH. WangS. RenX. β-Cyclodextrin-propyl sulfonic acid: A new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidones via Biginelli reaction.Tetrahedron201571294830483410.1016/j.tet.2015.05.028
    [Google Scholar]
  92. KoelM. KaljurandM. Editorial overview: A closer look on green developments in analytical chemistry: Green analytical chemistry is going mainstream.Curr. Opin. Green Sustain. Chem.20213110054110.1016/j.cogsc.2021.100541
    [Google Scholar]
  93. FaizanS. RoohiT.F. RajuR.M. SivamaniY. BrP.K. A century-old one-pot multicomponent Biginelli reaction products still finds a niche in drug discoveries: Synthesis, mechanistic studies and diverse biological activities of dihydropyrimidines.J. Mol. Struct.2023129113602010.1016/j.molstruc.2023.136020
    [Google Scholar]
  94. TaleN.P. ShelkeA.V. BhongB.Y. KaradeN.N. Regioselective chlorination at C-6 methyl position of 3,4-dihydropyrimidin-2(1H)-ones using (dichloroiodo)benzene.Monatsh. Chem.2013144798198610.1007/s00706‑012‑0908‑0
    [Google Scholar]
  95. GreeneT.W. Greene’s protective groups in organic synthesis.Wiley-InterscienceJohn Wiley & Sons, Inc.200711510.1002/0470053488
    [Google Scholar]
  96. Van TolJ.B.A. KraayveldD.E. JongejanJ.A. DuineJ.A. The catalytic performance of pig pancreas lipase in enantioselective transesterification in organic solvents.Biocatal. Biotransform.199512211913610.3109/10242429508998157
    [Google Scholar]
  97. JinW. YangQ. WuP. ChenJ. YuZ. Palladium‐catalyzed oxidative heck‐type allylation of β,β‐disubstituted enones with allyl carbonates.Adv. Synth. Catal.201435692097210210.1002/adsc.201400076
    [Google Scholar]
  98. TakanoY. ShigaF. AsanoJ. AndoN. UchikiH. FukuchiK. AnrakuT. Design, synthesis, and AMPA receptor antagonistic activity of a novel 6-nitro-3-oxoquinoxaline-2-carboxylic acid with a substituted phenyl group at the 7 position.Bioorg. Med. Chem.200513205841586310.1016/j.bmc.2005.05.030 15993606
    [Google Scholar]
  99. TangL. Gamal El-DinT.M. PayandehJ. MartinezG.Q. HeardT.M. ScheuerT. ZhengN. CatterallW.A. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel.Nature20145057481566110.1038/nature12775 24270805
    [Google Scholar]
  100. ShaldamM.A. El-HamamsyM.H. SalehD.O. El-MoselhyT.F. Synthesis, evaluation of pharmacological activity, and molecular docking of 1, 4-dihydropyridines as calcium antagonists.Chem. Pharm. Bull. (Tokyo)201664429730410.1248/cpb.c15‑00737 26822207
    [Google Scholar]
  101. HantzschA. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak.Justus Liebigs Ann. Chem.1882215118210.1002/jlac.18822150102
    [Google Scholar]
  102. KazdaS. KnorrA. Calcium antagonists.Pharmacology of Antihypertensive Therapeutics.Springer199030137510.1007/978‑3‑642‑74209‑5_9
    [Google Scholar]
  103. BladenC. GündüzM.G. ŞimşekR. ŞafakC. ZamponiG.W. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity.Pflugers Arch.201446671355136310.1007/s00424‑013‑1376‑z 24149495
    [Google Scholar]
  104. WolberG. LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.J. Chem. Inf. Model.200545116016910.1021/ci049885e 15667141
    [Google Scholar]
  105. CarosatiE. IoanP. MicucciM. BroccatelliF. CrucianiG. ZhorovB.S. ChiariniA. BudriesiR. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): Action in other targets and antitargets.Curr. Med. Chem.201219254306432310.2174/092986712802884204 22709009
    [Google Scholar]
  106. VikramP.R.H. BeerakaN.M. PatelH.B. KumarP. RP-HPLC-DAD method development and validation of L-lysine hydrochloride: application to bulk drug substance and multivitamin oral suspension.Accredit. Qual. Assur.202328518719610.1007/s00769‑023‑01544‑z
