Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Bis(indolyl)Methanes are a major class of heterocycles with considerable promise for technological and biological applications and being fluorescent active as well. Considering the extensive quantity of work on various synthetic techniques, the objective of this study is to measure the previous and current status of research studies related to different types of Bis(indolyl)methane (BIM) derivatives. Currently, research is focused on developing green synthetic strategies for dependable, sustainable and environmentally friendly synthetic processes. The present literature describes the formation of BIM moieties starting from suitable precursors using conventional reaction procedures, as well as reactions mediated by microwaves, ultrasounds, organocatalysts, transition metal catalysts, metal-free ionic liquid catalysts, and other environmentally friendly reaction protocols. The current review discusses the explosive development of different environmentally friendly synthesis routes for bis(indolyl)methane and its analogues during the past few decades. Moreover, this study includes the biological activities such as antibacterial, anti-cancer, anti-inflammatory, ., of BIM derivatives, which have been investigated in recent years.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266319238240821080203
2024-08-27
2025-10-26
Loading full text...

Full text loading...

References

  1. BarkerH.A. SmythR.D. WeissbachH. TooheyJ.I. LaddJ.N. VolcaniB.E. Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5, 6-dimethylbenzimidazole.J. Biol. Chem.1960235248048810.1016/S0021‑9258(18)69550‑X 13796809
    [Google Scholar]
  2. BaiY. LuJ. ShiZ. YangB. Synthesis of 2,15-hexadecanedione as a precursor of Muscone.Synlett2001200140544054610.1055/s‑2001‑12339
    [Google Scholar]
  3. HeY. YangJ. WuB. RisenL. SwayzeE.E. Synthesis and biological evaluations of novel benzimidazoles as potential antibacterial agents.Bioorg. Med. Chem. Lett.20041451217122010.1016/j.bmcl.2003.12.051 14980669
    [Google Scholar]
  4. SharmaS. GangalS. RaufA. Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities.Eur. J. Med. Chem.20094441751175710.1016/j.ejmech.2008.03.026 18472189
    [Google Scholar]
  5. PorterJ.K. BaconC.W. RobbinsJ.D. HimmelsbachD.S. HigmanH.C. Indole alkaloids from Balansia epichloe (Weese).J. Agric. Food Chem.1977251889310.1021/jf60209a043 1002941
    [Google Scholar]
  6. OsawaT. NamikiM. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria.Tetrahedron Lett.198324434719472210.1016/S0040‑4039(00)86237‑1
    [Google Scholar]
  7. BellR. CarmeliS. SarN. Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus.J. Nat. Prod.199457111587159010.1021/np50113a022 7853008
    [Google Scholar]
  8. GarbeT.R. KobayashiM. ShimizuN. TakesueN. OzawaM. YukawaH. Indolyl carboxylic acids by condensation of indoles with α-keto acids.J. Nat. Prod.200063559659810.1021/np990517s 10843566
    [Google Scholar]
  9. SirisomaN. PervinA. DreweJ. TsengB. CaiS.X. Discovery of substituted N'-(2-oxoindolin-3-ylidene)benzohydrazides as new apoptosis inducers using a cell- and caspase-based HTS assay.Bioorg. Med. Chem. Lett.200919102710271310.1016/j.bmcl.2009.03.121 19369076
    [Google Scholar]
  10. HeX. HuS. LiuK. GuoY. XuJ. ShaoS. Oxidized bis(indolyl)methane: A simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode.Org. Lett.20068233333610.1021/ol052770r 16408908
    [Google Scholar]
  11. KohmotoS. KashmanY. McConnellO.J. RinehartK.L.Jr WrightA. KoehnF. Dragmacidin, a new cytotoxic bis(indole) alkaloid from a deep water marine sponge, Dragmacidon sp.J. Org. Chem.198853133116311810.1021/jo00248a040
    [Google Scholar]
