Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metal-based complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6-dione (phendione) inhibited the viability of conidial cells.

Methods

The effects of these promising complexes, [Cu(phendione)](ClO).4HO (Cu-phendione) and [Ag(phendione)]ClO (Ag-phendione), on vital biological processes, production of key virulence attributes and interaction events of were investigated using a comprehensive multimodal approach.

Results

The results demonstrated that both Cu-phendione and Ag-phendione effectively inhibited the viability of mycelial cells in a dose-dependent manner. Furthermore, these test complexes, at varying concentrations, inhibited the transition of conidia into hyphae. Scanning electron microscopy revealed significant structural alterations in the fungal cells, including changes to surface sculpturing and overall morphological architecture, following treatment with the complexes. A marked reduction in the expression of key surface molecules, such as mannose/glucose-rich glycoconjugates, fibronectin-binding proteins, and the well-known adhesin peptidorhamnomannan further supported these ultrastructural changes. The treatment also impaired adhesive interactions, reducing the fungus's ability to form biofilms on polystyrene surfaces and diminishing its interaction with macrophages, lung epithelial cells, and fibroblasts. Notably, treatment of infected macrophages with the complexes led to a significant reduction in the number of intracellular fungal cells.

Conclusion

The results provide information about the effects of silver- and copper-phendione complexes on cellular and virulence aspects of the emerging fungus .

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266327984241018111547
2025-01-01
2025-10-27
Loading full text...

Full text loading...