    [Google Scholar]
  107. TakenakaT. UsudaS. NomuraT. MaenoH. SadoT. Vasodilator profile of a new 1,4-dihydropyridine derivative, 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-[2-(N-benzyl-N-methylamino)]-ethyl ester 5-methyl ester hydrochloride (YC-93).Arzneimittelforschung1976261221722178 1037267
    [Google Scholar]
  108. ArrowsmithJ.E. CampbellS.F. CrossP.E. StubbsJ.K. BurgesR.A. GardinerD.G. BlackburnK.J. Long-acting dihydropyridine calcium antagonists. 1. 2-Alkoxymethyl derivatives incorporating basic substituents.J. Med. Chem.19862991696170210.1021/jm00159a022 2943898
    [Google Scholar]
  109. MeguroK. AizawaM. SohdaT. KawamatsuY. NagaokaA. New 1,4-dihydropyridine derivatives with potent and long-lasting hypotensive effect.Chem. Pharm. Bull. (Tokyo)19853393787379710.1248/cpb.33.3787 4092280
    [Google Scholar]
  110. ChangC.C. CaoS. KangS. KaiL. TianX. PandeyP. DunneS.F. LuanC.H. SurmeierD.J. SilvermanR.B. Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2.Bioorg. Med. Chem.20101893147315810.1016/j.bmc.2010.03.038 20382537
    [Google Scholar]
  111. RaemschK.D. SommerJ. Pharmacokinetics and metabolism of nifedipine.Hypertension198354 Pt 2II18II24 6862586
    [Google Scholar]
  112. AtwalK.S. RovnyakG.C. KimballS.D. FloydD.M. MorelandS. SwansonB.N. GougoutasJ.Z. SchwartzJ. SmillieK.M. MalleyM.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines.J. Med. Chem.19903392629263510.1021/jm00171a044 2391701
    [Google Scholar]
  113. ChoH. UedaM. ShimaK. MizunoA. HayashimatsuM. OhnakaY. TakeuchiY. HamaguchiM. AisakaK. HidakaT. Dihydropyrimidines: novel calcium antagonists with potent and long-lasting vasodilative and anti-hypertensive activity.J. Med. Chem.198932102399240610.1021/jm00130a029 2552119
    [Google Scholar]
  114. AtwalK.S. SwansonB.N. UngerS.E. FloydD.M. MorelandS. HedbergA. O’ReillyB.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents.J. Med. Chem.199134280681110.1021/jm00106a048 1995904
    [Google Scholar]
  115. GroverG.J. DzwonczykS. McMullenD.M. NormandinD.E. ParhamC.S. SlephP.G. MorelandS. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,946.J. Cardiovasc. Pharmacol.199526228929410.1097/00005344‑199508000‑00015 7475054
    [Google Scholar]
  116. de FátimaÂ. BragaT.C. NetoL.S. TerraB.S. OliveiraB.G.F. da SilvaD.L. ModoloL.V. A mini-review on Biginelli adducts with notable pharmacological properties.J. Adv. Res.20156336337310.1016/j.jare.2014.10.006 26257934
    [Google Scholar]
  117. KappeC.O. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators.Molecules1998311910.3390/30100001
    [Google Scholar]
  118. KappeC.O. Biologically active dihydropyrimidones of the Biginelli-type — a literature survey.Eur. J. Med. Chem.200035121043105210.1016/S0223‑5234(00)01189‑2 11248403
    [Google Scholar]
  119. AbrahamD.J. Burger’s medicinal chemistry and drug discovery.Drug Discovery & Development, 8 ed.Wiley200686032
    [Google Scholar]
  120. BunagR.D. DouglasC.R. ImaiS. BerneR.M. Influence of a pyrimidopyrimidine derivative on deamination of adenosine by blood.Circ. Res.1964151838810.1161/01.RES.15.1.83 14196209
    [Google Scholar]
  121. EmmonsP.R. HarrisonM.J.G. HonourA.J. MitchellJ.R.A. Effect of a pyrimidopyrimidine derivative on thrombus formation in the rabbit.Nature1965208500725525710.1038/208255a0 5882451
    [Google Scholar]
