Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Amperometric biosensors have emerged as a cutting-edge technology in clinical diagnostics, thanks to their high level of sensitivity, rapid analytical results, compact size, and ability to monitor health parameters non-invasively and continuously using flexible and wearable sensors. This review explores the latest developments in the field of amperometric biosensing for medical applications. It discusses the materials used to construct these sensors and pays particular attention to biosensors designed to measure glucose, lactate, cholesterol, urea, and uric acid levels. The review also addresses the technological limitations and drawbacks of these devices. Furthermore, it presents the current status and identifies future trends in the development of flexible, wearable biosensors capable of providing continuous monitoring of a patient's health status.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266323004241015122441
2024-10-28
2025-10-14
Loading full text...

Full text loading...

References

  1. KimJ. CampbellA.S. de ÁvilaB.E.F. WangJ. Wearable biosensors for healthcare monitoring.Nat. Biotechnol.201937438940610.1038/s41587‑019‑0045‑y 30804534
    [Google Scholar]
  2. DixonT.A. WilliamsT.C. PretoriusI.S. Sensing the future of bio-informational engineering.Nat. Commun.202112138810.1038/s41467‑020‑20764‑2 33452260
    [Google Scholar]
  3. WangM. YangY. MinJ. SongY. TuJ. MukasaD. YeC. XuC. HeflinN. McCuneJ.S. HsiaiT.K. LiZ. GaoW. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients.Nat. Biomed. Eng.20226111225123510.1038/s41551‑022‑00916‑z 35970928
    [Google Scholar]
  4. ZhangY. SunJ. LiuL. QiaoH. A review of biosensor technology and algorithms for glucose monitoring.J. Diabetes Complications202135810792910.1016/j.jdiacomp.2021.107929 33902999
    [Google Scholar]
  5. NemiwalM. ZhangT.C. KumarD. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules.Enzyme Microb. Technol.2022156811000610.1016/j.enzmictec.2022.110006 35144119
    [Google Scholar]
  6. Ghorbani ZamaniF. MoulahoumH. AkM. Odaci DemirkolD. TimurS. Current trends in the development of conducting polymers-based biosensors.Trends Analyt. Chem.201911826427610.1016/j.trac.2019.05.031
    [Google Scholar]
  7. ReddyY.V.M. ShinJ.H. PalakolluV.N. SravaniB. ChoiC.H. ParkK. KimS.K. MadhaviG. ParkJ.P. ShettiN.P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors.Adv. Colloid Interface Sci.202230410266410.1016/j.cis.2022.102664 35413509
    [Google Scholar]
  8. SadeghiS.J. Amperometric biosensors. In: Encyclopedia of Biophysics. RobertsG.C.K. Berlin, HeidelbergSpringer2013616710.1007/978‑3‑642‑16712‑6_713
    [Google Scholar]
  9. GaoM. WangZ. XiaoW. MiaoL. YangZ. LiangW. AoT. ChenW. Capacitive deionization toward fluoride elimination: Selective advantage, state of the art, and future perspectives.Desalination202457711739210.1016/j.desal.2024.117392
    [Google Scholar]
  10. SinghA.K. JaiswalN. TiwariI. AhmadM. SilvaS.R.P. Electrochemical biosensors based on in situ grown carbon nanotubes on gold microelectrode array fabricated on glass substrate for glucose determination.Mikrochim. Acta202319025510.1007/s00604‑022‑05626‑6 36645527
    [Google Scholar]
  11. DeffoG. HazarikaR. Deussi NgahaM.C. BasumataryM. KalitaS. HussainN. NjanjaE. PuzariP. NgameniE. An ultra-sensitive uric acid second generation biosensor based on chemical immobilization of uricase on functionalized multiwall carbon nanotube grafted palm oil fiber in the presence of a ferrocene mediator.Anal. Methods202315202456246610.1039/D3AY00053B 37165935
    [Google Scholar]
  12. JosypcukB. TvorynskaS. Electrochemical flow-through biosensors based on microfiber enzymatic filter discs placed at printed electrodes.Bioelectrochemistry202415710866310.1016/j.bioelechem.2024.108663 38359574
    [Google Scholar]
  13. NhuC.T. ThanhT.B. DucT.C. DangP.N. Development of a non-enzyme sensor to detect glucose based on the modification of copper electrode.Arab. J. Sci. Eng.20234812110