References

  1. Ramirez-GarciaA. PellonA. RementeriaA. BuldainI. Barreto-BergterE. Rollin-PinheiroR. de MeirellesJ.V. XistoM.I.D.S. RanqueS. HavlicekV. VandeputteP. GovicY.L. BoucharaJ.P. GiraudS. ChenS. RainerJ. Alastruey-IzquierdoA. Martin-GomezM.T. López-SoriaL.M. PemanJ. SchwarzC. BernhardtA. TintelnotK. CapillaJ. Martin-VicenteA. Cano-LiraJ. NaglM. LacknerM. IrinyiL. MeyerW. de HoogS. HernandoF.L. Scedosporium and Lomentospora: An updated overview of underrated opportunists.Med. Mycol.201856Suppl. 1S102S12510.1093/mmy/myx113 29538735
    [Google Scholar]
  2. MelloT.P. BittencourtV.C.B. Liporagi-LopesL.C. AorA.C. BranquinhaM.H. SantosA.L.S. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens.Fungal Biol. Rev.2019331164610.1016/j.fbr.2018.07.002
    [Google Scholar]
  3. BoucharaJ.P. Le GovicY. KabbaraS. CimonB. ZouhairR. HamzeM. PaponN. NevezG. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis.Expert Rev. Respir. Med.202014325927310.1080/17476348.2020.1705787 31868041
    [Google Scholar]
  4. CortezK.J. RoilidesE. Quiroz-TellesF. MeletiadisJ. AntachopoulosC. KnudsenT. BuchananW. MilanovichJ. SuttonD.A. FothergillA. RinaldiM.G. SheaY.R. ZaoutisT. KottililS. WalshT.J. Infections caused by Scedosporium spp.Clin. Microbiol. Rev.200821115719710.1128/CMR.00039‑07 18202441
    [Google Scholar]
  5. TronchinG. PihetM. Lopes-BezerraL.M. BoucharaJ.P. Adherence mechanisms in human pathogenic fungi.Med. Mycol.200846874977210.1080/13693780802206435 18651303
    [Google Scholar]
  6. PintoM.R. MulloyB. HaidoR.M.T. TravassosL.R. Barreto BergterE. A peptidorhamnomannan from the mycelium of Pseudallescheria boydii is a potential diagnostic antigen of this emerging human pathogen.Microbiology200114761499150610.1099/00221287‑147‑6‑1499 11390680
    [Google Scholar]
  7. PintoM.R. de SáA.C.M. LimongiC.L. RozentalS. SantosA.L.S. Barreto-BergterE. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells.Microbes Infect.20046141259126710.1016/j.micinf.2004.07.006 15555531
    [Google Scholar]
  8. LopesL.C.L. Rollin-PinheiroR. GuimarãesA.J. BittencourtV.C.B. MartinezL.R. KobaW. FariasS.E. NosanchukJ.D. Barreto-BergterE. Monoclonal antibodies against peptidorhamnomannans of Scedosporium apiospermum enhance the pathogenicity of the fungus.PLoS Negl. Trop. Dis.2010410e85310.1371/journal.pntd.0000853 20976055
    [Google Scholar]
  9. Rollin-PinheiroR. Liporagi-LopesL.C. de MeirellesJ.V. SouzaL.M. Barreto-BergterE. Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions.PLoS One201495e9814910.1371/journal.pone.0098149 24878570
    [Google Scholar]
  10. MelloT.P. OliveiraS.S.C. FrasésS. BranquinhaM.H. SantosA.L.S. Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans.Biofouling201834780081410.1080/08927014.2018.1503652 30354689
    [Google Scholar]
  11. Martínez-AlarcónD. BalloyV. BoucharaJ.P. PietersR.J. VarrotA. Biochemical and structural studies of target lectin SapL1 from the emerging opportunistic microfungus Scedosporium apiospermum.Sci. Rep.20211111610910.1038/s41598‑021‑95008‑4 34373510
    [Google Scholar]
  12. SantosA.L.S. SantosA.L.S. BittencourtV.C.B. PintoM.R. SilvaB.A. Barreto-BergterE. Biochemical characterization of potential virulence markers in the human fungal pathogen Pseudallescheria boydii.Med. Mycol.200947437538610.1080/13693780802610305 19235547
    [Google Scholar]
  13. SantosA.L.S. SilvaB.A. da CunhaM.M.L. BranquinhaM.H. MelloT.P. Fibronectin-binding molecules of Scedosporium apiospermum: Focus on adhesive events.Braz. J. Microbiol.20235442577258510.1007/s42770‑023‑01062‑7 37442880
    [Google Scholar]
  14. MelloT.P. AorA.C. OliveiraS.S. BranquinhaM.H. SantosA.L.S. Conidial germination in Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans: Influence of growth conditions and antifungal susceptilibility profiles.Mem. Inst. Oswaldo Cruz201611148449410.1590/0074‑02760160200
    [Google Scholar]
  15. MelloT.P. AorA.C. GonçalvesD.S. SeabraS.H. BranquinhaM.H. SantosA.L.S. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans.Biofouling201632773774910.1080/08927014.2016.1192610 27309801
    [Google Scholar]