  122. KaiserH.J. StümpfigD. FlammerJ. Short-term effect of dipyridamole on blood flow velocities in the extraocular vessels.Int. Ophthalmol.1995-199619635535810.1007/BF00130854 8970869
    [Google Scholar]
  123. HarkerL.A. KadatzR.A. Mechanism of action of dipyridamole.Thromb. Res.198329394610.1016/0049‑3848(83)90356‑0 6356465
    [Google Scholar]
  124. EliassonR. BygdemanS. Effect of dipyridamole and two pyrimido-pyrimidine derivatives on the kinetics of human platelet aggregation and on platelet adhesiveness.Scand. J. Clin. Lab. Invest.196924214515110.3109/00365516909080145 5383322
    [Google Scholar]
  125. IvyD.D. KinsellaJ.P. ZieglerJ.W. AbmanS.H. Dipyridamole attenuates rebound pulmonary hypertension after inhaled nitric oxide withdrawal in postoperative congenital heart disease.J. Thorac. Cardiovasc. Surg.1998115487588210.1016/S0022‑5223(98)70369‑1 9576224
    [Google Scholar]
  126. MonierM. Abdel-LatifD. El-MekabatyA. ElattarK.M. Bicyclic 6 + 6 systems: the chemistry of pyrimido[4,5- d]pyrimidines and pyrimido[5,4- d]pyrimidines.RSC Advances2019953308353086710.1039/C9RA05687D 35558733
    [Google Scholar]
  127. De RuggieriP. GandolfiC. ChiaramontiD. Steroidi nota xii. Eterociclici steroidali. Alcuni derivati eterociclici in positione 2, 3 dell’androstano e relativi composti.Gazz. Chim. Ital.196292768798
    [Google Scholar]
  128. BredereckH. GompperR. GeigerB. Säureamid‐Reaktionen, XXII. Synthese von Pyrimidinen mittels Tris‐formamino‐methans.Chem. Ber.19609361402140610.1002/cber.19600930626
    [Google Scholar]
  129. SmithL.L. TellerD.M. FoellT. Synthesis of Some Steroidal [3,2-d]- and [17,16-d]-2′,6′- Diaminopyrimidines.J. Med. Chem.19636333033210.1021/jm00339a028 14185998
    [Google Scholar]
  130. MonierM. El-MekabatyA. Abdel-LatifD. Doğru MertB. ElattarK.M. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines.Steroids202015410854810.1016/j.steroids.2019.108548 31805293
    [Google Scholar]
  131. MonierM. Abdel-LatifD. El-MekabatyA. ElattarK.M. Bicyclic 6+ 6 systems: Advances in the chemistry of heterocyclic compounds incorporated pyrimido [1, 2-a] pyrimidine skeleton.Mini Rev. Org. Chem.202017671773910.2174/1389557519666190925161145
    [Google Scholar]
  132. DietzJ.D. DuS. BoltenC.W. PayneM.A. XiaC. BlinnJ.R. FunderJ.W. HuX. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity.Hypertension200851374274810.1161/HYPERTENSIONAHA.107.103580 18250364
    [Google Scholar]
  133. ImagawaK. OkayamaS. TakaokaM. KawataH. NayaN. NakajimaT. HoriiM. UemuraS. SaitoY. Inhibitory effect of efonidipine on aldosterone synthesis and secretion in human adrenocarcinoma (H295R) cells.J. Cardiovasc. Pharmacol.200647113313810.1097/01.fjc.0000197539.12685.f5 16424797
    [Google Scholar]
  134. KosakaH. HirayamaK. YodaN. SasakiK. KitayamaT. KusakaH. MatsubaraM. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family.Eur. J. Pharmacol.20106351-3495510.1016/j.ejphar.2010.03.018 20307534
    [Google Scholar]
  135. TaddeiS. BrunoR.M. Calcium channel blockers.201910.1016/B978‑0‑12‑801238‑3.65408‑9
    [Google Scholar]
  136. BikkerJ.A. WeaverD.F. Theoretical studies applicable to the design of novel anticonvulsants.J. Mol. Struct. Theochem19932812-317318410.1016/0166‑1280(93)87073‑M
    [Google Scholar]
  137. LiepinaI. BlancoM. DubursG. LiwoA. Spatial structure of dihydropyridines and similarity of dihydropyridines with some amino acids.Mol. Eng.199773/440142710.1023/A:1008272311650
    [Google Scholar]
  138. MahmoudianM. RichardsW.G. A conformational distinction between dihydropyridine calcium agonists and antagonists.J. Chem. Soc. Chem. Commun.19861073974110.1039/c39860000739