  12. MorrisS.A. AndersenR.J. Brominated bis(indole) alkaloids from the marine sponge hexadella Sp.Tetrahedron199046371572010.1016/S0040‑4020(01)81355‑7
    [Google Scholar]
  13. FahyE. PottsB.C.M. FaulknerD.J. SmithK. 6-bromotryptamine derivatives from the gulf of California Tunicate Didemnum candidum.J. Nat. Prod.199154256456910.1021/np50074a032
    [Google Scholar]
  14. WrightA.E. PomponiS.A. CrossS.S. McCarthyP. A new bis-(indole) alkaloid from a deep-water marine sponge of the genus Spongosorites.J. Org. Chem.199257174772477510.1021/jo00043a045
    [Google Scholar]
  15. CaponR.J. RooneyF. MurrayL.M. CollinsE. SimA.T.R. RostasJ.A.P. ButlerM.S. CarrollA.R. Dragmacidins: New protein phosphatase inhibitors from a Southern Australian deep-water marine sponge, Spongosorites sp.J. Nat. Prod.199861566066210.1021/np970483t 9599272
    [Google Scholar]
  16. CutignanoA. BifulcoG. BrunoI. CasapulloA. Gomez-PalomaL. RiccioR. DragmacidinF. A new antiviral bromoindole alkaloid from the Mediterranean sponge Halicortex sp.Tetrahedron200056233743374810.1016/S0040‑4020(00)00281‑7
    [Google Scholar]
  17. DianaP. CarboneA. BarrajaP. MontalbanoA. MartoranaA. DattoloG. GiaO. ViaL.D. CirrincioneG. Synthesis and antitumor properties of 2,5-bis(3'-indolyl)thiophenes: Analogues of marine alkaloid nortopsentin.Bioorg. Med. Chem. Lett.20071782342234610.1016/j.bmcl.2007.01.065 17306531
    [Google Scholar]
  18. DianaP. CarboneA. BarrajaP. MartoranaA. GiaO. DallaVia, L.; Cirrincione, G. 3,5-Bis(3'-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: Synthesis and antitumor properties.Bioorg. Med. Chem. Lett.200717226134613710.1016/j.bmcl.2007.09.042 17911018
    [Google Scholar]
  19. PillaiyarT. KöseM. SylvesterK. WeighardtH. ThimmD. BorgesG. FörsterI. von KügelgenI. MüllerC.E. Diindolylmethane derivatives: Potent agonists of the immunostimulatory orphan g protein-coupled receptor GPR84.J. Med. Chem.20176093636365510.1021/acs.jmedchem.6b01593 28406627
    [Google Scholar]
  20. AboniaR. GutiérrezL.F. InsuastyB. QuirogaJ. LaaliK.K. ZhaoC. BoroskyG.L. HorwitzS.M. BungeS.D. Catalyst-free assembly of giant tris(heteroaryl)methanes: Synthesis of novel pharmacophoric triads and model sterically crowded tris(heteroaryl/aryl)methyl cation salts.Beilstein J. Org. Chem.20191564265410.3762/bjoc.15.60 30931006
    [Google Scholar]
  21. VeisiH. GholbedaghiR. MalakootikhahJ. SedrpoushanA. MalekiB. KordestaniD. Trichloroisocyanuric acid-catalyzed reaction of indoles: An expeditious synthesis of bis-indolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl), and tetra(bis-indolyl)methane under solid-state conditions.J. Heterocycl. Chem.20104761398140510.1002/jhet.486
    [Google Scholar]
  22. MendesS.R. ThurowS. FortesM.P. PenteadoF. LenardãoE.J. AlvesD. PerinG. JacobR.G. Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface.Tetrahedron Lett.201253405402540610.1016/j.tetlet.2012.07.118
    [Google Scholar]
  23. ShiriniF. KhalighN.G. JolodarO.G. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by N-sulfonic acid poly(4-vinylpyridinium) chloride.Dyes Pigments201398229029610.1016/j.dyepig.2013.03.003
    [Google Scholar]
  24. ShiriniF. JolodarO.G. Introduction of N-sulfonic acid poly(4-vinylpyridinum) chloride as an efficient and reusable catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes.J. Mol. Catal. Chem.2012356616910.1016/j.molcata.2012.01.002
    [Google Scholar]
  25. ShiriniF. KhalighN.G. JolodarO.G. N-sulfonic acid poly(4-vinylpyridinium) chloride: An efficient and reusable solid acid catalyst in N-Boc protection of amines.J. Indian Chem. Soc.201310218118810.1007/s13738‑012‑0139‑7
    [Google Scholar]
