Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Filariasis is one of the oldest, most dangerous, debilitating, disfiguring diseases and often ignores tropical disorders. It presents with a range of clinical symptoms, a low death rate, and a high morbidity rate, which contributes to social discrimination. This condition has major effects on people's socioeconomic circumstances. This illness is carried by mosquitoes that have spread malaria. Lymphatic filariasis, caused by , , and , is a crippling illness with serious social and economic consequences. The infection persisted despite therapy with conventional antifilarial medications such as diethylcarbamazine (DEC), albendazole, and ivermectin, which are mostly microfilaricides. Current treatments (ivermectin, diethylcarbamazine, and albendazole) have limited effectiveness against adult parasites and produce side effects; therefore, innovative antifilarial medications are urgently required. Hence, macrofilaricides, embryostatic agents, and improved microfilaricides are required. The following article discusses the typical synthetic methodologies established for antifilarial activity as well as their marketed pharmaceuticals, which will help researchers, medicinal chemists, and pharmaceutical scientists to develop new and effective antifilarial therapies. This review can help to identify new lead compounds and optimize existing commercial medications to improve their therapeutic efficacy. The majority of the studies addressed in this review concern the forms of filariasis, parasite life cycle, symptoms, medications used to treat filariasis, synthetic schemes, SAR, and results from the reported research.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266321838241024073444
2024-11-01
2025-09-07
Loading full text...

Full text loading...

References

  1. TanG.J.Z. The elimination of Lymphatic filariasis: A strategy for the poverty alleviation and sustainable development: Perspective from Phillippinesn.Filaria J.2003211210.1186/1475‑2883‑2‑12 12914666
    [Google Scholar]
  2. ThomasA.P. Parasitic diseases and immunodeficiencies.Parasitology2001122S1S65S71
    [Google Scholar]
  3. OttesenE.A. The global programme to eliminate Lymphatic filariasis.Trop. Med. Int. Health20005959159410.1046/j.1365‑3156.2000.00620.x 11044272
    [Google Scholar]
  4. SchacherJ.F. Morphology of the microfilaria of Brugia pahangi and of the larval stages in the mosquito.J. Parasitol.196248567969210.2307/3275257 13976565
    [Google Scholar]
  5. MathewN. KalyanasundaramM. Antifilarial agents.Expert Opin. Ther. Pat.200717776778910.1517/13543776.17.7.767
    [Google Scholar]
  6. FenwickA. The global burden of neglected tropical diseases.Public Health2012126323323610.1016/j.puhe.2011.11.015 22325616
    [Google Scholar]
  7. World health organisationLymphatic filariasis: The disease and its control.1992Available from: https://www.who.int/newsroom/fact-sheets/detail/lymphaticfilariasis#:~:text=Lymphatic%20filariasis%20can%20be%20eliminated,safe%20medicine%20combinations%20repeated%20annually
    [Google Scholar]
  8. Lymphatic filariasis: The disease and its control. Fifth report of the who expert committee on filariasis.World Health Organ. Tech. Rep. Ser.1992821171 1441569
    [Google Scholar]
  9. BabuS. NutmanT.B. Immunology of Lymphatic filariasis.Parasite Immunol.201436833834610.1111/pim.12081 24134686
    [Google Scholar]
  10. EdesonJ.F.B. WhartonR.H. The experimental transmission of Wuchereria infections from man to animals.Proc. 6th Int. Cong. Trop. Med. Mal.Lang, Lisbon1959466471
    [Google Scholar]
  11. AshL.R. SchacherJ.F. Early life cycle and larval morphogenesis of Wuchereria bancrofti in the jird, Meriones unguiculatus.J. Parasitol.19715751043105110.2307/3277863 5133881
    [Google Scholar]
  12. AmaralF. DreyerG. SilvaF.J. NoroesJ. CavalcantiA. SamicoS.C. SantosA. CoutinhoA. Live adult worms detected by ultrasonography in human Bancroftian filariasis.Am. J. Trop. Med. Hyg.199450675375710.4269/ajtmh.1994.50.753 8024070
    [Google Scholar]
  13. MolyneuxD. Lymphatic filariasis (Elephantiasis) elimination: A public health success and development opportunity.Filaria J.2003211310.1186/1475‑2883‑2‑13 13129436
    [Google Scholar]
  14. World Health OrganizationGlobal programme to eliminate Lymphatic filariasis: Progress report.2022Available from: https://www.who.int/publications/i/item/who-wer9841-489-502
    [Google Scholar]
  15. World Health OrganizationGlobal report on neglected tropical diseases.2024Available from: https://www.who.int/teams/control-of-neglected-tropical-diseases/global-report-on-neglected-tropical-diseases-2024
    [Google Scholar]
  16. SangshettiJ.N. ShindeD.B. KulkarniA. AroteR. Two decades of antifilarial drug discovery: A review.Royal Soc. Chem.201772062820666
    [Google Scholar]
  17. TripathiR.P. KatiyarD. DwivediN. SinghB. PandeyJ. Recent developments in search of antifilarial agents.Curr. Med. Chem.200613273319333410.2174/092986706778773103 17168854
    [Google Scholar]