    [Google Scholar]
  139. FassihiA. MahnamK. MoeinifardB. BahmanziariM. AliabadiH.S. ZarghiA. SabetR. SalimiM. MansourianM. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: application of PM3 and DFT computational methods.Med. Chem. Res.201221102749276110.1007/s00044‑011‑9807‑x
    [Google Scholar]
  140. DavoodA. NematollahiA. ImanM. ShafieeA. Computational studies of new 1,4-dihydropyridines containing 4-(5)-chloro-2-ethyl-5-(4)-imidazolyl substituent: QSAR and docking.Med. Chem. Res.2010191587010.1007/s00044‑009‑9171‑2
    [Google Scholar]
  141. Oliver KappeC. FabianW.M.F. SemonesM.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies.Tetrahedron19975382803281610.1016/S0040‑4020(97)00022‑7
    [Google Scholar]
  142. ChoudhariP.B. BhatiaM.S. JadhavS.D. Pharmacophore modelling, quantitative structure activity relationship (QSAR) and docking studies of pyrimidine analogs as potential calcium channel blockers.J. Kore. Chemi. Soci.20135719910310.5012/jkcs.2013.57.1.99
    [Google Scholar]
  143. HemmateenejadB. MiriR. SafarpourM.A. KhoshneviszadehM. EdrakiN. Conformational analysis of some new derivatives of 4-nitroimidazolyl-1,4-dihydropyridine-based calcium channel blockers.J. Mol. Struct. Theochem20057171-313915210.1016/j.theochem.2004.10.071
    [Google Scholar]
  144. DoddareddyM.R. JungH.K. LeeJ.Y. LeeY.S. ChoY.S. KohH.Y. PaeA.N. First pharmacophoric hypothesis for T-type calcium channel blockers.Bioorg. Med. Chem.20041271605161110.1016/j.bmc.2004.01.034 15028253
    [Google Scholar]
  145. PatelM.K. ClunnG.F. LymnJ.S. AustinO. HughesA.D. Effect of serum withdrawal on the contribution of L‐type calcium channels (CaV1.2) to intracellular Ca 2 + responses and chemotaxis in cultured human vascular smooth muscle cells.Br. J. Pharmacol.2005145681181710.1038/sj.bjp.0706237 15880143
    [Google Scholar]
  146. GollaschM. HaaseH. RiedC. LindschauC. MoranoI. LuftF.C. HallerH. L‐type calcium channel expression depends on the differentiated state of vascular smooth muscle cells.FASEB J.199812759360110.1096/fasebj.12.7.593 9576486
    [Google Scholar]
  147. QuignardJ.F. GrazziniE. GuillonG. HarricaneM.C. NargeotJ. RichardS. Absence of calcium channels in neonatal rat aortic myocytes.Pflugers Arch.1996431579179310.1007/BF02253845 8596732
    [Google Scholar]
  148. QuignardJ. HarricaneM-C. MénardC. LoryP. NargeotJ. CapronL. MornetD. RichardS. Transient down-regulation of L-type Ca2+ channel and dystrophin expression after balloon injury in rat aortic cells.Cardiovasc. Res.200149117718810.1016/S0008‑6363(00)00210‑8 11121810
    [Google Scholar]
  149. QinZ.L. NishimuraH. Ca2+ signaling in fowl aortic smooth muscle increases during maturation but is impaired in neointimal plaques.J. Exp. Biol.1998201111695170510.1242/jeb.201.11.1695 9576880
    [Google Scholar]
  150. KumarB. DrejaK. ShahS.S. CheongA. XuS.Z. SukumarP. NaylorJ. ForteA. CipollaroM. McHughD. KingstonP.A. HeagertyA.M. MunschC.M. BergdahlA. Hultgårdh-NilssonA. GomezM.F. PorterK.E. HellstrandP. BeechD.J. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia.Circ. Res.200698455756310.1161/01.RES.0000204724.29685.db 16439693
    [Google Scholar]
  151. WatersD. LespéranceJ. FrancetichM. CauseyD. ThérouxP. ChiangY.K. HudonG. LemarbreL. ReitmanM. JoyalM. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis.Circulation19908261940195310.1161/01.CIR.82.6.1940 2242520
    [Google Scholar]