  26. RekhaM. ManjunathH.R. NagarajuN. Mn/Al2O3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl)methanes: The role of surface acidity and particle morphology.J. Ind. Eng. Chem.201319133734610.1016/j.jiec.2012.08.022
    [Google Scholar]
  27. SiddiquiZ.N. TarannumS. Xanthan sulfuric acid: An efficient and biodegradable solid acid catalyst for the synthesis of bis(indolyl)methanes under solvent-free conditions.C. R. Chim.201316982983710.1016/j.crci.2013.04.013
    [Google Scholar]
  28. TayebeeR. AminiM.M. NehzatF. SadeghiO. ArmaghanM. H5PW10V2O40/pyridino-SBA-15 as a highly recyclable, robust and efficient inorganic–organic hybrid material for the catalytic preparation of bis(indolyl)methanes.J. Mol. Catal. Chem.201336614014810.1016/j.molcata.2012.09.016
    [Google Scholar]
  29. GogoiP. DuttaA.K. SarmaP. BorahR. Development of Brönsted–Lewis acidic solid catalytic system of 3-methyl-1-sulfonic acid imidazolium transition metal chlorides for the preparation of bis(indolyl)methanes.Appl. Catal. A Gen.201549213313910.1016/j.apcata.2014.12.013
    [Google Scholar]
  30. RaviK. KrishnakumarB. SwaminathanM. BiCl3-loaded montmorillonite K10: A new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes.Res. Chem. Intermed.20154185353536410.1007/s11164‑014‑1636‑3
    [Google Scholar]
  31. KunduA. GangulyA. DharaK. PatraP. GuchhaitN. An efficient solvent-free synthesis of bis(indolyl)methane-based naked eye chemosensor for Cu 2+ ion from β-chloro-α β-unsaturated aldehydes using PMA-Cellulose as a solid phase reusable catalyst.RSC Advances2015566532205322910.1039/C5RA09802E
    [Google Scholar]
  32. SolimanH.A. MubarakA.Y. ElmorsyS.S. An efficient synthesis of bis(indolyl) methanes and N,N'-alkylidene bisamides by Silzic under solvent free conditions.Chin. Chem. Lett.201627335335610.1016/j.cclet.2015.11.013
    [Google Scholar]
  33. SiadatifardS.H. Abdoli-SenejaniM. BodaghifardM.A. An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS.Cogent Chem.2016211188435118844210.1080/23312009.2016.1188435
    [Google Scholar]
  34. ShiriniF. Fallah-ShojaeiA. SamaviL. AbediniM. A clean synthesis of bis(indolyl)methane and biscoumarin derivatives using P 4 VPy–CuO nanoparticles as a new, efficient and heterogeneous polymeric catalyst.RSC Advances2016654484694847810.1039/C6RA04893E
    [Google Scholar]
  35. JejurkarV.P. KhatriC.K. ChaturbhujG.U. SahaS. Environmentally benign, highly efficient and expeditious solvent-free synthesis of trisubstituted methanes catalyzed by sulfated polyborate.ChemistrySelect2017235116931169610.1002/slct.201702610
    [Google Scholar]
  36. YaghoubiA. DekaminM.G. ArefiE. KarimiB. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): A new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives.J. Colloid Interface Sci.201750595696310.1016/j.jcis.2017.06.055 28687033
    [Google Scholar]
  37. ShyamsundarM. ShamshuddinS.Z.M. VasanthV.T. MohankumarT.E. Simple but efficient synthesis of bis(indolyl)methanes by the condensation reaction of substituted benzaldehydes with indole over mesoporous ZrO2–MgO green catalysts under solvent free conditions.J. Porous Mater.20172441003101110.1007/s10934‑016‑0340‑7
    [Google Scholar]
  38. KallaR.M.N. HongS.C. KimI. Synthesis of bis(indolyl)methanes using hyper-cross-linked polyaromatic spheres decorated with bromomethyl groups as efficient and recyclable catalysts.ACS Omega2018322242225310.1021/acsomega.7b01925 31458526
    [Google Scholar]
  39. NorouziM. ElhamifarD. MirbagheriR. Self-assembled alkyl imidazolium based organosilica as efficient support for sulfonic acid catalyst in the synthesis of bis(indolyl)methanes.Polyhedron201815422923510.1016/j.poly.2018.07.047
    [Google Scholar]