  18. McMahonJ.E. SimonsenP.E. Saunders Company London,1996
    [Google Scholar]
  19. AllenJ.E. MaizelsR.M. Diversity and dialogue in immunity to helminths.Nat. Rev. Immunol.201111637538810.1038/nri2992 21610741
    [Google Scholar]
  20. RobertsL.S. JanovyJ. Foundations of Parasitology5th ed. SchmidtG.D. RobersL.S. WCB publishers Boston1996659
    [Google Scholar]
  21. ShenoyR.K. KumaraswamiV. SumaT.K. RajanK. RadhakuttyammaG. A double-blind, placebo-controlled study of the efficacy of oral penicillin, diethylcarbamazine or local treatment of the affected limb in preventing acute adenolymphangitis in lymphoedema caused by brugian filariasis.Ann. Trop. Med. Parasitol.199993436737710.1080/00034983.1999.11813433 10656038
    [Google Scholar]
  22. BoussinesqM. GardonJ. Prevalences of Loa loa microfilaraemia throughout the area endemic for the infection.Ann. Trop. Med. Parasitol.199791657358910.1080/00034983.1997.11813176 9425360
    [Google Scholar]
  23. ShenoyR.K. SumaT.K. RajanK. KumaraswamiV. Prevention of acute adenolymphangitis in brugian filariasis: Comparison of the efficacy of ivermectin and diethylcarbamazine, each combined with local treatment of the affected limb.Ann. Trop. Med. Parasitol.199892558759410.1080/00034983.1998.11813316 9797832
    [Google Scholar]
  24. EvansD.B. GelbandH. VlassoffC. Social and economic factors and the control of Lymphatic filariasis: A review.Acta Trop.199353112610.1016/0001‑706X(93)90002‑S 8096106
    [Google Scholar]
  25. LanghammerJ. BirkH.W. ZahnerH. Renal disease in Lymphatic filariasis: Evidence for tubular and glomerular disorders at various stages of the infection.Trop. Med. Int. Health19972987588410.1046/j.1365‑3156.1997.d01‑404.x 9315046
    [Google Scholar]
  26. OttesenE.A. The human filariases: New understandings, new therapeutic strategies.Curr. Opin. Infect. Dis.19947555055810.1097/00001432‑199410000‑00006
    [Google Scholar]
  27. FreedmanD.O. FilhoP.J.A. BeshS. SilvaM.C.M. BragaC. MacielA. Lymphoscintigraphic analysis of lymphatic abnormalities in symptomatic and asymptomatic human filariasis.J. Infect. Dis.1994170492793310.1093/infdis/170.4.927 7523538
    [Google Scholar]
  28. DreyerG. DreyerP. PiessensW.F. Extralymphatic disease due to bancroftian filariasis.Braz. J. Med. Biol. Res.199932121467147210.1590/S0100‑879X1999001200003 10585626
    [Google Scholar]
  29. DevaneyE. MartinS.A.M. ThompsonF.J. Stage-specific gene expression in lymphatic filarial nematodes.Parasitol. Today1996121141842410.1016/0169‑4758(96)10065‑X 15275274
    [Google Scholar]
  30. SumaT.K. ShenoyR.K. VargheseJ. KuttikkalV.V. KumaraswamiV. Estimation of ASO titer as an indicator of streptococcal infection precipitating acute adenolymphangitis in brugian Lymphatic filariasis.Southeast Asian J. Trop. Med. Public Health1997284826830 9656409
    [Google Scholar]
  31. PartonoF. Diagnosis and treatment of Lymphatic filariasis.Parasitol. Today198512525710.1016/0169‑4758(85)90115‑2 15275610
    [Google Scholar]
  32. KolekarS. SundaramP. JoshiJ.M. Unusual diagnostic aid for a common tropical disease.Indian J. Chest Dis. Allied Sci.2003454257259 12962460
    [Google Scholar]
  33. WahlG. GeorgesA.J. Current knowledge on the epidemiology, diagnosis, immunology, and treatment of loiasis.Trop. Med. Parasitol.1995464287291 8826114
    [Google Scholar]
  34. AnithaK. ShenoyR.K. Treatment of Lymphatic filariasis: Current trends.Indian J. Dermatol. Venereol. Leprol.2001676065
    [Google Scholar]
  35. ManyehA.K. IbisomiL. RamaswamyR. BaidenF. ChirwaT. Exploring factors affecting quality implementation of Lymphatic filariasis mass drug administration in Bole and Central Gonja Districts in Northern Ghana.PLoS Negl. Trop. Dis.2020148e000700910.1371/journal.pntd.0007009 32804967
    [Google Scholar]
  36. HananM.F. SobriH.N. AbidinN.D. HassanM.R. NawiA.M. AhmadN. RahimS.S. JeffreeM.S. Systematic review on impact of mass drug administration on Lymphatic filariasis prevention.Global J. Public Health Med.20213241442810.37557/gjphm.v3i2.91
    [Google Scholar]
  37. AjendraJ. HoeraufA. HubnerM.P. Biology of the human filariases.Parasitic Helminths and Zoonoses-From Basic to Applied Research.IntechOpen2022140010.5772/intechopen.102926
    [Google Scholar]
  38. ShenoyR.K. DaliaS. JohnA. SumaT.K. KumaraswamiV. Treatment of the microfilaraemia of asymptomatic brugian filariasis with single doses of ivermectin, diethylcarbamazine or albendazole, in various combinations.Ann. Trop. Med. Parasitol.199993664365110.1080/00034983.1999.11813467 10707109
    [Google Scholar]
  39. OttesenE.A. Efficacy of diethylcarbamazine in eradicating infection with lymphatic-dwelling filariae in humans.Clin. Infect. Dis.19857334135610.1093/clinids/7.3.341 3895352
    [Google Scholar]
  40. MolyneuxD.H. HopkinsA. BradleyM.H. HopeK.L.A. Multidimensional complexities of filariasis control in an era of large-scale mass drug administration programmes: A can of worms.Parasit. Vectors20147136310.1186/1756‑3305‑7‑363 25128408
    [Google Scholar]