    [Google Scholar]
  14. McCormickW. McCruddenD. Development of a highly nanoporous platinum screen-printed electrode and its application in glucose sensing.J. Electroanal. Chem. (Lausanne)202086011391210.1016/j.jelechem.2020.113912
    [Google Scholar]
  15. HondredJ.A. JohnsonZ.T. ClaussenJ.C. Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics.J. Mater. Chem. C Mater. Opt. Electron. Devices2020833113761138810.1039/D0TC01423K
    [Google Scholar]
  16. GigliV. TortoliniC. CapecchiE. AngeloniA. LenziA. AntiochiaR. Novel amperometric biosensor based on tyrosinase/chitosan nanoparticles for sensitive and interference-free detection of total catecholamine.Biosensors202212751910.3390/bios12070519 35884322
    [Google Scholar]
  17. YunitaK.S. IrwanI. NakaiT. Graphene modified zno/polyaniline electrode material for electrochemical sensing of phenol compounds.Surg. Eng. Appl. Electrochem.2023566764771
    [Google Scholar]
  18. MedvedevaA.S. GudkovaE.I. TitovaA.S. KharkovaA.S. KuznetsovaL.S. PerchikovR.N. IvanovV.R. RyabkovY.D. TikhonovaA.A. FominaE.D. NaumovaA.O. MelnikovP.V. ButusovD.N. ArlyapovV.A. Nanostructured copper electrodes – A new step in the development of microbial bioelectrochemical systems.Environ. Sci. Nano202410.1039/D4EN00440J
    [Google Scholar]
  19. SuniI.I. Substrate materials for biomolecular immobilization within electrochemical biosensors.Biosensors202111723910.3390/bios11070239 34356710
    [Google Scholar]
  20. LiuJ. JalaliM. MahshidS. Wachsmann-HogiuS. Are plasmonic optical biosensors ready for use in point-of-need applications?Analyst (Lond.)2020145236438410.1039/C9AN02149C 31832630
    [Google Scholar]
  21. HosseiniS. IbrahimF. DjordjevicI. KooleL.H. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications.Analyst (Lond.)2014139122933294310.1039/c3an01789c 24769607
    [Google Scholar]
  22. AlijanianzadehM. QadamiF. MolaeiradA. Detection of methamphetamine using aptamer-based biosensor chip and cyclic voltammetry technique.J. Indian Chem. Soc.2021981110018910.1016/j.jics.2021.100189
    [Google Scholar]
  23. KimH.U. KimH.Y. SeokH. KanadeV. YooH. ParkK.Y. LeeJ.H. LeeM.H. KimT. Flexible MoS2–polyimide electrode for electrochemical biosensors and their applications for the highly sensitive quantification of endocrine hormones: PTH, T3, and T4.Anal. Chem.20209296327633310.1021/acs.analchem.9b05172 32286047
    [Google Scholar]
  24. YoonJ. ChoH.Y. ShinM. ChoiH.K. LeeT. ChoiJ.W. Flexible electrochemical biosensors for healthcare monitoring.J. Mater. Chem. B Mater. Biol. Med.20208337303731810.1039/D0TB01325K 32647855
    [Google Scholar]
  25. GuanY. LiuL. YuS. LvF. GuoM. LuoQ. ZhangS. WangZ. WuL. LinY. LiuG. A noninvasive sweat glucose biosensor based on glucose oxidase/multiwalled carbon nanotubes/ferrocene-polyaniline film/Cu electrodes.Micromachines20221312214210.3390/mi13122142 36557441
    [Google Scholar]
  26. ChuS. LiangY. LuM. YuanH. HanY. MassonJ.F. PengW. Mode-coupling generation using ITO nanodisk arrays with Au substrate enabling narrow-band biosensing.Biosensors202313664910.3390/bios13060649 37367014
    [Google Scholar]
  27. HendersonS. StraitM. FernandesR. XuH. GalliganJ.J. SwainG.M. Ex vivo electrochemical monitoring of cholinergic signaling in the mouse colon using an enzyme-based biosensor.ACS Chem. Neurosci.202314183460347110.1021/acschemneuro.3c00337 37681686
    [Google Scholar]
  28. WuH. KrauseR. GogoiE. ReckA. GrafA. WislicenusM. HildO.R. GuhlC. Multielectrode arrays at wafer-level for miniaturized sensors applications: Electrochemical growth of Ag/AgCl reference electrodes.Sensors20232313613010.3390/s23136130 37447979
    [Google Scholar]
  29. SultangaziyevA. IlyasA. DyussupovaA. BukasovR. Trends in application of SERS substrates beyond Ag and Au, and their role in bioanalysis.Biosensors2022121196710.3390/bios12110967 36354477
    [Google Scholar]
