Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Heterogeneous Acute Myeloid Leukemia (AML) causes substantial worldwide morbidity and death. AML is characterized by excessive proliferation of immature myeloid cells in the bone marrow and impaired apoptotic regulator expression. B-Cell Lymphoma 2 (BCL-2), an anti-apoptotic protein overexpressed in AML, promotes leukemic cell survival and chemoresistance. Thus, reducing BCL-2 may treat AML. Anticancer activities are found in (Aloe vera). Thus, this work used molecular modeling to assess Aloe vera bioactive chemicals as BCL-2 inhibitors.

Methods

Selected bioactive compounds from Aloe vera was docked against BCL-2 using AutoDock Vina. drug-likeness, pharmacokinetics, and toxicity profiling was carried out using SwissAdme and ADMETSar servers. Finally, the two most promising compounds were subjected to 100 ns molecular dynamics (MD) simulation in Desmond software.

Results

The Binding energies of the compounds were found to be between -6.7 to -8.7 kcal/mol, with campesterol and a-tocopherol returning the least binding energy. Furthermore, both compounds displayed good druglikeness, and ADMET profiles. In addition, they maintained stable nature in the binding pocket of BCL-2 during the 100 ns MD simulation.

Conclusion

Campesterol and α-tocopherol are promising BCL-2 inhibitors that might become effective anti-leukemic therapies with additional and research.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266316570240926081647
2024-10-11
2025-09-25
Loading full text...

Full text loading...