  41. McphersonS. Safety of the co-administration of azithromycin, albendazole and ivermectin versus standard treatment regimens during mass drug administration (MDA) in ethiopia: A cluster randomized trial.2019Available from: https://mesamalaria.org/mesa-track/safety-co-administration-azithromycin-albendazole-and-ivermectin-versus-standard/
    [Google Scholar]
  42. BockarieM.J. DebR.M. Elimination of Lymphatic filariasis: Do we have the drugs to complete the job?Curr. Opin. Infect. Dis.201023661762010.1097/QCO.0b013e32833fdee5 20847694
    [Google Scholar]
  43. AwasthiS.K. MishraN. DixitS.K. SinghA. YadavM. YadavS.S. RathaurS. Antifilarial activity of 1,3-diarylpropen-1-one: Effect on glutathione-S-transferase, a phase II detoxification enzyme.Am. J. Trop. Med. Hyg.200980576476810.4269/ajtmh.2009.80.764 19407121
    [Google Scholar]
  44. ChhajedS.S. ManishaP. BastikarV.A. AnimeshchandraH. IngleV.N. UpasaniC.D. WazalwarS.S. Synthesis and molecular modeling studies of 3-chloro-4-substituted-1-(8-hydroxy-quinolin-5-yl)-azetidin-2-ones as novel anti-filarial agents.Bioorg. Med. Chem. Lett.201020123640364410.1016/j.bmcl.2010.04.106 20483610
    [Google Scholar]
  45. KumarA. SaxenaJ. ChauhanP. Synthesis of 4-amino-5-cyano-2, 6-disubstituted pyrimidines as a potential antifilarial DNA topoisomerase II inhibitors.Med. Chem.20084657758510.2174/157340608786242115 18991743
    [Google Scholar]
  46. DubeyR. AbuzarS. SharmaS. ChatterjeeR.K. KatiyarJ.C. Synthesis and anthelmintic activity of 5(6)-[(benzimidazol-2-yl)carboxamido]- and (4-substituted piperazin-1-yl)benzimidazoles.J. Med. Chem.198528111748175010.1021/jm00149a036 3906129
    [Google Scholar]
  47. MatsaR. MakamP. AnilakumariR. SundharesanM. MathewN. KannanT. Design, synthesis, and in vitro evaluation of thiosemicarbazone derivatives as anti-filarial agents.Exp. Parasitol.202224110836310.1016/j.exppara.2022.108363 36007586
    [Google Scholar]
  48. KatiyarS.B. BansalI. SaxenaJ.K. ChauhanP.M.S. Syntheses of 2,4,6-trisubstituted pyrimidine derivatives as a new class of antifilarial topoisomerase II inhibitors.Bioorg. Med. Chem. Lett.2005151475010.1016/j.bmcl.2004.10.046 15582408
    [Google Scholar]
  49. KalaniK. KushwahaV. VermaR. MurthyP.K. SrivastavaS.K. Glycyrrhetinic acid and its analogs: A new class of antifilarial agents.Bioorg. Med. Chem. Lett.20132392566257010.1016/j.bmcl.2013.02.115 23541646
    [Google Scholar]
  50. RamS. SkinnerM. KalvinD.S. WiseD.S. TownsendL.B. McCallJ.W. WorthD. OrtwineD. WerbelsL.M. Synthesis of potential antifilarial agents, 1.1-(5-benzoylbenzimidazol-2-yl)-3-alkayln-d–aryl ureas.J. Med. Chem.19842791491710.1021/jm00373a017 6737434
    [Google Scholar]
  51. RamS. WiseD.S. WotringL.L. McCallJ.W. TownsendL.B. Synthesis and biological activity of certain alkyl 5-(alkoxycarbonyl)-1H-benzimidazole-2-carbamates and related derivatives: A new class of potential antineoplastic and antifilarial agents.J. Med. Chem.199235353954710.1021/jm00081a016 1738146
    [Google Scholar]
  52. SrivastavaS.K. ChauhanP.M.S. AgarwalS.K. BhaduriA.P. SinghS.N. FatmaN. ChatterjeeR.K. BoseC. SrivastavaV.M.L. Syntheses and antifilarial profile of 5-amino and 5,8-diamino-isoquinoline derivatives: A new class of antifilarial agents.Bioorg. Med. Chem. Lett.19966222623262810.1016/S0960‑894X(96)00458‑1
    [Google Scholar]
  53. SrivastavaS.K. AgarwalA. ChauhanP.M.S. AgarwalS.K. BhaduriA.P. SinghS.N. FatimaN. ChatterjeeR.K. Potent 1,3-disubstituted-9H-pyrido[3,4-b]indoles as new lead compounds in antifilarial chemotherapy1CDRI Communication No. 5795.1.Bioorg. Med. Chem.1999761223123610.1016/S0968‑0896(99)00050‑4 10428395
    [Google Scholar]
  54. TewariS. ChauhanP.M.S. BhaduriA.P. FatimaN. ChatterjeeR.K. Syntheses and antifilarial profile of 7-chloro-4-(substituted amino) quinolines: A new class of antifilarial agents.Bioorg. Med. Chem. Lett.200010131409141210.1016/S0960‑894X(00)00255‑9 10888320
    [Google Scholar]
  55. TewariS. ChauhanP.M.S. BhaduriA.P. SinghS.N. FatmaN. ChatterjeeR.K. SrivastavaV.M.L. 1,1′-Dicyano-2-substituted ethylenes: A new class of glucose uptake inhibitors in antifilarial chemotherapy.Bioorg. Med. Chem. Lett.19977141891189610.1016/S0960‑894X(97)00322‑3
    [Google Scholar]
  56. TsemeugneJ. ShinyuyL.M. DjeukouaS.K.D. SopbueE.F. NgemenyaM.N. Evaluation of macrofilaricidal and microfilaricidal activities against Onchocerca ochengi and cytotoxicity of some synthesized azo compounds containing thiophene backbone.Parasitol. Res.202112062087209410.1007/s00436‑021‑07162‑3 33864105
    [Google Scholar]
  57. RamS. WiseD.S. TownsendL.B. Synthesis of 2‐substituted benzimidazole‐5‐carbamates as potential antifilarial agents.J. Heterocycl. Chem.19862341109111310.1002/jhet.5570230430
    [Google Scholar]
  58. RamS. WiseD.S. TownsendL.B. Synthesis of 2‐thiobenzimidazole derivatives as potential antifilarial agents.J. Heterocycl. Chem.19852251269127410.1002/jhet.5570220525
    [Google Scholar]