  30. PanwarS. SarkarP. KasimD.S. AnandR. PriyaA. PrakashS. JhaS.K. Portable optical biosensor for point-of-care monitoring of salivary glucose using a paper-based microfluidic strip.Biosens. Bioelectron. X20241710045210.1016/j.biosx.2024.100452
    [Google Scholar]
  31. UrbanowiczM. SadowskaK. LemieszekB. Paziewska-NowakA. Sołdatowska, A.; Dawgul, M.; Pijanowska, D.G. Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate.Bioelectrochemistry202315210840710.1016/j.bioelechem.2023.108407 36917883
    [Google Scholar]
  32. Estrada-OsorioD.V. Escalona-VillalpandoR.A. GutiérrezA. ArriagaL.G. Ledesma-GarcíaJ. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application.Bioelectrochemistry202214610814710.1016/j.bioelechem.2022.108147 35504230
    [Google Scholar]
  33. KouB.B. ChaiY.Q. YuanY.L. YuanR. A DNA nanopillar as a scaffold to regulate the ratio and distance of mimic enzymes for an efficient cascade catalytic platform.Chem. Sci. (Camb.)202112140741110.1039/D0SC03584J 34168746
    [Google Scholar]
  34. YanY. QiaoZ. HaiX. SongW. BiS. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture.Biosens. Bioelectron.202117411282710.1016/j.bios.2020.112827 33257182
    [Google Scholar]
  35. ArlyapovV.A. Khar’kovaA.S. AbramovaT.N. KuznetsovaL.S. IlyukhinaA.S. ZaitsevM.G. MachulinA.V. ReshetilovA.N. A hybrid redox-active polymer based on bovine serum albumin, ferrocene, carboxylated carbon nanotubes, and glucose oxidase.J. Anal. Chem.20207591189120010.1134/S1061934820090026
    [Google Scholar]
  36. ArlyapovV.A. KuznetsovaL.S. KharkovaA.S. ProvotorovaD.V. NenarochkinaE.D. KamaninaO.A. MachulinA.V. PonamorevaO.N. AlferovV.A. ReshetilovA.N. On the development of reagent-free conductive nanocomposite systems for the modification of printed electrodes when producing glucose biosensors.Nanobiotechnology Reports202217110611710.1134/S2635167622010025
    [Google Scholar]
  37. LuoQ. TianM. LuoF. ZhaoM. LinC. QiuB. WangJ. LinZ. Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids.Anal. Chem.20239542390239710.1021/acs.analchem.2c04418 36638045
    [Google Scholar]
  38. ChmayssemA. ShalayelI. MarinescoS. ZebdaA. Investigation of GOx stability in a chitosan matrix: Applications for enzymatic electrodes.Sensors202323146510.3390/s23010465 36617063
    [Google Scholar]
  39. GulottaF.A. MontenegroM.A. Vergara DiazL. Arata BadanoJ. FerreyraN.F. Paz ZaniniV.I. Chitosan-based Maillard products for enzyme immobilization in multilayers structure: Its application in electrochemical sensing.Microchem. J.202319010868910.1016/j.microc.2023.108689
    [Google Scholar]
  40. KuznetsovaL.S. ArlyapovV.A. KamaninaO.A. LantsovaE.A. TarasovS.E. ReshetilovA.N. Development of nanocomposite materials based on conductive polymers for using in glucose biosensor.Polymers2022148154310.3390/polym14081543 35458293
    [Google Scholar]
  41. KamaninaO.A. KamaninS.S. KharkovaA.S. ArlyapovV.A. Glucose biosensor based on screen-printed electrode modified with silicone sol–gel conducting matrix containing carbon nanotubes.3 Biotech.20199729010.1007/s13205‑019‑1818‑1
    [Google Scholar]
  42. DuP. LiuS. SunH. WuH. WangZ.G. Designed histidine-rich peptide self-assembly for accelerating oxidase-catalyzed reactions.Nano Res.20221554032403810.1007/s12274‑022‑4209‑6
    [Google Scholar]
  43. YilmazY.Y. YalcinkayaE.E. DemirkolD.O. TimurS. 4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors.Sens. Actuators B Chem.202030712766510.1016/j.snb.2020.127665
    [Google Scholar]
  44. WangZ. LiuY. WangZ. HuangX. HuangW. Hydrogel based composites: Unlimited platforms for biosensors and diagnostics.VIEW2021262020016510.1002/VIW.20200165
    [Google Scholar]
  45. LiuY. LuoX. DongY. HuiM. XuL. LiH. LvJ. YangL. CuiY. Uric acid and creatinine biosensors with enhanced room-temperature storage stability by a multilayer enzyme matrix.Anal. Chim. Acta2022122734026410.1016/j.aca.2022.340264 36089306
    [Google Scholar]
  46. WangS. ZhuL. YangR. LiM. DaiF. ShengS. ChenL. LiangS. Insights into high Li +/Mg 2+ separation performance using a PEI-grafted graphene oxide membrane.J. Phys. Chem. C2023127146981699010.1021/acs.jpcc.3c00723