  40. MatzkeitY.H. TornquistB.L. ManarinF. BotteselleG.V. RafiqueJ. SabaS. BragaA.L. FelixJ.F. SchneiderR. Borophosphate glasses: Synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions.J. Non-Cryst. Solids201849815315910.1016/j.jnoncrysol.2018.06.020
    [Google Scholar]
  41. WuZ. WangG. YuanS. WuD. LiuW. MaB. BiS. ZhanH. ChenX. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid–surfactant–SiO 2 -combined nanocatalyst.Green Chem.201921133542354610.1039/C9GC01073D
    [Google Scholar]
  42. KambleV.T. KadamK.R. WaghmareA.S. MuradeV.D. Synthesis of silica chemisorbed bis(hydrogensulphato)benzene (SiO2–BHSB) as a new hybrid material and it’s utility as an efficient, recyclable catalyst for the green synthesis of bis(indolyl)methanes.Sustain. Chem. Pharm.20201810031410032210.1016/j.scp.2020.100314
    [Google Scholar]
  43. DebB. DebnathS. ChakrabortyA. MajumdarS. Bis-indolylation of aldehydes and ketones using silica-supported FeCl 3: Molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites.RSC Advances20211149308273083910.1039/D1RA05679D 35498942
    [Google Scholar]
  44. KeinanE. MazurY. Reactions in dry media. Ferric chloride adsorbed on silica gel. A multipurpose, easily controllable reagent.J. Org. Chem.19784351020102210.1021/jo00399a057
    [Google Scholar]
  45. SadiqZ. GhaniA. ShujaatS. HussainE.A. AlissaS.A. IqbalM. SiO2-KHSO4 catalyst based rapid synthesis of structurally modified bis(3-indolyl)methanes via N-substituted indole.Inorg. Chem. Commun.202112910862010862810.1016/j.inoche.2021.108620
    [Google Scholar]
  46. WuZ. WangG. LiZ. FengE. LiangY. ZhanH. LiuW. Solvent-free multi-component synthesis of unsymmetrical bis(indolyl)alkanes with Lewis acid-surfactant-SiO 2 as nanocatalyst.Synth. Commun.20215111010.1080/00397911.2021.1874016
    [Google Scholar]
  47. Ghorbani-VagheiR. VeisiH. KeypourH. Dehghani-FirouzabadiA.A. A practical and efficient synthesis of bis(indolyl)methanes in water, and synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dihydrate.Mol. Divers.2010141879610.1007/s11030‑009‑9150‑z 19449112
    [Google Scholar]
  48. HasaninejadA. ShekouhyM. ZareA. Hoseini GhattaliS.M.S. GolzarN. PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4'-(arylmethylene)-bis(3-methyl-1-phenyl-1Hpyrazol-5-ol)s in water.J. Indian Chem. Soc.20118241142310.1007/BF03249075
    [Google Scholar]
  49. KolvariE. ZolfigolM.A. BanaryH. Surfactant-assisted synthesis of bis(indolyl)methanes in water.Chin. Chem. Lett.201122111305130810.1016/j.cclet.2011.07.004
    [Google Scholar]
  50. VahdatS.M. KhaksarS. BagheryS. Cerium (IV) triflate as a catalyst for efficient and green synthesis of bis (indolyl) methanes in water.World Appl. Sci. J.20121910031008
    [Google Scholar]
  51. AziziN. GholibeghloE. ManocheriZ. Green procedure for the synthesis of bis(indolyl)methanes in water.Sci. Iran.201219357457810.1016/j.scient.2011.11.043
    [Google Scholar]
  52. VahdatS.M. KhaksarS. BagheryS. Sulfonated organic heteropolyacid salts: recyclable green solid catalysts for the highly efficient and green synthesis of bis(indolyl)methanes in water.Lett. Org. Chem.2012913814410.2174/157017812800221690
    [Google Scholar]
  53. BaghbanianS.M. BabajaniY. TashakorianH. KhaksarS. FarhangM. p-sulfonic acid calix[4]arene: An efficient reusable organocatalyst for the synthesis of bis(indolyl)methanes derivatives in water and under solvent-free conditions.C. R. Chim.201216212913410.1016/j.crci.2012.10.014
    [Google Scholar]
  54. PawarB. ShindeV. ChaskarA. n-dodecylbenzene sulfonic acid (DBSA) as a novel brønsted acid catalyst for the synthesis of bis(indolyl)methanes and bis(4-hydroxycoumarin-3-yl)methanes in water, Green sustain.Chem201335660
    [Google Scholar]