  59. AbuzarS. SharmaS. FatmaN. GuptaS. MurthyP.K. KatiyarJ.C. ChatterjeeR.K. SenA.B. Studies in potential filaricides. 18. Synthesis of 2,2′-disubstituted 5,5′-dibenzimidazolyl ketones and related compounds as potential anthelmintics.J. Med. Chem.19862971296129910.1021/jm00157a032 3543360
    [Google Scholar]
  60. KumarY. GreenR. WiseD.S. WotringL.L. TownsendL.B. Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antifilarial and antitumor agents. 2. 2-Arylamido and 2-alkylamido derivatives of 2-amino-4-(isothiocyanatomethyl)thiazole and 2-amino-4-(isothiocyanatomethyl)selenazole.J. Med. Chem.199336243849385210.1021/jm00076a013 8254615
    [Google Scholar]
  61. DhananjeyanM.R. MilevY.P. KronM.A. NairM.G. Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi.J. Med. Chem.20054882822283010.1021/jm0492655 15828820
    [Google Scholar]
  62. MathewN. KarunanT. SrinivasanL. MuthuswamyK. Synthesis and screening of substituted 1,4‐naphthoquinones (NPQs) as antifilarial agents.Drug Dev. Res.201071318819610.1002/ddr.20357
    [Google Scholar]
  63. SrivastavaS.K. ChauhanP.M.S. BhaduriA.P. A novel strategy for N-alkylation of primary amines.Synth. Commun.199929122085209110.1080/00397919908086201
    [Google Scholar]
  64. SrivastavaS.K. ChauhanP.M.S. BhaduriA.P. MurthyP.K. ChatterjeeR.K. Secondary amines as new pharmacophores for macrofilaricidal drug design.Bioorg. Med. Chem. Lett.200010431331410.1016/S0960‑894X(99)00687‑3 10714488
    [Google Scholar]
  65. KumarS. SethM. BhaduriA.P. VisenP.K.S. MisraA. GuptaS. FatimaN. KatiyarJ.C. ChatterjeeR.K. SenA.B. Syntheses and anthelmintic activity of alkyl 5(6)-(substituted carbamoyl)- and 5(6)-(disubstituted carbamoyl)benzimidazole-2-carbamates and related compounds.J. Med. Chem.19842781083108910.1021/jm00374a025 6540312
    [Google Scholar]
  66. ZaridahM.Z. IdidS.Z. OmarW.A. KhozirahS. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi.J. Ethnopharmacol.2001781798410.1016/S0378‑8741(01)00286‑0 11585692
    [Google Scholar]
  67. FatmaN. SharmaS. ChatterjeeR.K. 2,2′-Dicarbomethoxyamino-5,5′-dibenzimidazolyl ketone — A new antifilarial agent.Acta Trop.1989465-631132110.1016/0001‑706X(89)90044‑2 2575867
    [Google Scholar]
  68. SundbergR.J. BiswasS. MurthiK.K. RoweD. McCallJ.W. DzimianskiM.T. Bis-cationic heteroaromatics as macrofilaricides: synthesis of bis-amidine and bis-guanylhydrazone derivatives of substituted imidazo[1,2-a]pyridines.J. Med. Chem.199841224317432810.1021/jm9803368 9784107
    [Google Scholar]
  69. LoiseauP.M. DepreuxP. In vitro antifilarial evaluation of phenoxycyclohexane derivatives.Ann. Trop. Med. Parasitol.199387546947610.1080/00034983.1993.11812797 8311571
    [Google Scholar]
  70. AgrawalN.R. BahekarS.P. SarodeP.B. ZadeS.S. ChandakH.S. L -Proline nitrate: A recyclable and green catalyst for the synthesis of highly functionalized piperidines.RSC Adv.2015558470534705910.1039/C5RA08022C
    [Google Scholar]
  71. BhojP. TogreN. BahekarS. GoswamiK. ChandakH. PatilM. Immunomodulatory activity of sulfonamide chalcone compounds in mice infected with filarial parasite, Brugia malayi.Indian J. Clin. Biochem.201934222522910.1007/s12291‑017‑0727‑5 31092998
    [Google Scholar]
  72. RoyP. SenguptaA. JoardarN. BhattacharyyaA. SahaN.C. MisraA.K. BabuS.S.P. Influence of autophagy, apoptosis and their interplay in filaricidal activity of C-cinnamoyl glycosides.Parasitol.2019146111451146110.1017/S0031182019000660 31104638
    [Google Scholar]
  73. BahekarS.P. HandeS.V. AgrawalN.R. ChandakH.S. BhojP.S. GoswamiK. ReddyM.V.R. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi.Eur. J. Med. Chem.201612412426226910.1016/j.ejmech.2016.08.042 27592395
    [Google Scholar]
  74. BhojP.S. BahekarS.P. ChowdharyS. TogreN.S. AmdareN.P. JenaL. GoswamiK. ChandakH. Michael adduct of sulfonamide chalcone targets folate metabolism in brugia malayi parasite.Biomed.202311372310.3390/biomedicines11030723 36979702
    [Google Scholar]
  75. AzadC.S. BalaramnavarV.M. KhanI.A. DohareyP.K. SaxenaJ.K. SaxenaA.K. Operative conversions of 3-carboxy-4-quinolones into 3-nitro-4-quinolones via ipso -nitration: Potential antifilarial agents as inhibitors of Brugia malayi thymidylate kinase.RSC Adv.20155100822088221410.1039/C5RA18036H
    [Google Scholar]
  76. GucchaitA. JoardarN. ParidaP.K. RoyP. MukherjeeN. DuttaA. YesuvadianR. SinhaBabu, S.P.; Jana, K.; Misra, A.K. Development of novel anti-filarial agents using carbamo(dithioperoxo)thioate derivatives.Eur. J. Med. Chem.201814314359861010.1016/j.ejmech.2017.11.047 29207343
    [Google Scholar]
  77. MisraS. SinghL.K. Priyanka GuptaJ. BhattacharyaM.S. KatiyarD. Synthesis and biological evaluation of 4-oxycoumarin derivatives as a new class of antifilarial agents.Eur. J. Med. Chem.2015949421121710.1016/j.ejmech.2015.02.043 25768703
    [Google Scholar]
  78. SashidharaK.V. AvulaS.R. DohareyP.K. SinghL.R. BalaramnavarV.M. GuptaJ. BhattacharyaM.S. RathaurS. SaxenaA.K. SaxenaJ.K. Designing, synthesis of selective and high-affinity chalcone-benzothiazole hybrids as Brugia malayi thymidylate kinase inhibitors: In vitro validation and docking studies.Eur. J. Med. Chem.201510310341842810.1016/j.ejmech.2015.09.004 26383126
