Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Over the past few years, photocatalytic methods have shown great promise as low-cost, environmentally friendly, and sustainable technologies. During the development of photochemistry, a variety of sources of light were used, including sunlight, compact fluorescent lamps, lasers, and even light-emitting diodes. As a part of preparing diverse organic compounds, the photochemical approach was used, for instance, to form rings, arylated compounds, cycloaddition, functionalized compounds, dehalogenated compounds, oxidized compounds, reduced compounds, isomers, and sensitized compounds. Solar energy is a renewable resource that can be harvested from the sun and this light energy can be changed into chemical energy with the help of photocatalysts. During this green approach, electron-hole pairs are generated in photocatalysts in order to begin reactions by using solar light. It has been highlighted in this article that there have been impressive developments in the use of light, mainly the solar light, to promote important organic reactions, which would otherwise be unattainable under thermal conditions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266318635240906102108
2024-09-18
2025-10-26
Loading full text...

Full text loading...

References

  1. RavelliD. ProttiS. FagnoniM. Carbon–carbon bond forming reactions via photogenerated intermediates.Chem. Rev.2016116179850991310.1021/acs.chemrev.5b00662 27070820
    [Google Scholar]
  2. LangX. ZhaoJ. ChenX. Cooperative photoredox catalysis.Chem. Soc. Rev.201645113026303810.1039/C5CS00659G 27094803
    [Google Scholar]
  3. YoonT.P. Photochemical stereocontrol using tandem photoredox–chiral lewis acid catalysis.Acc. Chem. Res.201649102307231510.1021/acs.accounts.6b00280 27505691
    [Google Scholar]
  4. ChenJ.R. HuX.Q. LuL.Q. XiaoW.J. Visible light photoredox-controlled reactions of N-radicals and radical ions.Chem. Soc. Rev.20164582044205610.1039/C5CS00655D 26839142
    [Google Scholar]
  5. ShawM.H. TwiltonJ. MacMillanD.W.C. Photoredox catalysis in organic chemistry.J. Org. Chem.201681166898692610.1021/acs.joc.6b01449 27477076
    [Google Scholar]
  6. FabryD.C. RuepingM. Merging visible light photoredox catalysis with metal catalyzed c–h activations: On the role of oxygen and superoxide ions as oxidants.Acc. Chem. Res.20164991969197910.1021/acs.accounts.6b00275 27556812
    [Google Scholar]
  7. DasA. BanikB.K. Microwave-induced biocatalytic reactions toward medicinally important compounds.Phys. Sci. Rev.20227507538
    [Google Scholar]
  8. DasA. BanikB.K. Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends.Elsevier Science2021
    [Google Scholar]
  9. DasA. BanikB.K. Chapter 1 - Foundational principles of microwave chemistry. In: Microwaves in Chemistry Applications.Elsevier2021326
    [Google Scholar]
  10. DasA. BanikB.K. Chapter 2 - Microwave equipment for chemistry. In: Microwaves in Chemistry Applications.Elsevier20212759
    [Google Scholar]
  11. DasA. BanikB.K. Chapter 3 - Modeling and interpreting microwave effects. In: Microwaves in Chemistry Applications.Elsevier202161104
    [Google Scholar]
  12. DasA. BanikB.K. Chapter 4 - Microwave-assisted synthesis of oxygen- and sulfur-containing organic compounds. In: Microwaves in Chemistry Applications.Elsevier2021107142
    [Google Scholar]
  13. DasA. BanikB.K. Chapter 5 - Microwave-assisted synthesis of N-heterocycles. In: Microwaves in Chemistry Applications.Elsevier2021143198
    [Google Scholar]
  14. DasA. BanikB.K. Chapter 6 - Microwave-assisted oxidation and reduction reactions. In: Microwaves in Chemistry Applications.Elsevier2021199244
    [Google Scholar]
  15. DasA. BanikB.K. Chapter 7 - Microwave-assisted enzymatic reactions. In: Microwaves in Chemistry Applications.Elsevier2021245261
    [Google Scholar]