    [Google Scholar]
  47. Isailović J.; Vidović K.; Hočevar, S.B. Simple electrochemical sensors for highly sensitive detection of gaseous hydrogen peroxide using polyacrylic-acid-based sensing membrane.Sens. Actuators B Chem.202235213105310.1016/j.snb.2021.131053
    [Google Scholar]
  48. SvitkováV. HanzelyováM. MackováH. Blaškovičová, J.; Vyskočil, V.; Farkašová, D.; Labuda, J. Behaviour and detection of acridine-type DNA intercalators in urine using an electrochemical DNA-based biosensor with the protective polyvinyl alcohol membrane.J. Electroanal. Chem. (Lausanne)2018821879110.1016/j.jelechem.2017.11.028
    [Google Scholar]
  49. WuS. JiangM. MaoH. ZhaoN. HeD. ChenQ. LiuD. ZhangW. SongX.M. A sensitive cholesterol electrochemical biosensor based on biomimetic cerasome and graphene quantum dots.Anal. Bioanal. Chem.2022414123593360310.1007/s00216‑022‑03986‑9 35217877
    [Google Scholar]
  50. ShivabalanA.P. AmbruleviciusF. TalaikisM. PudzaitisV. NiauraG. ValinciusG. Effect of pH on electrochemical impedance response of tethered bilayer lipid membranes: Implications for quantitative biosensing.Chemosensors202311845010.3390/chemosensors11080450
    [Google Scholar]
  51. PollardT.D. OngJ.J. GoyanesA. OrluM. GaisfordS. ElbadawiM. BasitA.W. Electrochemical biosensors: A nexus for precision medicine.Drug Discov. Today2021261697910.1016/j.drudis.2020.10.021 33137482
    [Google Scholar]
  52. HaleemA. JavaidM. SinghR.P. SumanR. RabS. Biosensors applications in medical field: A brief review.Sens. Int.2021210010010.1016/j.sintl.2021.100100
    [Google Scholar]
  53. NakamuraS. HayashiS. KogaK. Effect of periodate oxidation on the structure and properties of glucose oxidase. Biochimica et Biophysica Acta (BBA) -.Enzymology1976445229430810.1016/0005‑2744(76)90084‑X 182278
    [Google Scholar]
  54. GarzilloA.M.V. di PaoloS. FeniceM. PetruccioliM. BuonocoreV. FedericiF. Production, purification and characterization of glucose oxidase from Penicillium variabile P16.Biotechnol. Appl. Biochem.199522169178
    [Google Scholar]
  55. SemashkoT.V. MikhailovaR.V. EreminA.N. Extracellular glucose oxidase of Penicillium funiculosum 46.1.Appl. Biochem. Microbiol.200339436837410.1023/A:1024512316571
    [Google Scholar]
  56. MatsushitaK. ShinagawaE. AdachiO. AmeyamaM. Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: Membrane-bound and soluble forms are different molecular species.Biochemistry198928156276628010.1021/bi00441a020 2551369
    [Google Scholar]
  57. OubrieA. RozeboomH.J. DijkstraB.W. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: A covalent cofactor-inhibitor complex.Proc. Natl. Acad. Sci. USA19999621117871179110.1073/pnas.96.21.11787 10518528
    [Google Scholar]
  58. AdachiO. MatsushitaK. ShinagawaE. AmeyamaM. Crystallization and characterization of NADPdependent D-glucose dehydrogenase from Gluconobacter suboxydans.Agric. Biol. Chem.198044301308
    [Google Scholar]
  59. ShattonJ.B. HalverJ.E. WeinhouseS. Glucose (hexose 6-phosphate) dehydrogenase in liver of rainbow trout.J. Biol. Chem.1971246154878488510.1016/S0021‑9258(18)62018‑6 4397856
    [Google Scholar]
  60. KobayashiY. HorikoshiK. Purification and properties of NAD-dependent D-glucose dehydrogenase produced by alkalophilic Crynebacterium sp. No. 93-1.Agric. Biol. Chem.19804422612269
    [Google Scholar]
  61. SygmundC. StaudiglP. KlausbergerM. PinotsisN. Djinović -Carugo, K.; Gorton, L.; Haltrich, D.; Ludwig, R. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris.Microb. Cell Fact.201110110610.1186/1475‑2859‑10‑106 22151971
    [Google Scholar]
  62. Okuda-ShimazakiJ. YoshidaH. SodeK. FAD dependent glucose dehydrogenases – Discovery and engineering of representative glucose sensing enzymes -.Bioelectrochemistry202013210741410.1016/j.bioelechem.2019.107414 31838457
    [Google Scholar]
  63. FriasJ.P. LimC.G. EllisonJ.M. MontandonC.M. Review of adverse events associated with false glucose readings measured by GDH-PQQ-based glucose test strips in the presence of interfering sugars.Diabetes Care201033472872910.2337/dc09‑1822 20351227