    [Google Scholar]
  79. RoyP. DharaD. ParidaP.K. KarR.K. BhuniaA. JanaK. BabuS.S.P. MisraA.K. C -cinnamoyl glycosides as a new class of anti-filarial agents.Eur. J. Med. Chem.201611430831710.1016/j.ejmech.2016.03.001 27015610
    [Google Scholar]
  80. JoardarN. ShitP. HalderS. DebnathU. SahaS. MisraA.K. JanaK. BabuS.S.P. Disruption of redox homeostasis with synchronized activation of apoptosis highlights the antifilarial efficacy of novel piperine derivatives: An in vitro mechanistic approach.Free Radic. Biol. Med.202116934336010.1016/j.freeradbiomed.2021.04.026 33895288
    [Google Scholar]
  81. PandeyA.R. SinghS.P. RamalingamK. YadavK. BisenA.C. BhattaR.S. SrivastavaM. TripathiR. GoyalN. SashidharaK.V. Antileishmanial evaluation of triazole–butenolide conjugates: Design, synthesis, in vitro screening, SAR and in silico ADME predictions.RSC Med. Chem.20231461131114210.1039/D2MD00464J 37360388
    [Google Scholar]
  82. MondalS. DebnathS. PalS. DasA. Synthesis of uracil-, coumarin-and quinolone-fused benzosultams and benzosultones.Synthesis201547213423343310.1055/s‑0034‑1378734
    [Google Scholar]
  83. MukherjeeS. JoardarN. MondalS. SchieferA. HoeraufA. PfarrK. BabuS.P.S. Quinolone-fused cyclic sulfonamide as a novel benign antifilarial agent.Sci. Rep.2018811207310.1038/s41598‑018‑30610‑7 30104608
    [Google Scholar]
  84. PriyankaM. MisraS. BhattacharyaM.S. ButcherR.J. KatiyarD. Resolution, absolute configuration and antifilarial activity of coumarinyl amino alcohols. Tetra.Asym.201728573474310.1016/j.tetasy.2017.04.005
    [Google Scholar]
  85. GeldernV.T.W. MortonH.E. ClarkR.F. BrownB.S. JohnstonK.L. FordL. SpechtS. CarrR.A. StolarikD.F. MaJ. RieserM.J. StrueverD. FrohbergerS.J. KoschelM. EhrensA. TurnerJ.D. HübnerM.P. HoeraufA. TaylorM.J. WardS.A. MarshK. KempfD.J. Discovery of ABBV-4083, A novel analog of Tylosin A that has potent anti-Wolbachia and anti-filarial activity.PLoS Negl. Trop. Dis.2019132e000715910.1371/journal.pntd.0007159 30818326
    [Google Scholar]
  86. MishraA. KumarS. SinghA. Biosynthesis and characterization of Ocimum sanctum green silver nanoparticles and unravelling their enhanced anti-filarial activity through a HRAMS proteomics approach.RSC Adv.20241495893590610.1039/D3RA08702F 38362069
    [Google Scholar]
  87. KausarS. KhanW. DwivediS. AzamA. Antifilarial effect of nanocomposite of silver nanoparticles with nitazoxanide against the microfilariae of Setaria cervi-infected albino rats.Naunyn Schmied. Arch. Pharmacol.202039381341135610.1007/s00210‑020‑01821‑5 32002575
    [Google Scholar]
  88. ZafarA. AhmadI. AhmadA. AhmadM. Copper(II) oxide nanoparticles augment antifilarial activity of Albendazole: In vitro synergistic apoptotic impact against filarial parasite Setaria cervi.Int. J. Pharm.20165011-2496410.1016/j.ijpharm.2016.01.059 26827921
    [Google Scholar]
  89. KushwahaV. SaxenaK. VermaR. VermaS.K. KatochD. KumarN. LalB. MurthyP.K. SinghB. Antifilarial activity of diterpenoids from Taxodium distichum.Parasit. Vectors20169131232810.1186/s13071‑016‑1592‑4 27245322
    [Google Scholar]
  90. SahareK.N. SinghV. Antifilarial activity of Methanolic extract of Vitex negundo L. leaves against Setaria cervi filarial parasite.Sch. Acad. J. Pharm2015428892
    [Google Scholar]
  91. SahareK.N. AnandhramanV. MeshramV.G. MeshramS.U. SinghV. ReddyM.V.R. GoswamiK. Antifilarial Potential of Butea monosperma L. against microfilaria in vitro.Int. J. Pharm. Tech. Res.20124311811184
    [Google Scholar]
  92. SahareK.N. Antifilarial screening of Vitex negundo L. leaves compound.J. Sci. Res.202165613213610.37398/JSR.2021.650622
    [Google Scholar]
  93. AbdA.N.M. NorZ.M. JunaidQ.O. MansorM. HasanM.S. KassimM. Antifilarial activity of caffeic acid phenethyl ester on Brugia pahangi in vitro and in vivo.Pathog. Glob. Health2017111738839410.1080/20477724.2017.1380946 29065795
    [Google Scholar]
  94. AyiB. Diseases Caused by Helminths (Worms)X PharmThe Comprehensive Pharmacology Reference.200716
    [Google Scholar]
  95. AlagarsamyV. Textbook of Medicinal ChemistryElsevierA Division of Reed Elsevier India Private Limited: New Delhi2010II1621
    [Google Scholar]
  96. AnandN. SharmaS. Approaches to design and synthesis of antiparasitic drugs1st edElsevier199725151110.1016/S0165‑7208(97)80022‑0
    [Google Scholar]
  97. VardanyanR.S. HrubyV.J. Antihelmintic Drugs1st EditionSynthesis of Essential Drugs200658359310.1016/B978‑044452166‑8/50038‑8
    [Google Scholar]
  98. MacleanM.J. The antifilarial effects of diethylcarbamazine and ivermectin; University of Georgia Doctor of Philosophy (PHD).University of Georgia Summer20171194
    [Google Scholar]
  99. FlorêncioM.S. PeixotoC.A. The effects of diethylcarbamazine on the ultrastructure of microfilariae of Wuchereria bancrofti.Parasitol.2003126655155410.1017/S0031182003003214 12866792
    [Google Scholar]
  100. DaugschiesA. JoachimA. Eicosanoids in parasites and parasitic infections.Adv. Parasitol.20004618124010.1016/S0065‑308X(00)46009‑4 10761556
    [Google Scholar]