  152. LichtlenP.R. RafflenbeulW. HeckerH. JostS. HugenholtzP.G. DeckersJ.W. Retardation of angiographic progression of coronary artery disease by nifedipine.Lancet199033586981109111310.1016/0140‑6736(90)91121‑P 1971861
    [Google Scholar]
  153. AnandP. KoletoM. KandulaD.R. XiongL. MacNeillR. Novel hydrophilic-phase extraction, HILIC and high-resolution MS quantification of an RNA oligonucleotide in plasma.Bioanalysis2022141476210.4155/bio‑2021‑0216 34779651
    [Google Scholar]
  154. PittB. ByingtonR.P. FurbergC.D. HunninghakeD.B. ManciniG.B.J. MillerM.E. RileyW. InvestigatorsP. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events.Circulation2000102131503151010.1161/01.CIR.102.13.1503 11004140
    [Google Scholar]
  155. NissenS.E. TuzcuE.M. LibbyP. ThompsonP.D. GhaliM. GarzaD. BermanL. ShiH. BuebendorfE. TopolE.J. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: The Camelot study: A randomized controlled trial.JAMA2004292182217222510.1001/jama.292.18.2217 15536108
    [Google Scholar]
  156. MotroM. KirwanB.A. de BrouwerS. Poole-WilsonP.A. ShemeshJ. Tracking coronary calcification and atherosclerotic lesions in patients with stable angina pectoris undergoing nifedipine therapy.Cardiology2007107316517110.1159/000095308 16940720
    [Google Scholar]
  157. CorcosT. DavidP.R. ValP.G. RenkinJ. DangoisseV. RapoldH.G. BourassaM.G. Failure of diltiazem to prevent restenosis after percutaneous transluminal coronary angioplasty.Am. Heart J.1985109592693110.1016/0002‑8703(85)90231‑5 3158187
    [Google Scholar]
  158. WhitworthH.B. RoubinG.S. HollmanJ. MeierB. LeimgruberP.P. DouglasJ.S.Jr KingS.B.III GruentzigA.R. Effect of nifedipine on recurrent stenosis after percutaneous transluminal coronary angioplasty.J. Am. Coll. Cardiol.1986861271127610.1016/S0735‑1097(86)80296‑0 2946740
    [Google Scholar]
  159. GuntaU. KandulaD.K.R. GortiS.K.K. VadlaG.P. KodiyalaG. Investigating the binding efficacy of snake venom proteins as glp-1 analogs for diabetes mellitus management: An in silico study.Orient. J. Chem.202339211010.13005/ojc/390306
    [Google Scholar]
  160. HobergE. DietzR. FreesU. KatusH.A. RauchB. SchömigA. SchulerG. SchwarzF. TillmannsH. NiebauerJ. Verapamil treatment after coronary angioplasty in patients at high risk of recurrent stenosis.Heart199471325426010.1136/hrt.71.3.254 8142195
    [Google Scholar]
  161. ZanchettiA. BondM.G. HennigM. TangR. HollweckR. ManciaG. EckesL. MicheliD. Absolute and relative changes in carotid intima–media thickness and atherosclerotic plaques during long-term antihypertensive treatment: further results of the European Lacidipine Study on Atherosclerosis.ELSA2004
    [Google Scholar]
  162. ZanchettiA. RoseiE.A. PalùC.D. LeonettiG. MagnaniB. PessinaA. The verapamil in hypertension and atherosclerosis study (VHAS): results of long-term randomized treatment with either verapamil or chlorthalidone on carotid intima-media thickness.J. Hypertens.199816111667167610.1097/00004872‑199816110‑00014 9856368
    [Google Scholar]
  163. StantonA.V. ChapmanJ.N. MayetJ. SeverP.S. PoulterN.R. HughesA.D. ThomS.A. Effects of blood pressure lowering with amlodipine or lisinopril on vascular structure of the common carotid artery.Clin. Sci.2001101545546410.1042/cs1010455 11672450
    [Google Scholar]
  164. ManciaG. BrownM. CastaigneA. de LeeuwP. PalmerC.R. RosenthalT. WagenerG. RuilopeL.M. Outcomes with nifedipine GITS or Co-amilozide in hypertensive diabetics and nondiabetics in Intervention as a Goal in Hypertension (INSIGHT).Hypertension200341343143610.1161/01.HYP.0000057420.27692.AD 12623939
    [Google Scholar]