  55. VeisiH. MalekiB. EshbalaF.H. VeisiH. MastiR. AshrafiS.S. BaghayeriM. In situ generation of Iron(iii) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bis-indolyl, tris-indolyl, Di(bis-indolyl), Tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water.RSC Advances2014458306833068810.1039/C4RA03194F
    [Google Scholar]
  56. PeguR. MajumdarK.J. TalukdarD.J. PratiharS. Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis.RSC Advances2014463334463345610.1039/C4RA04214J
    [Google Scholar]
  57. MendesS.R. ThurowS. PenteadoF. da SilvaM.S. GarianiR.A. PerinG. LenardãoE.J. Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst.Green Chem.20151784334433910.1039/C5GC00932D
    [Google Scholar]
  58. SunD. Jiang, G.; Xie, Z.; Le, Z. α -Chymotrypsin-catalyzed synthesis of bis(indolyl)alkanes in water.Chin. J. Chem.201533440941210.1002/cjoc.201400892
    [Google Scholar]
  59. WangY. SangR. ZhengY. GuoL. GuanM. WuY. Graphene oxide: An efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water.Catal. Commun.20178913814210.1016/j.catcom.2016.09.027
    [Google Scholar]
  60. TornquistB.L. de Paula BuenoG. Manzano WilligJ.C. de OliveiraI.M. StefaniH.A. RafiqueJ. SabaS. Almeida IglesiasB. BotteselleG.V. ManarinF. Ytterbium (III) triflate/sodium dodecyl sulfate: A versatile recyclable and water-tolerant catalyst for the synthesis of bis(indolyl)methanes (BIMs).ChemistrySelect20183236358636310.1002/slct.201800673
    [Google Scholar]
  61. KasarS.B. ThopateS.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst.Curr. Org. Synth.201815111011510.2174/1570179414666170621080701
    [Google Scholar]
  62. MathavanS. KannanK. YamajalaR.B.R.D. Thiamine hydrochloride as a recyclable organocatalyst for the synthesis of bis(indolyl)methanes, tris(indolyl)methanes, 3,3-di(indol-3-yl)indolin-2-ones and biscoumarins.Org. Biomol. Chem.201917449620962610.1039/C9OB02090J 31664290
    [Google Scholar]
  63. SainiP. KumariP. HazraS. EliasA.J. Oxidative coupling of benzylamines with indoles in aqueous medium to realize bis-(indolyl)methanes using a water-soluble cobalt catalyst and air as the oxidant.Chem. Asian J.201914234154415910.1002/asia.201901313 31609536
    [Google Scholar]
  64. FuY. LuZ. FangK. HeX. XuH. HuY. Enzymatic approach to cascade synthesis of bis(indolyl)methanes in pure water.RSC Advances20201018108481085310.1039/C9RA10014H 35492907
    [Google Scholar]
  65. ChavanK.A. ShuklaM. ChauhanA.N.S. MajiS. MaliG. BhattacharyyaS. ErandeR.D. Effective synthesis and biological evaluation of natural and designed bis(indolyl)methanes via taurine-catalyzed green approach.ACS Omega2022712104381044610.1021/acsomega.1c07258 35382311
    [Google Scholar]
  66. HassaniH. AgahA. Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives.J. Min. Environ.20211210411053
    [Google Scholar]
  67. ZolfigolM.A. KhazaeiA. Moosavi-ZareA.R. ZareA. Ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride as a novel and highly efficient catalyst for the very rapid synthesis of bis (indolyl)methanes under solvent-free conditions.Org. Prep. Proced. Int.20104219510210.1080/00304940903585495
    [Google Scholar]
  68. DasP.J. DasJ. Synthesis of aryl/alkyl(2,2'-bis-3-methylindolyl)methanes and aryl(3,3'-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation.Tetrahedron Lett.201253354718472010.1016/j.tetlet.2012.06.106
    [Google Scholar]
  69. MullaS.A.R. SudalaiA. PathanM.Y. SiddiqueS.A. InamdarS.M. ChavanS.S. ReddyR.S. Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid.RSC Advances2012283525352910.1039/c2ra00849a
    [Google Scholar]
  70. KhazaeiA. ZolfigolM.A. Faal-RastegarT. Ionic liquid tributyl (carboxymethyl) phosphonium bromide as an efficient catalyst for the synthesis of bis(indolyl)methanes under solvent-free conditions.J. Chem. Res.2013371061761910.3184/174751913X13787959859380