  101. HrckovaG. VelebnyS. Parasitic helminths of humans and animals: Health impact and control.Pharmacological potential of selected natural compounds in the control of parasitic diseases.Springer Wien Heidelberg New York Dordrecht London2013299910.1007/978‑3‑7091‑1325‑7
    [Google Scholar]
  102. KarA. Medicinal Chemistry4th ed.New Age International (P) Limited, Publisher: New Delhi2007960
    [Google Scholar]
  103. FernandoS.D. RodrigoC. RajapakseS. Current evidence on the use of antifilarial agents in the management of Bancroftian filariasis.J. Trop. Med.2011201111210.1155/2011/175941 21234244
    [Google Scholar]
  104. OttesenE.A. VijayasekaranV. KumaraswamiV. PillaiS.V.P. SadanandamA. FrederickS. PrabhakarR. TripathyS.P. A controlled trial of ivermectin and diethylcarbamazine in Lymphatic filariasis.N. Engl. J. Med.1990322161113111710.1056/NEJM199004193221604 2181312
    [Google Scholar]
  105. NutmanT.B. MillerK.D. MulliganM. ReinhardtG.N. CurrieB.J. SteelC. OttesenE.A. Diethylcarbamazine prophylaxis for human loiasis. Results of a double-blind study.N. Engl. J. Med.19883191275275610.1056/NEJM198809223191204 3166107
    [Google Scholar]
  106. VijayanV.K. RaoK.K.V. SankaranK. VenkatesanP. PrabhakarR. Tropical eosinophilia: Clinical and physiological response to diethylcarbamazine.Respir. Med.1991851172010.1016/S0954‑6111(06)80205‑2 1901660
    [Google Scholar]
  107. AwadziK. GillesH.M. Diethylcarbamazine in the treatment of patients with onchocerciasis.Br. J. Clin. Pharmacol.199234428128810.1111/j.1365‑2125.1992.tb05632.x 1457260
    [Google Scholar]
  108. FerreiraM.U. CraineyJ.L. GobbiF.G. The search for better treatment strategies for mansonellosis: An expert perspective.Expert Opin. Pharmacother.202324151685169210.1080/14656566.2023.2240235 37477269
    [Google Scholar]
  109. DreyerG. PiresM.L. AndradeD.L.D. LopesE. MedeirosZ. TenorioJ. CoutinhoA. NoroesJ. SilvaF.J. Tolerance of diethylcarbamazine by microfilaraemic and amicrofilaraemic individuals in an endemic area of Bancroftian filariasis, Recife, Brazil.Trans. R. Soc. Trop. Med. Hyg.199488223223610.1016/0035‑9203(94)90311‑5 8036686
    [Google Scholar]
  110. KushnerS. BranconeL. Diethylcarbamazine is an anthelmintic used to treat filarial infections like Wuchereria bancrofti and Loa loa.US. Patent, 2,467,8931949
  111. BagheriH. SimiandE. MontastrucJ.L. MagnavalJ.F. Adverse drug reactions to anthelmintics.Ann. Pharmacother.200438338338810.1345/aph.1D325 14749518
    [Google Scholar]
  112. BollaS. BoinpallyR.R. PoondruS. DevarajR. JastiB.R. Pharmacokinetics of diethylcarbamazine after single oral dose at two different times of day in human subjects.J. Clin. Pharmacol.200242332733110.1177/00912700222011247 11865970
    [Google Scholar]
  113. RidtitidW. WongnawaM. MahatthanatrakulW. PattanawongsaA. BumrungwongN. SunbhanichM. Effects of rifampicin and ketoconazole on the pharmacokinetics of a single oral dose of diethylcarbamazine in healthy volunteers.SMJ2020246527536
    [Google Scholar]
  114. LeenaK. A study of role of Diethylcarbamazine in Allergic Rhinitis with Eosinophilia201130559077
    [Google Scholar]
  115. LinY. OngY.C. KellerS. KargesJ. BoucheneR. ManouryE. BlacqueO. MüllerJ. AnghelN. HemphillA. HäberliC. TakiA.C. GasserR.B. CariouK. KeiserJ. GasserG. Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole.Dalton Trans.202049206616662610.1039/D0DT01107J 32347259
    [Google Scholar]
  116. VázquezM.G. YépezL. CamposH.A. TapiaA. LuisH.F. CedilloR. GonzálezJ. FernándezM.A. GrueiroM.M. CastilloR. Synthesis and antiparasitic activity of albendazole and mebendazole analogues.Bioorg. Med. Chem.200311214615462210.1016/S0968‑0896(03)00497‑8 14527558
    [Google Scholar]
  117. FennellB.J. NaughtonJ.A. BarlowJ. BrennanG. FairweatherI. HoeyE. McFerranN. TrudgettA. BellA. Microtubules as antiparasitic drug targets.Expert Opin. Drug Discov.20083550151810.1517/17460441.3.5.501 23484923
    [Google Scholar]
  118. HemphillA. StadelmannB. RufenerR. SpiliotisM. BoubakerG. MüllerJ. MüllerN. GorgasD. GottsteinB. Treatment of echinococcosis: Albendazole and mebendazole – what else?Parasite2014217010.1051/parasite/2014073 25526545
    [Google Scholar]
  119. HiremathL. PatilS.J. PramodT. Bioactive molecules against infectious diseases: Current concepts & updates.Innovationinfoebooks2001
    [Google Scholar]
  120. GongY. ZhouT. MaR. YangJ. ZhaoY. PanM. HuangZ. WenH. JiangH. WangJ. Efficacy and mechanism of energy metabolism dual-regulated nanoparticles (atovaquone-albendazole nanoparticles) against cystic echinococcosis.BMC Infect. Dis.202424177810.1186/s12879‑024‑09662‑w 39097707
    [Google Scholar]
  121. ChaiJ.Y. JungB.K. HongS.J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: An update.Korean J. Parasitol.202159318922510.3347/kjp.2021.59.3.189
    [Google Scholar]
  122. CarpioA. ChangM. ZhangH. RomoM.L. JaramilloA. HauserW.A. KelvinE.A. Exploring the complex associations over time among albendazole treatment, cyst evolution, and seizure outcomes in neurocysticercosis.Epilepsia20196091820182810.1111/epi.16302 31355931