  16. MelloT.P. OliveiraS.S.C. BranquinhaM.H. SantosA.L.S. Decoding the antifungal resistance mechanisms in biofilms of emerging, ubiquitous and multidrug-resistant species belonging to the Scedosporium/Lomentospora genera.Med. Mycol.2022606myac03610.1093/mmy/myac036 35641191
    [Google Scholar]
  17. Rollin-PinheiroR. de MeirellesJ.V. VilaT.V.M. FonsecaB.B. AlvesV. FrasesS. RozentalS. Barreto-BergterE. Biofilm formation by Pseudallescheria/Scedosporium species: A comparative study.Front. Microbiol.20178156810.3389/fmicb.2017.01568 28868050
    [Google Scholar]
  18. SilvaB.A. PintoM.R. SoaresR.M.A. Barreto-BergterE. SantosA.L.S. Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds.Res. Microbiol.2006157542543210.1016/j.resmic.2005.11.010 16487686
    [Google Scholar]
  19. SilvaB.A. Souza-GonçalvesA.L. PintoM.R. Barreto-BergterE. SantosA.L.S. Metallopeptidase inhibitors arrest vital biological processes in the fungal pathogen Scedosporium apiospermum.Mycoses201154210511210.1111/j.1439‑0507.2009.01767.x 19702620
    [Google Scholar]
  20. PereiraM.M. SilvaB.A. PintoM.R. Barreto-BergterE. Santos, A.L.S. Proteins and peptidases from conidia and mycelia of Scedosporium apiospermum strain HLPB.Mycopathologia20091671253010.1007/s11046‑008‑9147‑7 18726166
    [Google Scholar]
  21. Gutierrez-GongoraD. Geddes-McAlisterJ. From naturally-sourced protease inhibitors to new treatments for fungal infections.J. Fungi (Basel)2021712101610.3390/jof7121016 34946998
    [Google Scholar]
  22. McCannM. SantosA.L.S. da SilvaB.A. RomanosM.T.V. PyrrhoA.S. DevereuxM. KavanaghK. FichtnerI. KellettA. In vitro and in vivo studies into the biological activities of 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione and its copper(II) and silver(I) complexes.Toxicol. Res. (Camb.)201211475410.1039/c2tx00010e
    [Google Scholar]
  23. MelloT.P. AorA.C. BarcellosI.C. PereiraM.M. McCannM. DevereuxM. BranquinhaM.H. SantosA.L.S. Active Cu(II), Mn(II) and Ag(I) 1,10-phenanthroline/1,10-phenanthroline-5,6-dione/dicarboxylate chelates: effects on Scedosporium.Future Microbiol.202318151049105910.2217/fmb‑2022‑0202 37284767
    [Google Scholar]
  24. McCarronP. McCannM. DevereuxM. KavanaghK. SkerryC. KarakousisP.C. AorA.C. MelloT.P. SantosA.L.S. CamposD.L. PavanF.R. Unprecedented in vitro antitubercular activitiy of manganese(II) complexes containing 1,10-phenanthroline and dicarboxylate ligands: Increased activity, superior selectivity, and lower toxicity in comparison to their copper(II) analogs.Front. Microbiol.20189143210.3389/fmicb.2018.01432 30013535
    [Google Scholar]
  25. GandraR.M. McCarronP. ViganorL. FernandesM.F. KavanaghK. McCannM. BranquinhaM.H. SantosA.L.S. HoweO. DevereuxM. In vivo activity of copper(II), manganese(II), and silver(I) 1,10-phenanthroline chelates against Candida haemulonii using the Galleria mellonella model.Front. Microbiol.20201147010.3389/fmicb.2020.00470 32265890
    [Google Scholar]
  26. GranatoM.Q. MelloT.P. NascimentoR.S. PereiraM.D. RosaT.L.S.A. PessolaniM.C.V. McCannM. DevereuxM. BranquinhaM.H. SantosA.L.S. KneippL.F. Silver(I) and copper(II) complexes of 1,10-phenanthroline-5,6-dione against Phialophora verrucosa: a focus on the interaction with human macrophages and Galleria mellonella larvae.Front. Microbiol.20211264125810.3389/fmicb.2021.641258 34025603
    [Google Scholar]
  27. LimaA.K.C. EliasC.G.R. OliveiraS.S.C. Santos-MalletJ.R. McCannM. DevereuxM. BranquinhaM.H. DutraP.M.L. SantosA.L.S. Anti-Leishmania braziliensis activity of 1,10-phenanthroline-5,6-dione and its Cu(II) and Ag(I) complexes.Parasitol. Res.202112093273328510.1007/s00436‑021‑07265‑x 34363115
    [Google Scholar]
  28. McCannM. CoyleB. McKayS. McCormackP. KavanaghK. DevereuxM. McKeeV. KinsellaP. O’ConnorR. ClynesM. Synthesis and X-ray crystal structure of [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells.Biometals200417663564510.1007/s10534‑004‑1229‑5 15689107
    [Google Scholar]
  29. Abi-chacraÉ.A. SouzaL.O.P. CruzL.P. Braga-SilvaL.A. GonçalvesD.S. SodréC.L. RibeiroM.D. SeabraS.H. Figueiredo-CarvalhoM.H.G. BarbedoL.S. Zancopé-OliveiraR.M. ZiccardiM. SantosA.L.S. Phenotypical properties associated with virulence from clinical isolates belonging to the Candida parapsilosis complex.FEMS Yeast Res.201313883184810.1111/1567‑1364.12092 24103069