    [Google Scholar]
  64. GortonL. DomínguezE. Electrocatalytic oxidation of NAD(P) H at mediator-modified electrodes.J. Biotechnol.2002824371392 11996217
    [Google Scholar]
  65. Navarro-NaterasL. Diaz-GonzalezJ. Aguas-ChantesD. Coria-OriundoL.L. BattagliniF. Ventura-GallegosJ.L. Zentella-DehesaA. OzaG. ArriagaL.G. Casanova-MorenoJ.R. Development of a redox-polymer-based electrochemical glucose biosensor suitable for integration in microfluidic 3D cell culture systems.Biosensors202313658210.3390/bios13060582 37366947
    [Google Scholar]
  66. GanL. LokeF.W.L. CheongW.C. NgJ.S.H. TanN.C. ZhuZ. Design and development of ferrocene-containing chitosan-cografted-branched polyethylenimine redox conjugates for monitoring free flap failure after reconstructive surgery.Biosens. Bioelectron.202118611328310.1016/j.bios.2021.113283 33979719
    [Google Scholar]
  67. TongX. JiangL. AoQ. LvX. SongY. TangJ. Highly stable glucose oxidase polynanogel@MXene/chitosan electrochemical biosensor based on a multi-stable interface structure for glucose detection.Biosens. Bioelectron.202424811594210.1016/j.bios.2023.115942 38154330
    [Google Scholar]
  68. LiuC.T. LiuC.H. LaiY.T. LeeC.Y. GuptaS. TaiN.H. A salivary glucose biosensor based on immobilization of glucose oxidase in Nafion-carbon nanotubes nanocomposites modified on screen printed electrode.Microchem. J.202319110887210.1016/j.microc.2023.108872
    [Google Scholar]
  69. GaoN. CaiZ. ChangG. HeY. Non-invasive and wearable glucose biosensor based on gel electrolyte for detection of human sweat.J. Mater. Sci.202358289090110.1007/s10853‑022‑08095‑7
    [Google Scholar]
  70. GermanN. PopovA. RamanavicieneA. The development and evaluation of reagentless glucose biosensors using dendritic gold nanostructures as a promising sensing platform.Biosensors202313772710.3390/bios13070727 37504125
    [Google Scholar]
  71. DeepapriyaS. RodneyJ.D. Flora JohnJ. JoshiS. UdayashankarN.K. Lakshmi DeviS. Jerome DasS. A novel effective immobilization of glucose oxidase on Ni0.25Zn0.25Cu0.25Co0.25La0.06Fe1.94O4 – Chitosan nanocomposite as an enzymatic glucose biosensor.Inorg. Chem. Commun.202315311082210.1016/j.inoche.2023.110822
    [Google Scholar]
  72. Henao-PabonG. GaoN. PrasadK.S. LiX. Direct electron transfer of glucose oxidase on pre-anodized paper/carbon electrodes modified through zero-length cross-linkers for glucose biosensors.Biosensors202313556610.3390/bios13050566 37232927
    [Google Scholar]
  73. LiangJ. HuangQ. WuL. WangL. SunL. ZhouZ. LiG. Silicon-based field-effect glucose biosensor based on reduced graphene oxide-carboxymethyl chitosan-platinum nanocomposite material modified LAPS.Sens. Actuators A Phys.202436611493710.1016/j.sna.2023.114937
    [Google Scholar]
  74. LiB. WuX. ShiC. DaiY. ZhangJ. LiuW. WuC. ZhangY. HuangX. ZengW. Flexible enzymatic biosensor based on graphene sponge for glucose detection in human sweat.Surf. Interfaces20233610252510.1016/j.surfin.2022.102525
    [Google Scholar]
  75. Kausaite-MinkstimieneA. KaminskasA. GaydaG. RamanavicieneA. Towards a self-powered amperometric glucose biosensor based on a single-enzyme biofuel cell.Biosensors202414313810.3390/bios14030138 38534245
    [Google Scholar]
  76. BiR. MaX. MiaoK. MaP. WangQ. Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection.Enzyme Microb. Technol.202316211013210.1016/j.enzmictec.2022.110132 36152594
    [Google Scholar]
  77. KuznowiczM. Jędrzak, A.; Jesionowski, T. Nature-inspired biomolecular corona based on poly(caffeic acid) as a low potential and time-stable glucose biosensor.Molecules20232821728110.3390/molecules28217281 37959700
    [Google Scholar]
  78. PromsuwanK. SolehA. SamosonK. SaisahasK. WangchukS. SaichanapanJ. KanatharanaP. ThavarungkulP. LimbutW. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat.Talanta202325612426610.1016/j.talanta.2023.124266 36693284
    [Google Scholar]