    [Google Scholar]
  123. DehkordiA.B. SaneiB. YousefiM. SharafiS.M. SafarnezhadF. JafariR. DaraniH.Y. Albendazole and treatment of hydatid cyst, review of literature.Infect. Disord. Drug Targets201818210110410.2174/1871526518666180629134511 29956639
    [Google Scholar]
  124. MacfarlaneC.L. BudhathokiS.S. JohnsonS. RichardsonM. GarnerP. Albendazole alone or in combination with microfilaricidal drugs for Lymphatic filariasis.Cochrane Libr.201920191CD00375310.1002/14651858.CD003753.pub4 30620051
    [Google Scholar]
  125. VivancosV. AlvarezG.I. BermejoM. AlvarezG.M. Giardiasis: Characteristics, pathogenesis and new insights about treatment.Curr. Top. Med. Chem.201818151287130310.2174/1568026618666181002095314 30277155
    [Google Scholar]
  126. NeupaneS. ShahS. NeupaneP.K. JaishiP.P. Cutaneous larva migrans: A case report successfully treated with albendazole.Ann. Med. Surg.20228410490410.1016/j.amsu.2022.104904 36582866
    [Google Scholar]
  127. DubeyA. BagchiA. SharmaD. DeyA. NandyK. SharmaR. Hepatic capillariasis-drug targets.Infect. Disord. Drug Targets201818131010.2174/1871526517666170427124254 28460612
    [Google Scholar]
  128. ChoiG.Y. YangH.W. ChoS.H. KangD.W. GoH. LeeW.C. LeeY.J. JungS.H. KimA.N. ChaS.W. Acute drug-induced hepatitis caused by albendazole.J. Korean Med. Sci.200823590390510.3346/jkms.2008.23.5.903 18955802
    [Google Scholar]
  129. VenableS. PetersonA.M. Parasitic infection;Pharmacotherapeutics for Advanced Practice: A Practical Approach2001428
    [Google Scholar]
  130. MalikK. DuaA. Albendazole.StatPearls.Treasure Island, FLStatPearls Publishing2024https://www.ncbi.nlm.nih.gov/books/NBK553082/
    [Google Scholar]
  131. MerinoG. MolinaA.J. GarcíaJ.L. PulidoM.M. PrietoJ.G. AlvarezA.I. Intestinal elimination of albendazole sulfoxide: Pharmacokinetic effects of inhibitors.Int. J. Pharm.20032631-212313210.1016/S0378‑5173(03)00369‑7 12954187
    [Google Scholar]
  132. DayanA.D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics.Acta Trop.2003862-314115910.1016/S0001‑706X(03)00031‑7 12745134
    [Google Scholar]
  133. OchoaD. RodríguezS.M. RojanoG.E. RománM. RojasS.S. WojniczA. NuñoR.A. ArietaG.A. SantosA.F. High-fat breakfast increases bioavailability of albendazole compared to low-fat breakfast: Single-dose study in healthy subjects.Front. Pharmacol.20211266446510.3389/fphar.2021.664465 33935787
    [Google Scholar]
  134. MarrinerS.E. MorrisD.L. DicksonB. BoganJ.A. Pharmacokinetics of albendazole in man.Eur. J. Clin. Pharmacol.198630670570810.1007/BF00608219 3770064
    [Google Scholar]
  135. GaisserS. KellenbergerL. KajaA.L. WestonA.J. LillR.E. WirtzG. KendrewS.G. LowL. SheridanR.M. WilkinsonB. GallowayI.S. EngwallS.K. McArthurH.A.I. StauntonJ. LeadlayP.F. Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC31272.Org. Biomol. Chem.20031162840284710.1039/b304022d 12968333
    [Google Scholar]
  136. WolstenholmeA.J. RogersA.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics.Parasitology2005131S1S85S9510.1017/S0031182005008218 16569295
    [Google Scholar]
  137. TribiñosF. CuevasP. CornejoI. SepúlvedaF.V. CidL.P. A new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies.PLoS Pathog.2023193e101118810.1371/journal.ppat.1011188 36917600
    [Google Scholar]
  138. SharmeenS. SkrticM. SukhaiM.A. HurrenR. GrondaM. WangX. FonsecaS.B. SunH. WoodT.E. WardR. MindenM.D. BateyR.A. DattiA. WranaJ. KelleyS.O. SchimmerA.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells.Blood2010116183593360310.1182/blood‑2010‑01‑262675 20644115
    [Google Scholar]
  139. GreenbergR.M. Ion channels and drug transporters as targets for anthelmintics.Curr. Clin. Microbiol. Rep.201413-4516010.1007/s40588‑014‑0007‑6 25554739
    [Google Scholar]
  140. SinghL. FontinhaD. FranciscoD. MendesA.M. PrudêncioM. SinghK. Molecular design and synthesis of ivermectin hybrids targeting hepatic and erythrocytic stages of plasmodium parasites.J. Med. Chem.20206341750176210.1021/acs.jmedchem.0c00033 32011136
    [Google Scholar]
  141. CuppE.W. SauerbreyM. RichardsF. Elimination of human onchocerciasis: History of progress and current feasibility using ivermectin (Mectizan®) monotherapy.Acta Trop.20111201S100S10810.1016/j.actatropica.2010.08.009 20801094
    [Google Scholar]
  142. AdellI.R. AlcarazO.C. CompanyS.E. SánchezS.P. OyanaM.J. CalabuigR.D. Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis.Expert Opin. Pharmacother.20045122615261910.1517/14656566.5.12.2615 15571478
    [Google Scholar]
  143. MeinkingT.L. TaplinD. HermindaJ.L. PardoR. KerdelF.A. The treatment of scabies with ivermectin.N. Engl. J. Med.19953331263010.1056/NEJM199507063330105 7776990
    [Google Scholar]
  144. AmeenM. ArenasR. ReyesV.J. EsmenjaudR.J. MillarD. DueñasD.F. AnguloH.A. ÁlvarezR.M. Oral ivermectin for treatment of pediculosis capitis.Pediatr. Infect. Dis. J.2010291199199310.1097/INF.0b013e3181e63f5f 21046698
    [Google Scholar]
  145. LenobleR.D. ChandenierJ. GaxotteP. Ivermectin and filariasis.Fundam. Clin. Pharmacol.200317219920310.1046/j.1472‑8206.2003.00170.x 12667230