    [Google Scholar]
  71. ZolfigolM.A. Ayazi-NasrabadiR. BagheryS. The first urea-based ionic liquid-stabilized magnetic nanoparticles: an efficient catalyst for the synthesis of bis(indolyl)methanes and pyrano[2,3- d]pyrimidinone derivatives.Appl. Organomet. Chem.201630527328110.1002/aoc.3428
    [Google Scholar]
  72. HonarmandM. EsmaeiliE. Tris(hydroxymethyl)methane ammonium hydrogensulphate as a nano ionic liquid and its catalytic activity in the synthesis of bis(indolyl)methanes.J. Mol. Liq.201722574174910.1016/j.molliq.2016.10.136
    [Google Scholar]
  73. KhalighN.G. MihankhahT. JohanM.R. ChingJ.J. Two novel binuclear sulfonic-functionalized ionic liquids: Influence of anion and carbon-spacer on catalytic efficiency for one-pot synthesis of bis(indolyl)methanes.J. Mol. Liq.201825926027310.1016/j.molliq.2018.03.044
    [Google Scholar]
  74. TranP.H. NguyenX.T.T. ChauD.K.N. A brønsted-acidic ionic liquid gel as an efficient and recyclable heterogeneous catalyst for the synthesis of bis(indolyl)methanes under solvent-free sonication.Asian J. Org. Chem.20187123223910.1002/ajoc.201700596
    [Google Scholar]
  75. GuY.C. HuR.M. LiM.M. XuD.Z. Iron-containing ionic liquid as an efficient and recyclable catalyst for the synthesis of C3-substituted indole derivatives.Appl. Organomet. Chem.2019333e478210.1002/aoc.4782
    [Google Scholar]
  76. TanemuraK. Acceleration under solvent-drop grinding: Synthesis of bis(indolyl)methanes using small amounts of organic solvents or ionic liquids.Tetrahedron Lett.20218215339115339910.1016/j.tetlet.2021.153391
    [Google Scholar]
  77. PatelG.M. KureA.S. MandawadG.G. HoteB.S. KondaS.G. Chitosan supported ionic liquid (CSIL): An excellent catalyst for one-pot synthesis of bis(indolyl)methanes.Results Chem.2022410043610044610.1016/j.rechem.2022.100436
    [Google Scholar]
  78. ChaudhariR.P. ChaudhariG.R. MahajanH.A. A sustainable green approach for synthesis of bis(indolyl) methanes in ionic liquid.Orient. J. Chem.202440130731110.13005/ojc/400138
    [Google Scholar]
  79. JoshiR.S. MandhaneP.G. DiwakarS.D. GillC.H. Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt.Ultrason. Sonochem.201017229830010.1016/j.ultsonch.2009.08.015 19767231
    [Google Scholar]
  80. LiJ.T. SunM.X. HeG.Y. XuX.Y. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation.Ultrason. Sonochem.201118141241410.1016/j.ultsonch.2010.07.016 20727812
    [Google Scholar]
  81. SeyediN. KhabazzadehH. SaeedniaS. ZnCl2/urea as a deep eutectic solvent for the preparation of bis(indolyl)methanes under ultrasonic conditions.Chem20154515011505
    [Google Scholar]
  82. GaoG. HanY. ZhangZ.H. Catalyst free synthesis of bis(indolyl)methanes and 3,3-bis(indolyl)oxindoles in aqueous ethyl lactate.ChemistrySelect2017235115611156410.1002/slct.201702326
    [Google Scholar]
  83. DeshmukhS.R. NalkarA.S. ThopateS.R. Ultrasound-promoted pyruvic acid catalyzed green synthesis of biologically relevant bis(indolyl)methanes scaffold under aqueous condition.Polycycl. Aromat. Compd.20224296501650910.1080/10406638.2021.1984259
    [Google Scholar]
  84. PalR. Microwave-assisted eco-friendly synthesis of bis-, tris(indolyl)methanes and synthesis of di-bis(indolyl)methanes catalyzed by fruit juice of Citrus limon under solvent-free conditions.J. Appl. Chem.2013341810.9790/5736‑0340108
    [Google Scholar]
  85. PokhrelR. GhoshD. JhaS. BhattacharyyaN.K. JhaS. Silica supported synthesis of bis(indolyl) methane derivatives under microwave irradiation.Int. J. Innov. Res. Sci. Eng. Technol.201438156661567110.15680/IJIRSET.2014.0308079
    [Google Scholar]
  86. SeyediN. KhabazzadehH. Glycerin and citric acid: A green and efficient catalytic medium for synthesis of bis(indolyl)methanes.Res. Chem. Intermed.20154142603260710.1007/s11164‑013‑1372‑0