  79. WangY. GuoH. YuanM. YuJ. WangZ. ChenX. One-step laser synthesis platinum nanostructured 3D porous graphene: A flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration.Talanta202325712436210.1016/j.talanta.2023.124362 36801557
    [Google Scholar]
  80. KomkovaM.A. AlexandrovichA.S. KaryakinA.A. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis.Talanta202426712521910.1016/j.talanta.2023.125219 37734286
    [Google Scholar]
  81. KhosraviS. SoltanianS. ServatiA. KhademhosseiniA. ZhuY. ServatiP. Screen-printed textile-based electrochemical biosensor for noninvasive monitoring of glucose in sweat.Biosensors202313768410.3390/bios13070684 37504083
    [Google Scholar]
  82. WijayantiS.D. SchachingerF. LudwigR. HaltrichD. Electrochemical and biosensing properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens.Bioelectrochemistry202315310848010.1016/j.bioelechem.2023.108480 37269684
    [Google Scholar]
  83. SunY. XueW. ZhaoJ. BaoQ. ZhangK. LiuY. LiH. Direct electrochemistry of glucose dehydrogenasefunctionalized polymers on a modified glassy carbon electrode and its molecular recognition of glucose.Int. J. Mol. Sci.2023247615210.3390/ijms24076152 37047124
    [Google Scholar]
  84. CrapnellR.D. TridenteA. BanksC.E. Dempsey-HibbertN.C. Evaluating the possibility of translating technological advances in non-invasive continuous lactate monitoring into critical care.Sensors202121387910.3390/s21030879 33525567
    [Google Scholar]
  85. DugarS. ChoudharyC. DuggalA. Sepsis and septic shock: Guideline-based management.Cleve. Clin. J. Med.2019871536410.3949/ccjm.87a.18143
    [Google Scholar]
  86. RyooS.M. LeeJ. LeeY.S. LeeJ.H. LimK.S. HuhJ.W. HongS.B. LimC.M. KohY. KimW.Y. Lactate level versus lactate clearance for predicting mortality in patients with septic shock defined by sepsis-3.Crit. Care Med.2018466e489e49510.1097/CCM.0000000000003030 29432347
    [Google Scholar]
  87. Garcia-MoralesR. Zárate-RomeroA. WangJ. Vazquez-DuhaltR. Bioengineered lactate oxidase mutants for enhanced electrochemical performance at acidic pH.ChemElectroChem20231022e20230029610.1002/celc.202300296
    [Google Scholar]
  88. DabossE.V. ShcherbachevaE.V. TikhonovD.V. KaryakinA.A. On-body hypoxia monitor based on lactate biosensors with a tunable concentration range.J. Electroanal. Chem. (Lausanne)202393511733010.1016/j.jelechem.2023.117330
    [Google Scholar]
  89. ThongkhaoP. NumnuamA. KhongkowP. SangkhathatS. PhairatanaT. Disposable polyaniline/m-phenylenediamine-based electrochemical lactate biosensor for early sepsis diagnosis.Polymers202416447310.3390/polym16040473 38399851
    [Google Scholar]
  90. PleshakovV. DabossE. KaryakinA. Novel electrochemical lactate biosensors based on prussian blue nanoparticles.Eng. Proc.20233512
    [Google Scholar]
  91. LiP. KalambateP.K. HarrisK.D. JemereA.B. TangX.S. Robust and flexible electrochemical lactate sensors for sweat analysis based on nanozyme-enhanced electrode.Biosens. Bioelectron. X20241710045510.1016/j.biosx.2024.100455
    [Google Scholar]
  92. ShitandaI. OzoneY. MorishitaY. MatsuiH. LoewN. MotosukeM. MukaimotoT. KobayashiM. MitsuharaT. SugitaY. MatsuoK. YanagitaS. SuzukiT. MikawaT. WatanabeH. ItagakiM. Air-bubbleinsensitive microfluidic lactate biosensor for continuous monitoring of lactate in sweat.ACS Sens.2023862368237410.1021/acssensors.3c00490 37216270
    [Google Scholar]
  93. MaG. Electrochemical sensing monitoring of blood lactic acid levels in sweat during exhaustive exercise.Int. J. Electrochem. Sci.202318410006410.1016/j.ijoes.2023.100064
    [Google Scholar]
  94. AsaduzzamanM. ZahedM.A. SharifuzzamanM. RezaM.S. HuiX. SharmaS. ShinY.D. ParkJ.Y. A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis.Biosens. Bioelectron.202321911484610.1016/j.bios.2022.114846 36327564
    [Google Scholar]
  95. TaoY. ZhuR. HaoP. JiangW. LiM. LiuQ. YangL. WangY. WangD. Textile-based dual-mode organic electrochemical transistors for lactate biosensing.Mater. Sci. Eng. B202329011635610.1016/j.mseb.2023.116356
    [Google Scholar]