References

  1. ArnoneM. KonantzM. HannsP. Paczulla StangerA.M. BertelsS. GodavarthyP.S. ChristopeitM. LengerkeC. Acute myeloid leukemia stem cells: The challenges of phenotypic heterogeneity.Cancers (Basel)20201212374210.3390/cancers1212374233322769
    [Google Scholar]
  2. BehrmannL. WellbrockJ. FiedlerW. Acute myeloid leukemia and the bone marrow niche—Take a closer look.Front. Oncol.2018844410.3389/fonc.2018.0044430370251
    [Google Scholar]
  3. GroveC.S. VassiliouG.S. Acute myeloid leukaemia: A paradigm for the clonal evolution of cancer?Dis. Model. Mech.20147894195110.1242/dmm.01597425056697
    [Google Scholar]
  4. Lagunas-RangelF.A. Chávez-ValenciaV. Gómez-GuijosaM.Á. Cortes-PenagosC. Acute myeloid leukemia—genetic alterations and their clinical prognosis.Int. J. Hematol. Oncol. Stem Cell Res.201711432833929340131
    [Google Scholar]
  5. ThomasX. First contributors in the history of leukemia.World J. Hepatol.201323627010.5315/wjh.v2.i3.62
    [Google Scholar]
  6. HoT.C. LaMereM. StevensB.M. AshtonJ.M. MyersJ.R. O’DwyerK.M. LiesveldJ.L. MendlerJ.H. GuzmanM. MorrissetteJ.D. ZhaoJ. WangE.S. WetzlerM. JordanC.T. BeckerM.W. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression.Blood2016128131671167810.1182/blood‑2016‑02‑69531227421961
    [Google Scholar]
  7. BejarR. SteensmaD.P. Myelodysplastic syndromes.Williams HematologyMc Graw Hill2016
    [Google Scholar]
  8. LinetM.S. DoresG.M. KimC.J. DevesaS.S. MortonL.M. Epidemiology and Hereditary Aspects of Acute Leukemia.Neoplastic Diseases of the Blood. WiernikP. GoldmanJ. DutcherJ. KyleR. New York, NYSpringer201310.1007/978‑1‑4614‑3764‑2_15
    [Google Scholar]
  9. ShipleyJ.L. ButeraJ.N. Acute myelogenous leukemia.Exp. Hematol.200937664965810.1016/j.exphem.2009.04.00219463767
    [Google Scholar]
  10. Masoumi-DehshiriR. HashemiA. NeamatzadehH. Zare-ZardeiniH. A case report: Acute myeloid leukemia (FAB M7).Iran. J. Ped. Hematol. Oncol.20144418819025598960
    [Google Scholar]
  11. ZaidiS.Z. OwaidahT. Al SharifF. AhmedS.Y. ChaudhriN. AljurfM. The challenge of risk stratification in acute myeloid leukemia with normal karyotype.Hematol. Oncol. Stem Cell Ther.20081314115810.1016/S1658‑3876(08)50023‑920063545
    [Google Scholar]
  12. SaultzJ. GarzonR. Acute myeloid leukemia: A concise review.J. Clin. Med.2016533310.3390/jcm503003326959069
    [Google Scholar]
  13. De KouchkovskyI. Abdul-HayM. Acute myeloid leukemia: A comprehensive review and 2016 update.Blood Cancer J.201667e441e44110.1038/bcj.2016.5027367478
    [Google Scholar]
  14. ZhouJ. ZhangT. XuZ. GuY. MaJ. LiX. GuoH. WenX. ZhangW. YangL. LiuX. LinJ. QianJ. BCL2 overexpression: Clinical implication and biological insights in acute myeloid leukemia.Diagn. Pathol.20191416810.1186/s13000‑019‑0841‑131253168
    [Google Scholar]
  15. WeiA.H. TiongI.S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML.Blood2017130232469247410.1182/blood‑2017‑08‑78406629051180
    [Google Scholar]
  16. WeiY. CaoY. SunR. ChengL. XiongX. JinX. HeX. LuW. ZhaoM. Targeting Bcl-2 proteins in acute myeloid leukemia.Front. Oncol.20201058497410.3389/fonc.2020.58497433251145
    [Google Scholar]
  17. SánchezM. González-BurgosE. IglesiasI. Gómez-SerranillosM.P. Pharmacological update properties of Aloe vera and its major active constituents.Molecules2020256132410.3390/molecules2506132432183224
    [Google Scholar]
  18. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  19. OltersdorfT. ElmoreS.W. ShoemakerA.R. ArmstrongR.C. AugeriD.J. BelliB.A. BrunckoM. DeckwerthT.L. DingesJ. HajdukP.J. JosephM.K. KitadaS. KorsmeyerS.J. KunzerA.R. LetaiA. LiC. MittenM.J. NettesheimD.G. NgS. NimmerP.M. O’ConnorJ.M. OleksijewA. PetrosA.M. ReedJ.C. ShenW. TahirS.K. ThompsonC.B. TomaselliK.J. WangB. WendtM.D. ZhangH. FesikS.W. RosenbergS.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature2005435704267768110.1038/nature0357915902208
    [Google Scholar]
  20. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  21. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  22. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a.
    [Google Scholar]
  23. SrivastavaN. GargP. SrivastavaP. SethP.K. A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19.PeerJ20219e1117110.7717/peerj.1117133981493
    [Google Scholar]
  24. TutumluG. DoganB. AvsarT. OrhanM.D. CalisS. DurdagiS. Integrating ligand and target-driven based virtual screening approaches with in vitro human cell line models and time-resolved fluorescence resonance energy transfer assay to identify novel hit compounds against BCL-2.Front Chem.2020816710.3389/fchem.2020.0016732328476
    [Google Scholar]
  25. NordinN. Abd GhaniM.F. OthmanR. Molecular docking study of naturally derived flavonoids with antiapoptotic BCL-2 and BCL-XL proteins toward ovarian cancer treatment.J. Pharm. Bioallied Sci.202012667610.4103/jpbs.JPBS_272_1933828360