  16. DasA. BanikB.K. Chapter 8 - Microwave-assisted sterilization. In: Microwaves in Chemistry Applications.Elsevier2021285328
    [Google Scholar]
  17. DasA. BanikB.K. Chapter 9 - Microwave-assisted CVD processes for diamond synthesis. In: Microwaves in Chemistry Applications.Elsevier2021329374
    [Google Scholar]
  18. DasA. BanikB.K. Chapter 10 - Future trends in microwave chemistry and biology. In: Microwaves in Chemistry Applications.Elsevier2021375384
    [Google Scholar]
  19. DasA. YadavR.N. BanikB.K. Microwave-induced conversion of electromagnetic energy into heat energy in different solvents: Synthesis of β-lactams.Chem. J. Moldova2022171626610.19261/cjm.2021.864
    [Google Scholar]
  20. DasA. BanikB.K. 3 microwave-induced biocatalytic reactions toward medicinally important compounds.Organocatalysis: A Green Tool for Sustainable Developments; De Gruyter: BerlinBoston20225788
    [Google Scholar]
  21. DasA. YadavR.N. BanikB.K. Microwave-induced surface-mediated highly efficient regioselective nitration of aromatic compounds: Effects of penetration depth.Asian J. Chem.20213392203220610.14233/ajchem.2021.23131
    [Google Scholar]
  22. DasA. BanikB.K. Microwave-induced catalytic transfer hydrogenation in different solvents toward optically active hydroxy beta lactams: Effects of penetration depth.Asian J. Org. Med. Chem.2023
    [Google Scholar]
  23. DasA. NareshYadav, R.; KrishnaBanik, B. Microwave-induced ferrier rearrangement of hyroxy beta-lactams with glycals.Applied Chemical Engineering2024721870187010.59429/ace.v7i2.1870
    [Google Scholar]
  24. DasA. Recent developments in semipolar InGaN laser diodes.Semiconductors202155227228210.1134/S106378262102010X
    [Google Scholar]
  25. DasA. A systematic exploration of InGaN/GaN quantum well-based light emitting diodes on semipolar orientations.Opt. Spectrosc.2022130313714910.1134/S0030400X2203002X
    [Google Scholar]
  26. YadavR.N. HossainF. DasA. SrivastavaA.K. BanikB.K. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides.Catal. Rev.20221118
    [Google Scholar]
  27. BanikB.K. DasA. YadavR.N. A novel baker’s yeast-mediated microwave-induced reduction of racemic 3-keto-2-azetidinones: Facile entry to optically active hydroxy β-lactam derivatives.Curr. Organocatal.20229219519810.2174/2213337209666220126123630
    [Google Scholar]
  28. DasA. BanikB.K. Versatile synthesis of organic compounds derived from ascorbic acid.Curr. Organocatal.202291143310.2174/2213337208666210719102301
    [Google Scholar]
  29. AlharthiA.A. AlotaibiM. ShalwiM.N. QahtanT.F. AliI. AlshehriF. Afroz BakhtM. Photocatalytic-driven three-component synthesis of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives: A comparative study of organocatalysts and photocatalysts.J. Photochem. Photobiol. Chem.202343611435810.1016/j.jphotochem.2022.114358
    [Google Scholar]
  30. YangM.Q. ShenL. LuY. CheeS.W. LuX. ChiX. ChenZ. XuQ.H. MirsaidovU. HoG.W. Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250–2500 nm) harvesting.Angew. Chem. Int. Ed.201958103077308110.1002/anie.201810694 30311403
    [Google Scholar]
  31. LimP.F. LeongK.H. SimL.C. OhW.D. ChinY.H. SaravananP. DaiC. Mechanism insight of dual synergistic effects of plasmonic Pd-SrTiO3 for enhanced solar energy photocatalysis.Appl. Phys., A Mater. Sci. Process.2020126755010.1007/s00339‑020‑03739‑4
    [Google Scholar]
  32. ZhangY. QianR. ZhengX. ZengY. SunJ. ChenY. DingA. GuoH. Visible light induced cyclopropanation of dibromomalonates with alkenes via double-SET by photoredox catalysis.Chem. Commun.2015511545710.1039/C4CC08203F 25406804
    [Google Scholar]
  33. SilvaM.L. DavidJ.P. SilvaL.C.R.C. SantosR.A.F. DavidJ.M. LimaL.S. ReisP.S. FontanaR. Bioactive oleanane, lupane and ursane triterpene acid derivatives.Molecules20121710121971220510.3390/molecules171012197
    [Google Scholar]