  165. RoseG.W. KannoY. IkebukuroH. KanekoM. KanekoK. KannoT. IshidaY. SuzukiH. Cilnidipine is as effective as benazepril for control of blood pressure and proteinuria in hypertensive patients with benign nephrosclerosis.Hypertens. Res.200124437738310.1291/hypres.24.377 11510750
    [Google Scholar]
  166. KojimaS. ShidaM. YokoyamaH. Comparison between cilnidipine and amlodipine besilate with respect to proteinuria in hypertensive patients with renal diseases.Hypertens. Res.200427637938510.1291/hypres.27.379 15253102
    [Google Scholar]
  167. TsuchihashiT. UenoM. TominagaM. KajiokaT. OnakaU. EtoK. GotoK. Anti-proteinuric effect of an N-type calcium channel blocker, cilnidipine.Clin. Exp. Hypertens.200527858359110.1080/10641960500298558 16303635
    [Google Scholar]
  168. KatayamaK. NomuraS. IshikawaH. MurataT. KoyabuS. NakanoT. Comparison between valsartan and valsartan plus cilnidipine in type II diabetics with normo- and microalbuminuria.Kidney Int.200670115115610.1038/sj.ki.5000349 16710356
    [Google Scholar]
  169. FujitaT. Cilnidipine versus amlodipine randomised trial for evaluation in renal disease (CARTER) study investigators.Kidney Int.20077721543154910.1038/sj.ki.5002623 17943080
    [Google Scholar]
  170. GoA.S. ChertowG.M. FanD. McCullochC.E. HsuC. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N. Engl. J. Med.2004351131296130510.1056/NEJMoa041031 15385656
    [Google Scholar]
  171. MasudaT. OguraM.N. MoriyaT. TakahiraN. MatsumotoT. KutsunaT. HaraM. AibaN. NodaC. IzumiT. Beneficial effects of L- and N-type calcium channel blocker on glucose and lipid metabolism and renal function in patients with hypertension and type II diabetes mellitus.Cardiovasc. Ther.2011291465310.1111/j.1755‑5922.2009.00126.x 20337636
    [Google Scholar]
  172. FanL. YangQ. XiaoX.Q. GroveK.L. HuangY. ChenZ.W. FurnaryA. HeG.W. Dual actions of cilnidipine in human internal thoracic artery: Inhibition of calcium channels and enhancement of endothelial nitric oxide synthase.J. Thorac. Cardiovasc. Surg.201114141063106910.1016/j.jtcvs.2010.01.048 20599230
    [Google Scholar]
  173. ChandraK.S. RameshG. The fourth-generation Calcium channel blocker.Cilnidipine. Indian Heart J.201365669169510.1016/j.ihj.2013.11.001 24407539
    [Google Scholar]
  174. JonesK.E. HaydenS.L. MeyerH.R. SandozJ.L. ArataW.H. DufreneK. BallaeraC. Lopez TorresY. GriffinP. KayeA.M. ShekoohiS. KayeA.D. The evolving role of calcium channel blockers in hypertension management: Pharmacological and clinical considerations.Curr. Issues Mol. Biol.20244676315632710.3390/cimb46070377 39057019
    [Google Scholar]
  175. WangA.L. IadecolaC. WangG. New generations of dihydropyridines for treatment of hypertension.J. Geriatr. Cardiol.20171416772 28270844
    [Google Scholar]
  176. AbeH. MitaT. YamamotoR. KomiyaK. KawaguchiM. SakuraiY. ShimizuT. OhmuraC. IkedaF. KawamoriR. FujitaniY. WatadaH. Comparison of effects of cilnidipine and azelnidipine on blood pressure, heart rate and albuminuria in type 2 diabetics with hypertension: A pilot study.J. Diabetes Investig.20134220220510.1111/jdi.12003 24843653
    [Google Scholar]
  177. NishidaY. TakahashiY. TezukaK. TakeuchiS. NakayamaT. AsaiS. Comparative effect of calcium channel blockers on glomerular function in hypertensive patients with diabetes mellitus.Drugs R D.201717340341210.1007/s40268‑017‑0191‑y 28580512
    [Google Scholar]
  178. KiuchiS. HisatakeS. KabukiT. OkaT. DobashiS. FujiiT. IkedaT. Effect of switching from cilnidipine to azelnidipine on cardiac sympathetic nerve function in patients with heart failure preserved ejection fraction.Int. Heart J.201859112012510.1536/ihj.17‑024 29269711