    [Google Scholar]
  26. UmarA.B. UzairuA. ShallangwaG.A. UbaS. Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line.Egypt. J. Med. Hum. Genet.202122115
    [Google Scholar]
  27. BotA. Phytosterols.Reference Module in Food ScienceElsevier2018
    [Google Scholar]
  28. ShahzadN. KhanW. MdS. AliA. SalujaS.S. SharmaS. Al-AllafF.A. AbduljaleelZ. IbrahimI.A.A. Abdel-WahabA.F. AfifyM.A. Al-GhamdiS.S. Phytosterols as a natural anticancer agent: Current status and future perspective.Biomed. Pharmacother.20178878679410.1016/j.biopha.2017.01.06828157655
    [Google Scholar]
  29. AdewoleK.E. IsholaA.A. Phytosterols and triterpenes from Morinda lucida Benth ( Rubiaceae ) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: An in-silico study.J. Recept. Signal Transduct. Res.2019391879710.1080/10799893.2019.162506231215288
    [Google Scholar]
  30. EnginK.N. Alpha-tocopherol: Looking beyond an antioxidant.Mol. Vis.20091585586019390643
    [Google Scholar]
  31. LinL. WongH. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models.Pharmaceutics2017944110.3390/pharmaceutics904004128954416
    [Google Scholar]
  32. LeclercM. DudonnéS. CalonF. Can Natural Products Exert Neuroprotection without Crossing the Blood–Brain Barrier?Int. J. Mol. Sci.2021227335610.3390/ijms2207335633805947
    [Google Scholar]
  33. EstevesF. RueffJ. KranendonkM. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family.J. Xenobiot.20211139411410.3390/jox1103000734206277
    [Google Scholar]
  34. OguC.C. MaxaJ.L. Drug interactions due to cytochrome P450.Proc (Bayl Univ Med Cent)2000134421310.1080/08998280.2000.11927719
    [Google Scholar]
  35. LeeH.M. YuM.S. KazmiS.R. OhS.Y. RheeK.H. BaeM.A. LeeB.H. ShinD.S. OhK.S. CeongH. LeeD. NaD. Computational determination of hERG-related cardiotoxicity of drug candidates.BMC Bioinformatics201920S1025010.1186/s12859‑019‑2814‑531138104
    [Google Scholar]
  36. BergströmC.A.S. LarssonP. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting.Int. J. Pharm.20185401-218519310.1016/j.ijpharm.2018.01.04429421301
    [Google Scholar]
  37. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm2012201219572710.5402/2012/195727.
    [Google Scholar]
  38. CavasottoC.N. AucarM.G. AdlerN.S. Computational chemistry in drug lead discovery and design.Int. J. Quantum Chem.20191192e2567810.1002/qua.25678
    [Google Scholar]
  39. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes (Basel)2020917110.3390/pr9010071
    [Google Scholar]
  40. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. JiX.L. LiuS.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.201617214410.3390/ijms1702014426821017
    [Google Scholar]
  41. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  42. do CarmoA.L. BettaninF. Oliveira AlmeidaM. PantaleãoS.Q. RodriguesT. Homem-de-MelloP. HonorioK.M. Competition between phenothiazines and BH3 peptide for the binding site of the antiapoptotic BCL-2 protein.Front Chem.2020823510.3389/fchem.2020.0023532309275
    [Google Scholar]
  43. PatelC.N. KumarS.P. PandyaH.A. RawalR.M. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation.Mol. Divers.202125142143310.1007/s11030‑020‑10135‑w32996011
    [Google Scholar]
  44. SharmaN. GuptaN. OrfaliR. KumarV. PatelC.N. PengJ. PerveenS. Evaluation of the Antifungal, Antioxidant, and Anti-Diabetic Potential of the Essential Oil of Curcuma longa Leaves from the North-Western Himalayas by In Vitro and In Silico Analysis.Molecules20222722766410.3390/molecules2722766436431765
    [Google Scholar]
  45. MishraC.B. PandeyP. SharmaR.D. MalikM.Z. MongreR.K. LynnA.M. PrasadR. JeonR. PrakashA. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach.Brief. Bioinform.20212221346136010.1093/bib/bbaa37833386025
    [Google Scholar]
  46. GowthamH.G. AhmedF. AnandanS. ShivakumaraC.S. BilagiA. PradeepS. ShivamalluC. ShatiA.A. AlfaifiM.Y. ElbehairiS.E.I. AcharR.R. SilinaE. StupinV. MuraliM. KollurS.P. In silico computational studies of bioactive secondary metabolites from wedelia trilobata against anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein associated with cancer cell survival and resistance.Molecules2023284158810.3390/molecules2804158836838574
    [Google Scholar]
  47. WakuiN. YoshinoR. YasuoN. OhueM. SekijimaM. Exploring the selectivity of inhibitor complexes with Bcl-2 and Bcl-XL: A molecular dynamics simulation approach.J. Mol. Graph. Model.20187916617410.1016/j.jmgm.2017.11.01129197725
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266316570240926081647
Loading
/content/journals/ctmc/10.2174/0115680266316570240926081647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test