    [Google Scholar]
  87. DebM.L. BorpatraP.J. SaikiaP.J. BaruahP.K. Introducing tetramethylurea as a new methylene precursor: a microwave-assisted RuCl 3 -catalyzed cross dehydrogenative coupling approach to bis(indolyl)methanes.Org. Biomol. Chem.20171561435144310.1039/C6OB02671K 28102407
    [Google Scholar]
  88. NasreenA. VaralaR. RaoK.S. A green protocol for the synthesis of bis(indolyl)methanes catalyzed by succinic acid under microwave irradiation.Organic Communications201710210411310.25135/acg.oc.14.16.10.440
    [Google Scholar]
  89. BankarS.R. Nano-Fe3O4 @ L-Cysteine as an efficient recyclable organocatalyst for the green synthesis of bis (indolyl) methanes under microwave irradiation.Curr. Organocatal.201851425010.2174/2213337205666180611112941
    [Google Scholar]
  90. MalkaniaL. BediP. PramanikT. Lactic acid catalyzed and microwave-assisted green synthesis of pharmaceutically important bis(indolyl) methane analogs in aqueous medium.Drug Invention. Today20181017401744
    [Google Scholar]
  91. SulakM. Preparation of G-CuO NPs and G-ZnO NPs with mallow leaves, investigation of their antibacterial behavior and synthesis of bis(indolyl)methane compounds under solvent- free microwave assisted dry milling conditions using G-CuO NPs as a catalyst.Turk. J. Chem.20214551517153210.3906/kim‑2105‑31 34849063
    [Google Scholar]
  92. YangY.L. WanN.N. WangW.P. XieZ.F. De WangJ. Synthesis of bis(indolyl) methanes catalyzed by Schiff base–Cu(II) complex.Chin. Chem. Lett.20112291071107410.1016/j.cclet.2011.04.014
    [Google Scholar]
  93. WuZ. WangG. YuanS. ZhanH. LiuW. BiS. LiH. MaB. SunY. Synthesis, characterization, and properties of highly hydrophilic polyaniline sulfonic acid.Russ. J. Gen. Chem.20209061055106110.1134/S1070363220060195
    [Google Scholar]
  94. LiangY. WangG. WuZ. LiuW. SongM. SunY. ChenX. ZhanH. BiS. Inorganic polymer flocculation catalyst—Polyaluminum chloride as highly efficient and green catalyst for the Friedel-crafts alkylation of bis(indolyl)methanes.Catal. Commun.202014710613610614010.1016/j.catcom.2020.106136
    [Google Scholar]
  95. PatilR.C. DamateS.A. ZambareD.N. PatilS.S. Chickpea leaf exudates: A green Brønsted acid type biosurfactant for bis(indole)methane and bis(pyrazolyl)methane synthesis.New J. Chem.202145209152916210.1039/D1NJ00382H
    [Google Scholar]
  96. ZhangH. ZhangH. TaoM. ZhangW. Phenylboronic acid functionalized polyacrylonitrile fiber for efficient and green synthesis of bis(indolyl)methane derivatives.Chin. J. Chem. Eng.2022511910.1016/j.cjche.2021.08.029
    [Google Scholar]
  97. JiangY. SuL. LiaoY. ShenY. GaoH. ZhangY. WangR. MaoZ. Synthesis and antifungal evaluation of phenol-derived bis(indolyl)methanes combined with FLC against Candida albicans.Bioorg. Med. Chem. Lett.20225812852512853110.1016/j.bmcl.2022.128525 34998904
    [Google Scholar]
  98. FahimH. MihankhahP. KhalighN.G. Greener and scalable mechanosynthesis of bis(3-indolyl)methane as an example of versatile pharmaceutical scaffold: Is the mechanochemical technique a metal-free process?Synth. Commun.202353214615910.1080/00397911.2022.2158104
    [Google Scholar]
  99. NarsaleB.S. GadhaveA.G. RautK.S. ThubeD.R. One Pot approach of novel xanthan perchloric acid catalyst in synthesis of bis(indolyl)methane derivatives via greener perspective.Polycycl. Aromat. Compd.20234375826583910.1080/10406638.2022.2108075
    [Google Scholar]
  100. KaduV.D. PatilA.A. ShendageP.R. Oxone-promoted synthesis of bis(indolyl)methanes from arylmethylamines and indoles.J. Mol. Struct.2022126713350213351010.1016/j.molstruc.2022.133502
    [Google Scholar]