  34. LinK.W. HuangA.M. LinC.C. ChangC.C. HsuW.C. HourT.C. PuY.S. LinC.N. Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer.Eur. J. Pharmacol.201474074275110.1016/j.ejphar.2014.05.051 24933647
    [Google Scholar]
  35. PuttaS. Sastry YarlaN. Kumar KilariE. SurekhaC. AlievG. Basavaraju DivakaraM. Sridhar SantoshM. RamuR. ZameerF. PrasadM.N. N.; Chintala, R.; Vijaya Rao, P.; Shiralgi, Y.; Lakkappa Dhananjaya, B. Therapeutic potentials of triterpenes in diabetes and its associated complications.Curr. Top. Med. Chem.201616232532254210.2174/1568026616666160414123343 27086788
    [Google Scholar]
  36. SafayhiH. SailerE.R. Anti-inflammatory actions of pentacyclic triterpenes.Planta Med.199763648749310.1055/s‑2006‑957748 9434597
    [Google Scholar]
  37. Dey RayS. DewanjeeS. Isolation of a new triterpene derivative and in vitro and in vivo anticancer activity of ethanolic extract from root bark of Zizyphus nummularia Aubrev.Nat. Prod. Res.201529161529153610.1080/14786419.2014.983921 25422165
    [Google Scholar]
  38. RayS.D. RayS. Zia-Ul-HaqM. De FeoV. DewanjeeS. Pharmacological basis of the use of the root bark of Zizyphus nummularia Aubrev. (Rhamnaceae) as anti-inflammatory agent.BMC Complement. Altern. Med.201515141610.1186/s12906‑015‑0942‑7 26597878
    [Google Scholar]
  39. ProttiS. ArtioliG.A. CapitaniF. MariniC. DoreP. PostorinoP. MalavasiL. FagnoniM. Preparation of (substituted) picenes via solar light-induced Mallory photocyclization.RSC Advances2015535274702747510.1039/C5RA02855H
    [Google Scholar]
  40. RevolG. McCallumT. MorinM. GagoszF. BarriaultL. Photoredox transformations with dimeric gold complexes.Angew. Chem. Int. Ed.20135250133421334510.1002/anie.201306727 24133051
    [Google Scholar]
  41. PrierC.K. RankicD.A. MacMillanD.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis.Chem. Rev.201311375322536310.1021/cr300503r 23509883
    [Google Scholar]
  42. ShiL. XiaW. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom.Chem. Soc. Rev.201241237687769710.1039/c2cs35203f 22869017
    [Google Scholar]
  43. FukuzumiS. OhkuboK. Organic synthetic transformations using organic dyes as photoredox catalysts.Org. Biomol. Chem.201412326059607110.1039/C4OB00843J 24984977
    [Google Scholar]
  44. TangJ. GramppG. LiuY. WangB.X. TaoF.F. WangL.J. LiangX.Z. XiaoH.Q. ShenY.M. Visible light mediated cyclization of tertiary anilines with maleimides using nickel(II) oxide surface-modified titanium dioxide catalyst.J. Org. Chem.20158052724273210.1021/jo502901h 25642974
    [Google Scholar]
  45. TschudyD. CollinsA. Notes- malonic ester synthesis of δ-aminolevulinic acid. The reaction of N-3-bromoacetonylphthalimide with malonic ester.J. Org. Chem.195924455655710.1021/jo01086a600
    [Google Scholar]
  46. ShutoS. TakadaH. MochizukiD. TsujitaR. HaseY. OnoS. ShibuyaN. MatsudaA. (+/-)-(Z)-2-(aminomethyl)-1-phenylcyclopropanecarboxamide derivatives as a new prototype of NMDA receptor antagonists.J. Med. Chem.199538152964296810.1021/jm00015a019 7636857
    [Google Scholar]
  47. BonnaudB. CousseH. MouzinG. BrileyM. StengerA. FauranF. CouzinierJ.P. 1-Aryl-2-(aminomethyl)cyclopropanecarboxylic acid derivatives. A new series of potential antidepressants.J. Med. Chem.198730231832510.1021/jm00385a013 3806614
    [Google Scholar]
  48. YoonT.P. IschayM.A. DuJ. Visible light photocatalysis as a greener approach to photochemical synthesis.Nat. Chem.20102752753210.1038/nchem.687 20571569
    [Google Scholar]
  49. McNallyA. PrierC.K. MacMillanD.W.C. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity.Science201133460591114111710.1126/science.1213920 22116882
    [Google Scholar]
  50. CondieA.G. González-GómezJ.C. StephensonC.R.J. Visible-light photoredox catalysis: Aza-Henry reactions via C-H functionalization.J. Am. Chem. Soc.201013251464146510.1021/ja909145y 20070079
    [Google Scholar]