    [Google Scholar]
  30. PeetersE. NelisH.J. CoenyeT. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates.J. Microbiol. Methods200872215716510.1016/j.mimet.2007.11.010 18155789
    [Google Scholar]
  31. PalmeiraV.F. KneippL.F. RozentalS. AlvianoC.S. SantosA.L.S. Beneficial effects of HIV peptidase inhibitors on Fonsecaea pedrosoi: promising compounds to arrest key fungal biological processes and virulence.PLoS One2008310e338210.1371/journal.pone.0003382 18852883
    [Google Scholar]
  32. Sephton-ClarkP.C.S. VoelzK. Spore germination of pathogenic filamentous fungi.Adv. Appl. Microbiol.201810211715710.1016/bs.aambs.2017.10.002 29680124
    [Google Scholar]
  33. GowN.A.R. LatgéJ.P. MunroC.A. The fungal cell wall: Structure, biosynthesis, and function.Microbiol. Spectr.2017535.3.0110.1128/microbiolspec.FUNK‑0035‑2016 28513415
    [Google Scholar]
  34. SauerK. StoodleyP. GoeresD.M. Hall-StoodleyL. BurmølleM. StewartP.S. BjarnsholtT. The biofilm life cycle: expanding the conceptual model of biofilm formation.Nat. Rev. Microbiol.2022201060862010.1038/s41579‑022‑00767‑0 35922483
    [Google Scholar]
  35. HardingM.W. MarquesL.L.R. HowardR.J. OlsonM.E. Can filamentous fungi form biofilms?Trends Microbiol.2009171147548010.1016/j.tim.2009.08.007 19833519
    [Google Scholar]
  36. D’EnfertC. Fungal spore germination: Insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa.Fungal Genet. Biol.19971722163172
    [Google Scholar]
  37. OsherovN. MayG.S. The molecular mechanisms of conidial germination.FEMS Microbiol. Lett.2001199215316010.1111/j.1574‑6968.2001.tb10667.x 11377860
    [Google Scholar]
  38. van BurikJ.A.H. MageeP.T. Aspects of fungal pathogenesis in humans.Annu. Rev. Microbiol.200155174377210.1146/annurev.micro.55.1.743 11544373
    [Google Scholar]
  39. GowN.A.R. BrownA.J.P. OddsF.C. Fungal morphogenesis and host invasion.Curr. Opin. Microbiol.20025436637110.1016/S1369‑5274(02)00338‑7 12160854
    [Google Scholar]
  40. GranatoM.Q. de Araújo MassapustP. RozentalS. AlvianoC.S. dos SantosA.L.S. KneippL.F. 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation.Mycopathologia20151793-423124210.1007/s11046‑014‑9832‑7 25502596
    [Google Scholar]
  41. GranatoM.Q. GonçalvesD.S. SeabraS.H. McCannM. DevereuxM. SantosA.L.S. KneippL.F. 1,10-Phenanthroline-5,6-dione-based compounds are effective in disturbing crucial physiological events of Phialophora verrucosa.Front. Microbiol.201787610.3389/fmicb.2017.00076 28194139
    [Google Scholar]
  42. SousaI.S. VieiraT.D.P. Menna-BarretoR.F.S. GuimarãesA.J. McCarronP. McCannM. DevereuxM. SantosA.L.S. KneippL.F. Silver(I) 1,10-phenanthroline complexes are active against Fonsecaea pedrosoi viability and negatively modulate its potential virulence attributes.J. Fungi (Basel)20239335610.3390/jof9030356 36983524
    [Google Scholar]
  43. de SousaE.S.O. CortezA.C.A. de Souza Carvalho MelhemM. FrickmannH. de SouzaJ.V.B. Factors influencing susceptibility testing of antifungal drugs: A critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI).Braz. J. Microbiol.20205141791180010.1007/s42770‑020‑00354‑6 32757139
    [Google Scholar]
  44. PintoM.R. Barreto-BergterE. TabordaC.P. Glycoconjugates and polysaccharides of fungal cell wall and activation of immune system.Braz. J. Microbiol.200839219520810.1590/S1517‑83822008000200001 24031202
    [Google Scholar]
  45. BuldainI. Martin-SoutoL. AntoranA. AreitioM. Aparicio-FernandezL. RementeriaA. HernandoF.L. Ramirez-GarciaA. The host immune response to Scedosporium.J. Fungi (Basel)2021727510.3390/jof7020075 33499053
    [Google Scholar]
  46. XistoM.I.D.S. BittencourtV.C.B. Liporagi-LopesL.C. HaidoR.M.T. MendonçaM.S.A. SassakiG. FigueiredoR.T. RomanosM.T.V. Barreto-BergterE. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.PLoS One2015104e012318910.1371/journal.pone.0123189 25875427
    [Google Scholar]
  47. de MeirellesJ.V. XistoM.I.D.S. Rollin-PinheiroR. SerratoR.V. HaidoR.M.T. Barreto-BergterE. Peptidorhamanomannan: A surface fungal glycoconjugate from Scedosporium aurantiacum and Scedosporium minutisporum and its recognition by macrophages.Med. Mycol.202159544145210.1093/mmy/myaa065 32766889
    [Google Scholar]