  96. FreemanD.M.E. MingD.K. WilsonR. HerzogP.L. SchulzC. FeliceA.K.G. ChenY.C. O’HareD. HolmesA.H. CassA.E.G. Continuous measurement of lactate concentration in human subjects through direct electron transfer from enzymes to microneedle electrodes.ACS Sens.2023841639164710.1021/acssensors.2c02780 36967522
    [Google Scholar]
  97. ProbstD. SodeK. Development of closed bipolar electrode based L-lactate sensor employing quasi-direct electron transfer type enzyme with cyclic voltammetry.Biosens. Bioelectron.202425411619710.1016/j.bios.2024.116197 38493528
    [Google Scholar]
  98. Sierra-PadillaA. Garcia-GuzmanJ.J. Blanco-DíazL. Bellido-MillaD. Palacios-SantanderJ.M. Cubillana-AguilerL. Innovative multipolymer-based electrochemical biosensor built on a sonogel–carbon electrode aiming for continuous and real-time lactate determination in physiological samples: A new scenario to exploit additive printing.Eng. Proc.202348148
    [Google Scholar]
  99. DagarK. NarwalV. PundirC.S. An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes.Sens. Int.2023410024510.1016/j.sintl.2023.100245
    [Google Scholar]
  100. KhanR. AndreescuS. Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor.Biosens. Bioelectron.202424811597510.1016/j.bios.2023.115975 38159417
    [Google Scholar]
  101. HanJ. ShaohuiJ. Fabrication of a novel sensor for lactate screening in saliva samples before and after exercise in athletes.Alex. Eng. J.20249217117510.1016/j.aej.2024.02.040
    [Google Scholar]
  102. WengX. LiM. WengZ. ZhangJ. PengB. JiangH. A wearable nanozyme-enzyme electrochemical biosensor for sweat lactate monitoring.SSRN10.2139/ssrn.4640082
    [Google Scholar]
  103. HjortR.G. PolaC.C. SoaresR.R. Opare-AddoJ. SmithE.A. ClaussenJ.C. GomesC.L. Laser-induced graphene decorated with platinum nanoparticles for electrochemical analysis of saliva.ACS Appl. Nano Mater.2023622208012081110.1021/acsanm.3c03786
    [Google Scholar]
  104. GorhamF.D. MyersV.C. Remarks on the cholesterol content of human blood.Arch. Intern. Med.1917XX459961210.1001/archinte.1917.00090040127006
    [Google Scholar]
  105. DemkivO. NogalaW. StasyukN. GrynchyshynN. VusB. GoncharM. The peroxidase-like nanocomposites as hydrogen peroxide-sensitive elements in cholesterol oxidase-based biosensors for cholesterol assay.J. Funct. Biomater.202314631510.3390/jfb14060315 37367279
    [Google Scholar]
  106. ShiR. ChenJ. WanX. TianJ. Direct electrochemistry of cholesterol oxidase immobilized on PEDOT functionalized screen-printed electrodes.J. Electrochem. Soc.2023170202751010.1149/1945‑7111/acbac2
    [Google Scholar]
  107. YanQ. WuR. ChenH. WangH. NanW. Highly sensitive cholesterol biosensor based on electron mediator thionine and cubic-shaped Cu2O nanomaterials.Microchem. J.202318510820110.1016/j.microc.2022.108201
    [Google Scholar]
  108. Kartlaşmiş, K.; Kökbaş, U.; Kayrin, L. Electrochemical characterization of cholesterol biosensor formed by polymer film based on o-phenylenediamine and benzoquinone. İstanb.l Gelişim Üniv. Sağlık Bilim. Derg.,Derg.202320347360
    [Google Scholar]
  109. AtailiaS. BaraketA. RabaiS. BenounisM. JaffrezicN. AraarH. Naït-BoudaA. BoumazaA. ErrachidA. HouhamdiM. Electrochemical urea biosensor based on Proteus mirabilis urease immobilized over polyaniline PANi Glassy carbon electrode.Electroanalysis2023359e20220050210.1002/elan.202200502
    [Google Scholar]
  110. PrabakaranA. HameedB.S. DeviK.S.S. KrishnanU.M. Novel electrochemical urea biosensor employing gold nanosphere-decorated Prussian blue nanocubes.Chem. Zvesti20237784265427610.1007/s11696‑023‑02775‑7
    [Google Scholar]
  111. HassanR.Y.A. KamelA.M. HashemM.S. HassanH.N.A. Abd El-GhaffarM.A. A new disposable biosensor platform: Carbon nanotube/poly(o-toluidine) nanocomposite for direct biosensing of urea.J. Solid State Electrochem.20182261817182310.1007/s10008‑017‑3857‑z
    [Google Scholar]
  112. MuthusankarE. PonnusamyV.K. RagupathyD. Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor.Synth. Met.201925413414010.1016/j.synthmet.2019.06.012