    [Google Scholar]
  179. RamC.V.S. Therapeutic usefulness of a novel calcium channel blocker azelnidipine in the treatment of hypertension: A narrative review.Cardiol. Ther.202211447348910.1007/s40119‑022‑00276‑4 35969319
    [Google Scholar]
  180. ZhaoY.H. AbrahamM.H. LeJ. HerseyA. LuscombeC.N. BeckG. SherborneB. CooperI. Rate-limited steps of human oral absorption and QSAR studies.Pharm. Res.200219101446145710.1023/A:1020444330011 12425461
    [Google Scholar]
  181. PiepoliM.F. VillaniG.Q. Lifestyle modification in secondary prevention.Eur. J. Prev. Cardiol.2017243_suppl10110710.1177/2047487317703828 28618907
    [Google Scholar]
  182. EagleK.A. MontoyeC.K. RibaA.L. DeFrancoA.C. ParrishR. SkorczS. BakerP.L. FaulJ. JaniS.M. ChenB. RoychoudhuryC. ElmaM.A.C. MitchellK.R. MehtaR.H. Guideline-based standardized care is associated with substantially lower mortality in medicare patients with acute myocardial infarction: the American College of Cardiology’s Guidelines Applied in Practice (GAP) Projects in Michigan.J. Am. Coll. Cardiol.20054671242124810.1016/j.jacc.2004.12.083 16198838
    [Google Scholar]
  183. WaldN.J. LawM.R. A strategy to reduce cardiovascular disease by more than 80%.BMJ20033267404141910.1136/bmj.326.7404.1419 12829553
    [Google Scholar]
  184. BrinksJ. FowlerA. FranklinB.A. DulaiJ. Lifestyle modification in secondary prevention: Beyond pharmacotherapy.Am. J. Lifestyle Med.201711213715210.1177/1559827616651402 30202327
    [Google Scholar]
  185. SantoK. RedfernJ. Digital health innovations to improve cardiovascular disease care.Curr. Atheroscler. Rep.202022127110.1007/s11883‑020‑00889‑x 33009975
    [Google Scholar]
  186. AbdelsayedM. KortE.J. JovingeS. MercolaM. Repurposing drugs to treat cardiovascular disease in the era of precision medicine.Nat. Rev. Cardiol.2022191175176410.1038/s41569‑022‑00717‑6 35606425
    [Google Scholar]
  187. PerkJ. De BackerG. GohlkeH. GrahamI. ReinerZ. VerschurenW. AlbusC. BenlianP. BoysenG. CifkovaR. The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR)(vol 33, pg 1635, 2012).Eur. Heart J.20123321262126
    [Google Scholar]
  188. SmithS.C.Jr BenjaminE.J. BonowR.O. BraunL.T. CreagerM.A. FranklinB.A. GibbonsR.J. GrundyS.M. HiratzkaL.F. JonesD.W. Lloyd-JonesD.M. MinissianM. MoscaL. PetersonE.D. SaccoR.L. SpertusJ. SteinJ.H. TaubertK.A. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: A guideline from the american heart association and american college of cardiology foundation.Circulation2011124222458247310.1161/CIR.0b013e318235eb4d 22052934
    [Google Scholar]
  189. WeintraubW.S. DanielsS.R. BurkeL.E. FranklinB.A. GoffD.C.Jr HaymanL.L. Lloyd-JonesD. PandeyD.K. SanchezE.J. SchramA.P. WhitselL.P. Value of primordial and primary prevention for cardiovascular disease: A policy statement from the American Heart Association.Circulation2011124896799010.1161/CIR.0b013e3182285a81 21788592
    [Google Scholar]
  190. YusufS. AttaranA. BoschJ. JosephP. LonnE. McCreadyT. MenteA. NieuwlaatR. PaisP. RodgersA. SchwalmJ.D. SmithR. TeoK. XavierD. Combination pharmacotherapy to prevent cardiovascular disease: Present status and challenges.Eur. Heart J.201435635336410.1093/eurheartj/eht407 24288261
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266323908241114064318
Loading
/content/journals/ctmc/10.2174/0115680266323908241114064318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test