  48. EshwikaA. CoyleB. DevereuxM. McCannM. KavanaghK. Metal complexes of 1,10-phenanthroline-5,6-dione alter the susceptibility of the yeast Candida albicans to amphotericin B and miconazole.Biometals200417441542210.1023/B:BIOM.0000029438.97990.c6 15259362
    [Google Scholar]
  49. DubreuilJ.D. GiudiceG.D. RappuoliR. Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process.Microbiol. Mol. Biol. Rev.200266461762910.1128/MMBR.66.4.617‑629.2002 12456785
    [Google Scholar]
  50. KozikA. Karkowska-KuletaJ. ZajacD. BochenskaO. Kedracka-KrokS. JankowskaU. Rapala-KozikM. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts.BMC Microbiol.201515119710.1186/s12866‑015‑0531‑4 26438063
    [Google Scholar]
  51. DaltonC.J. LemmonC.A. Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling.Cells2021109244310.3390/cells10092443 34572092
    [Google Scholar]
  52. KlotzS.A. SmithR.L. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix.J. Infect. Dis.1991163360461010.1093/infdis/163.3.604 1825316
    [Google Scholar]
  53. PeñalverM.C. O’ConnorJ.E. MartinezJ.P. GilM.L. Binding of human fibronectin to Aspergillus fumigatus conidia.Infect. Immun.19966441146115310.1128/iai.64.4.1146‑1153.1996 8606071
    [Google Scholar]
  54. LimaO.C. FigueiredoC.C. PreviatoJ.O. Mendonça-PreviatoL. MorandiV. Lopes BezerraL.M. Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin.Infect. Immun.200169116874688010.1128/IAI.69.11.6874‑6880.2001 11598061
    [Google Scholar]
  55. MartinezL.R. CasadevallA. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro.Antimicrob. Agents Chemother.20065031021103310.1128/AAC.50.3.1021‑1033.2006 16495265
    [Google Scholar]
  56. MelloT.P. BranquinhaM.H. SantosA.L.S. Biofilms formed by Scedosporium and Lomentospora species: focus on the extracellular matrix.Biofouling202036330831810.1080/08927014.2020.1759558 32401558
    [Google Scholar]
  57. ViganorL. GaldinoA.C.M. NunesA.P.F. SantosK.R.N. BranquinhaM.H. DevereuxM. KellettA. McCannM. SantosA.L.S. Anti- Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells.J. Antimicrob. Chemother.201671112813410.1093/jac/dkv292 26416778
    [Google Scholar]
  58. GandraR.M. Mc CarronP. FernandesM.F. RamosL.S. MelloT.P. AorA.C. BranquinhaM.H. McCannM. DevereuxM. SantosA.L.S. Antifungal potential of copper(II), manganese(II) and silver(I) 1,10-phenanthroline chelates against multidrug-resistant fungal species forming the Candida haemulonii complex: Impact on the planktonic and biofilm lifestyles.Front. Microbiol.20178125710.3389/fmicb.2017.01257 28744261
    [Google Scholar]
  59. EscobarN. OrdonezS.R. WöstenH.A.B. HaasP.J.A. de CockH. HaagsmanH.P. Hide, keep quiet, and keep low: Properties that make Aspergillus fumigatus a successful lung pathogen.Front. Microbiol.2016743810.3389/fmicb.2016.00438 27092115
    [Google Scholar]
  60. Gil-LamaignereC. WinnR.M. SimitsopoulouM. MaloukouA. WalshT.J. RoilidesE. Inteferon gamma and granulocyte–macrophage colony-stimulating factor augment the antifungal activity of human polymorphonuclear leukocytes against Scedosporium spp.: comparison with Aspergillus spp.Med. Mycol.200543325326010.1080/13693780412331271072 16010852
    [Google Scholar]
  61. BittencourtV.C.B. FigueiredoR.T. da SilvaR.B. Mourão-SáD.S. FernandezP.L. SassakiG.L. MulloyB. BozzaM.T. Barreto-BergterE. An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation.J. Biol. Chem.200628132226142262310.1074/jbc.M511417200 16766532
    [Google Scholar]
  62. AorA.C. MelloT.P. SangenitoL.S. FonsecaB.B. RozentalS. LioneV.F. VeigaV.F. BranquinhaM.H. SantosA.L.S. Ultrastructural viewpoints on the interaction events of Scedosporium apiospermum conidia with lung and macrophage cells.Mem. Inst. Oswaldo Cruz201811310e18031110.1590/0074‑02760180311 30304087
    [Google Scholar]
  63. MelloT.P. AorA.C. BranquinhaM.H. SantosA.L.S. Insights into the interaction of Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum, and Lomentospora prolificans with lung epithelial cells.Braz. J. Microbiol.202051242743610.1007/s42770‑019‑00183‑2 31736016
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266327984241018111547
Loading
/content/journals/ctmc/10.2174/0115680266327984241018111547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test