    [Google Scholar]
  146. OngR.K.C. DoyleR.L. Tropical pulmonary eosinophilia.Chest199811361673167910.1378/chest.113.6.1673 9631810
    [Google Scholar]
  147. VictoriaJ. TrujilloR. BarretoM. Msph, Myiasis: A successful treatment with topical ivermectin.Int. J. Dermatol.199938214214410.1046/j.1365‑4362.1999.00639.x 10192168
    [Google Scholar]
  148. BussaratidV. KrudsoodS. SilachamroonU. LooareesuwanS. Tolerability of ivermectin in gnathostomiasis.Southeast Asian J. Trop. Med. Public Health2005363644649 16124431
    [Google Scholar]
  149. GenderenV.P.J. Antihelminthic drugs.Side Eff. Drugs Annu.20093150751410.1016/S0378‑6080(09)03131‑6
    [Google Scholar]
  150. OttesenE.A. Description, mechanisms and control of reactions to treatment in the human filariases.Ciba Found. Symp.198712726528310.1002/9780470513446.ch18
    [Google Scholar]
  151. ChandlerR.E. Serious neurological adverse events after Ivermectin—Do they occur beyond the indication of onchocerciasis?Am. J. Trop. Med. Hyg.201898238238810.4269/ajtmh.17‑0042 29210346
    [Google Scholar]
  152. DuthalerU. LeisegangR. KarlssonM.O. KrähenbühlS. HammannF. The effect of food on the pharmacokinetics of oral ivermectin.J. Antimicrob. Chemother.2019752dkz46610.1093/jac/dkz466 31691813
    [Google Scholar]
  153. CangaG.A. PrietoS.A.M. LiébanaD.M.J. MartínezF.N. VegaS.M. VieitezG.J.J. The pharmacokinetics and interactions of ivermectin in humans-A mini-review.AAPS J.2008101424610.1208/s12248‑007‑9000‑9 18446504
    [Google Scholar]
  154. ZengZ. AndrewN.W. ArisonB.H. AtlasL.D. WangR.W. Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes.Xenobiotica199828331332110.1080/004982598239597 9574819
    [Google Scholar]
  155. ChiuS.H.L. GreenM.L. BaylisF.P. ElineD. RosegayA. MeriwetherH. JacobT.A. Absorption, tissue distribution, and excretion of tritium-labeled ivermectin in cattle, sheep, and rat.J. Agric. Food Chem.199038112072207810.1021/jf00101a015
    [Google Scholar]
  156. GuzzoC.A. FurtekC.I. PorrasA.G. ChenC. TippingR. ClineschmidtC.M. SciberrasD.G. HsiehJ.Y.K. LasseterK.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects.J. Clin. Pharmacol.200242101122113310.1177/009127002237994 12362927
    [Google Scholar]
  157. StanleyS.L. Antiparasitic agents.Infectious Diseases,3rd ed CohenJ. OpalS.M. PowderlyW.G. Mosby/Elsevier20101490150710.1016/B978‑0‑323‑04579‑7.00150‑7
    [Google Scholar]
  158. FreedmanD.O. Onchocerciasis.Tropical Infectious Diseases2nd ed GuerrantR.L. WalkerD.H. WellerP.F. Churchill Livingstone20061176118810.1016/B978‑0‑443‑06668‑9.50105‑8
    [Google Scholar]
  159. ShresthaM. KeyesD.C. AnthelminticsHaddad and Winchester's Clinical Management of Poisoning and Drug Overdose4th Ed. ShannonM.W. BorronS.W. BurnsM.J. Saunders Elsevier200791191810.1016/B978‑0‑7216‑0693‑4.50059‑1
    [Google Scholar]
  160. HowardB. DiethylcarbamazinexPharm: The Comprehensive Pharmacology Reference1st Ed. EnnaS.J. BylundD.B. Elsevier20071610.1016/B978‑008055232‑3.61596‑X
    [Google Scholar]
  161. MandalA. DasP. BhowmikR. MazumdarH. ShaharyarM.A. KumariR. JanaS. PatraS. HaldarP.K. KarmakarS. An insight into the agents used for immunomodulation and their mechanism of action.How Synthetic Drugs Work.Academic Press202350352810.1016/B978‑0‑323‑99855‑0.00022‑1
    [Google Scholar]
  162. JiangD. XuT. ZhongL. LiangQ. HuY. XiaoW. ShiJ. Research progress of VEGFR small molecule inhibitors in ocular neovascular diseases.Eur. J. Med. Chem.202325711553510.1016/j.ejmech.2023.115535 37285684
    [Google Scholar]
  163. McCrackenR.O. LipkowitzK.B. Experimental and theoretical studies of albendazole, oxibendazole, and tioxidazole.J. Parasitol.199076218018510.2307/3283011 2319417
    [Google Scholar]
  164. HouptE.R. ChaudhryO. Protozoan and helminthic infections, book- pharmacology and therapeutics.W.B. Saunders20091171118610.1016/B978‑1‑4160‑3291‑5.50087‑1
    [Google Scholar]
  165. AnandN. SharmaS. Approaches to design and synthesis of antiparasitic drugs1st edElsevier1997251511
    [Google Scholar]
  166. ZhangJ. NanX. YuH.T. ChengP.L. ZhangY. LiuY.Q. ZhangS.Y. HuG.F. LiuH. ChenA.L. Synthesis, biological activities and structure−activity relationships for new avermectin analogues.Eur. J. Med. Chem.201612142243210.1016/j.ejmech.2016.05.056 27318119
    [Google Scholar]
  167. SulikM. ŚlusarczykO.D. AntoszczakM. StrugaM. HuczyńskiA. Ivermectin and its synthetic derivatives – A new class of anticancer agents.European J. Med. Chem. Reports20241210017610.1016/j.ejmcr.2024.100176
    [Google Scholar]
  168. HusseinM.A. BorikR.M. NafieM.S. SalemA.H.M. BoshraS.A. MohamedZ.N. Structure activity relationship and molecular docking of some quinazolines bearing sulfamerazine moiety as new 3CLpro, cPLA2, sPLA2 inhibitors.Molecules20232816605210.3390/molecules28166052 37630304
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266321838241024073444
Loading
/content/journals/ctmc/10.2174/0115680266321838241024073444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test