  51. ZouY.Q. LuL.Q. FuL. ChangN.J. RongJ. ChenJ.R. XiaoW.J. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: A photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines.Angew. Chem. Int. Ed.201150317171717510.1002/anie.201102306 21698733
    [Google Scholar]
  52. KoikeT. AkitaM. Photoinduced oxyamination of enamines and aldehydes with TEMPO catalyzed by [Ru(bpy)3]2+.Chem. Lett.200938216616710.1246/cl.2009.166
    [Google Scholar]
  53. AllenL.J. CabreraP.J. LeeM. SanfordM.S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C-H amination of arenes and heteroarenes.J. Am. Chem. Soc.2014136155607561010.1021/ja501906x 24702705
    [Google Scholar]
  54. ZuoZ. MacMillanD.W.C. Decarboxylative arylation of α-amino acids via photoredox catalysis: A one-step conversion of biomass to drug pharmacophore.J. Am. Chem. Soc.2014136145257526010.1021/ja501621q 24712922
    [Google Scholar]
  55. MiyazawaK. KoikeT. AkitaM. Hydroaminomethylation of olefins with aminomethyltrifluoroborate by photoredox catalysis.Adv. Synth. Catal.2014356132749275510.1002/adsc.201400556
    [Google Scholar]
  56. ChinzeiT. MiyazawaK. YasuY. KoikeT. AkitaM. Redox-economical radical generation from organoborates and carboxylic acids by organic photoredox catalysis.RSC Advances2015527212972130010.1039/C5RA01826A
    [Google Scholar]
  57. YamadaK. OkadaM. FukuyamaT. RavelliD. FagnoniM. RyuI. Photocatalyzed site-selective C-H to C-C conversion of aliphatic nitriles.Org. Lett.20151751292129510.1021/acs.orglett.5b00282 25692554
    [Google Scholar]
  58. RyuI. TaniA. FukuyamaT. RavelliD. MontanaroS. FagnoniM. Efficient C-H/C-N and C-H/C-CO-N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate.Org. Lett.201315102554255710.1021/ol401061v 23651042
    [Google Scholar]
  59. ArceoE. JurbergI.D. Álvarez-FernándezA. MelchiorreP. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes.Nat. Chem.20135975075610.1038/nchem.1727 23965676
    [Google Scholar]
  60. MartinsA. MariampillaiB. LautensM. Synthesis in the key of Catellani: Norbornene-mediated ortho C-H functionalization.Top. Curr. Chem.2010292133 21500401
    [Google Scholar]
  61. RouquetG. ChataniN. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups.Angew. Chem. Int. Ed.20135245117261174310.1002/anie.201301451 24105797
    [Google Scholar]
  62. HoshikawaT. InoueM. Photoinduced direct 4-pyridination of C(sp3)–H Bonds.Chem. Sci.2013483118312310.1039/c3sc51080h
    [Google Scholar]
  63. PirnotM.T. RankicD.A. MartinD.B.C. MacMillanD.W.C. Photoredox activation for the direct β-arylation of ketones and aldehydes.Science201333961271593159610.1126/science.1232993 23539600
    [Google Scholar]
  64. HuangZ. DongG. Catalytic direct β-arylation of simple ketones with aryl iodides.J. Am. Chem. Soc.201313547177471775010.1021/ja410389a 24237137
    [Google Scholar]
  65. OkadaM. FukuyamaT. YamadaK. RyuI. RavelliD. FagnoniM. Sunlight photocatalyzed regioselective β-alkylation and acylation of cyclopentanones.Chem. Sci.2014572893289810.1039/C4SC01072H
    [Google Scholar]
  66. LianM. LiZ. CaiY. MengQ. GaoZ. Enantioselective photooxygenation of β-keto esters by chiral phase-transfer catalysis using molecular oxygen.Chem. Asian J.2012792019202310.1002/asia.201200358 22740435
    [Google Scholar]
  67. HigashimotoS. KitaoN. YoshidaN. SakuraT. AzumaM. OhueH. SakataY. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation.J. Catal.2009266227928510.1016/j.jcat.2009.06.018
    [Google Scholar]
  68. ShiraishiY. SakamotoH. SuganoY. IchikawaS. HiraiT. Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light.ACS Nano20137109287929710.1021/nn403954p 24063681
    [Google Scholar]
  69. FatiadiA.J. Preparation and synthetic applications of cyano compounds. In: Triple-Bonded Functional Groups.John Wiley & Sons, Ltd19831057130310.1002/9780470771709.ch9
    [Google Scholar]
  70. FlemingF.F. YaoL. RavikumarP.C. FunkL. ShookB.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore.J. Med. Chem.201053227902791710.1021/jm100762r 20804202