  101. PundG.B. WahulD.B. DeshmukhT.R. DhumalS.T. MandaveK.R. GawareS.A. FarooquiM. DobhalB.S. HebadeM.J. Theophylline hydrogen sulfate: A green and efficient catalyst for synthesis of 3,3-bis(1 H -indol-3-yl)indolin-2-one derivatives.Synth. Commun.202353131008101910.1080/00397911.2023.2205594
    [Google Scholar]
  102. KumbharV. RaskarR. ChafleR. NikamV. KumbharA. PawarR. ChaskarM. GugaleG. KhairnarB. ProHSO4: An efficient catalyst for solvent-free synthesis of bis(indolyl)methanes and their in silico screening for potential biological activity.Results Chem.2023610102310103210.1016/j.rechem.2023.101023
    [Google Scholar]
  103. XingQ. ShenY. ZhangX. ShaoH. WangC. ZhangX. Green synthesis of triarylmethane scaffolds using trifluoroethanol as a recyclable solvent.Tetrahedron Lett.202312215451215451710.1016/j.tetlet.2023.154512
    [Google Scholar]
  104. JagannivasanG. NairG.N. HaridasS. Visible light-assisted H4[PW11VO40] catalysed synthesis of bis(indolyl)methanes.J. Mol. Catal.202354711328511329410.1016/j.mcat.2023.113285
    [Google Scholar]
  105. KaishapP.P. DohutiaC. ChetiaD. Synthesis and study of analgesic, anti-inflammatory activities of bis(indolyl)methane.Int. J. Pharm. Sci. Res.2012342474253
    [Google Scholar]
  106. MarrelliM. CachetX. ConfortiF. SirianniR. ChimentoA. PezziV. MichelS. StattiG.A. MenichiniF. Synthesis of a new bis(indolyl)methane that inhibits growth and induces apoptosis in human prostate cancer cells.Nat. Prod. Res.201327212039204510.1080/14786419.2013.824440 23962092
    [Google Scholar]
  107. SarvaS. HarinathJ.S. SthanikamS.P. EthirajS. VaithiyalingamM. CirandurS.R. Synthesis, antibacterial and anti-inflammatory activity 4 of bis(indolyl)methanes.Chin. J. Chem.2016271620
    [Google Scholar]
  108. JamsheenaV. ShilpaG. SaranyaJ. HarryN.A. LankalapalliR.S. PriyaS. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.Chem. Biol. Interact.2016247112110.1016/j.cbi.2016.01.017 26807764
    [Google Scholar]
  109. NemallapudiB.R. ZyryanovG.V. AvulaB. GudaM.R. GundalaS. An effective green and ecofriendly catalyst for synthesis of bis(indolyl)methanes as promising antimicrobial agents.J. Heterocycl. Chem.201910.1002/jhet.3729
    [Google Scholar]
  110. MaestroA. Martín-EncinasE. AlonsoC. Martinez de MarigortaE. RubialesG. VicarioJ. PalaciosF. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives.Eur. J. Med. Chem.201815887488310.1016/j.ejmech.2018.09.011 30253344
    [Google Scholar]
  111. QiL. XiaoL. LinR. Convenient synthesis and biological evaluation of bis(indolyl)methane alkaloid and bis(aryl)alkanes derivatives with anti-cancer properties.202020206010.3762/bxiv.2020.60.v1
    [Google Scholar]
  112. NagreD.T. ThoratB.R. MaliS.N. FarooquiM. AgrawalB. Experimental and computational insights into bis-indolylmethane derivatives as potent antimicrobial agents inhibiting 2,2-dialkylglycine decarboxylase.Curr. Enzym. Inhib.202117320421610.2174/1573408017666210914105731
    [Google Scholar]
  113. NagreD.T. MaliS.N. ThoratB.R. ThoratS.A. ChopadeA.R. FarooquiM. AgrawalB. Synthesis, in-silico potential enzymatic target predictions, pharmacokinetics, toxicity, anti-microbial and anti-inflammatory studies of bis-(2-methylindolyl) methane derivatives.Curr. Enzym. Inhib.202117212714310.2174/1573408017666210203203735
    [Google Scholar]
  114. GonçalvesR.C.R. PeñalverP. CostaS.P.G. MoralesJ.C. RaposoM.M.M. Polyaromatic Bis(indolyl)methane derivatives with antiproliferative and antiparasitic activity.Molecules202328237728774010.3390/molecules28237728 38067459
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266319238240821080203
Loading
/content/journals/ctmc/10.2174/0115680266319238240821080203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test