    [Google Scholar]
  71. MillerJ.S. MansonJ.L. Designer magnets containing cyanides and nitriles.Acc. Chem. Res.200134756357010.1021/ar0000354 11456474
    [Google Scholar]
  72. SandmeyerT. Conversion of the three nitroanilines into nitrobenzoic acids.Ber. Dtsch. Chem. Ges.18851811492149610.1002/cber.188501801322
    [Google Scholar]
  73. ZhouS. JungeK. AddisD. DasS. BellerM. A general and convenient catalytic synthesis of nitriles from amides and silanes.Org. Lett.200911112461246410.1021/ol900716q 19422207
    [Google Scholar]
  74. YamaguchiK. FujiwaraH. OgasawaraY. KotaniM. MizunoN. A tungsten-tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles.Angew. Chem. Int. Ed.200746213922392510.1002/anie.200605004 17429854
    [Google Scholar]
  75. OishiT. YamaguchiK. MizunoN. Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia.Angew. Chem. Int. Ed.200948346286628810.1002/anie.200900418 19334030
    [Google Scholar]
  76. YamaguchiK. MizunoN. Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina.Chemistry20039184353436110.1002/chem.200304916 14502621
    [Google Scholar]
  77. UddinM.T. NicolasY. OlivierC. ToupanceT. MüllerM.M. KleebeH-J. RachutK. ZieglerJ. KleinA. JaegermannW. Preparation of RuO 2/TiO 2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations.J. Phys. Chem. C201311742220982211010.1021/jp407539c
    [Google Scholar]
  78. BangS. LeeS. ParkT. KoY. ShinS. YimS.Y. SeoH. JeonH. Dual optical functionality of local surface plasmon resonance for RuO2 nanoparticle–ZnO nanorod hybrids grown by atomic layer deposition.J. Mater. Chem.20122228141411414810.1039/c2jm31513k
    [Google Scholar]
  79. OvoshchnikovD.S. DonoevaB.G. GolovkoV.B. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO 2.ACS Catal.201551343810.1021/cs501186n
    [Google Scholar]
  80. ZhangQ. JiangL. WangJ. ZhuY. PuY. DaiW. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation.Appl. Catal. B202027711912210.1016/j.apcatb.2020.119122
    [Google Scholar]
  81. LiuL. HuangJ. YuH. WanJ. LiuL. YiK. ZhangW. ZhangC. Construction of MoO3 nanopaticles/g-C3N4 nanosheets 0D/2D heterojuntion photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant.Chemosphere202128213104910.1016/j.chemosphere.2021.131049 34098307
    [Google Scholar]
  82. JinD. HeD. LvY. ZhangK. ZhangZ. YangH. LiuC. QuJ. ZhangY. Preparation of metal-free BP/CN photocatalyst with enhanced ability for photocatalytic tetracycline degradation.Chemosphere202229013331710.1016/j.chemosphere.2021.133317 34921858
    [Google Scholar]
  83. DoostiM. JahanshahiR. LalehS. SobhaniS. SansanoJ.M. Solar light induced photocatalytic degradation of tetracycline in the presence of ZnO/NiFe2O4/Co3O4 as a new and highly efficient magnetically separable photocatalyst.Front Chem.202210101334910.3389/fchem.2022.1013349
    [Google Scholar]
  84. LiM. ShahN.H. ZhangP. ChenP. CuiY. JiangY. WangY. Mechanism, modification and application of silver-based photocatalysts.Materials Today Sustainability20232210040910.1016/j.mtsust.2023.100409
    [Google Scholar]
  85. ChenP. ZhangP. CuiY. FuX. WangY. Recent progress in copper-based inorganic nanostructure photocatalysts: Properties, synthesis and photocatalysis applications.Materials Today Sustainability20232110027610.1016/j.mtsust.2022.100276
    [Google Scholar]
  86. ShimakoshiH. HisaedaY. A hybrid catalyst for light-driven green molecular transformations.ChemPlusChem2017821182910.1002/cplu.201600303 31961510
    [Google Scholar]
  87. BamR. PollatosA.S. MoserA.J. WestJ.G. Mild olefin formation via bio-inspired vitamin B 12 photocatalysis.Chem. Sci.20211251736174410.1039/D0SC05925K 34163933
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266318635240906102108
Loading
/content/journals/ctmc/10.2174/0115680266318635240906102108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test