    [Google Scholar]
  113. LiuH. JamalR. AbdiryimT. SimayiR. LiuL. LiuY. Carboxylated cellulose as a soft template combined with PEDOT derivatives in [BMIM] Cl: A competent biosensor for detection of guanine and uric acid in the blood.ACS Sustain. Chem. Eng.20219175860587110.1021/acssuschemeng.0c09259
    [Google Scholar]
  114. SadanandhanN.K. DevakiS.J. Gold nanoparticle patterned on PANI nanowire modified transducer for the simultaneous determination of neurotransmitters in presence of ascorbic acid and uric acid.J. Appl. Polym. Sci.20171341app.4435110.1002/app.44351
    [Google Scholar]
  115. HuangX. ShiW. LiJ. BaoN. YuC. GuH. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device.Anal. Chim. Acta20201103758310.1016/j.aca.2019.12.057 32081191
    [Google Scholar]
  116. ZahedM.A. BarmanS.C. ToyaburR.M. SharifuzzamanM. XuanX. NahJ. ParkJ.Y. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@ MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid.J. Electrochem. Soc.20191666B304B31110.1149/2.0131906jes
    [Google Scholar]
  117. de Fátima GiarolaJ. ManoV. PereiraA.C. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination.Electroanalysis201830111912710.1002/elan.201700538
    [Google Scholar]
  118. ZhengW. ZhaoM. LiuW. YuS. NiuL. LiG. LiH. LiuW. Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine.J. Electroanal. Chem. (Lausanne)2018813758210.1016/j.jelechem.2018.02.022
    [Google Scholar]
  119. ZhengH. ChenH. PuZ. LiD. A breathable flexible glucose biosensor with embedded electrodes for long-term and accurate wearable monitoring.Microchem. J.202218110770710.1016/j.microc.2022.107707
    [Google Scholar]
  120. YunusG. SinghR. RaveendranS. KuddusM. Electrochemical biosensors in healthcare services: Bibliometric analysis and recent developments.PeerJ202311e1556610.7717/peerj.15566 37397018
    [Google Scholar]
  121. ErdemA. EksinE. SenturkH. YildizE. MaralM. Recent developments in wearable biosensors for healthcare and biomedical applications.Trends Analyt. Chem.202417111751010.1016/j.trac.2023.117510
    [Google Scholar]
  122. ClarkeW.L. KovatchevB. Chapter 8 Accuracy of CGM systems. In: Glucose Monitoring Devices.Academic Press2020159171
    [Google Scholar]
  123. LemkesB.A. HermanidesJ. DevriesJ.H. HollemanF. MeijersJ.C.M. HoekstraJ.B.L. Hyperglycemia: a prothrombotic factor?J. Thromb. Haemost.2010881663166910.1111/j.1538‑7836.2010.03910.x 20492456
    [Google Scholar]
  124. JiangH. XiaC. LinJ. GarallehH.A.L. AlalawiA. PugazhendhiA. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus.Environ. Res.202322111525010.1016/j.envres.2023.115250 36646201
    [Google Scholar]
  125. GermanN. RamanavicieneA. RamanaviciusA. Dispersed conducting polymer nanocomposites with glucose oxidase and gold nanoparticles for the design of enzymatic glucose biosensors.Polymers20211313217310.3390/polym13132173 34209068
    [Google Scholar]
  126. YanL. MiaoK. MaP. MaX. BiR. ChenF. A feasible electrochemical biosensor for determination of glucose based on Prussian blue – Enzyme aggregates cascade catalytic system.Bioelectrochemistry202114110783810.1016/j.bioelechem.2021.107838 34038858
    [Google Scholar]
  127. ZhaoL. WenZ. JiangF. ZhengZ. LuS. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring.RSC Advances202010116163617110.1039/C9RA10374K 35496012
    [Google Scholar]
  128. SamantP.P. NiedzwieckiM.M. RavieleN. TranV. Mena-LapaixJ. WalkerD.I. FelnerE.I. JonesD.P. MillerG.W. PrausnitzM.R. Sampling interstitial fluid from human skin using a microneedle patch.Sci. Transl. Med.202012571eaaw028510.1126/scitranslmed.aaw0285 33239384
    [Google Scholar]
  129. TehraniF. TeymourianH. WuerstleB. KavnerJ. PatelR. FurmidgeA. AghavaliR. Hosseini-ToudeshkiH. BrownC. ZhangF. MahatoK. LiZ. BarfidokhtA. YinL. WarrenP. HuangN. PatelZ. MercierP.P. WangJ. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid.Nat. Biomed. Eng.20226111214122410.1038/s41551‑022‑00887‑1 35534575
    [Google Scholar]
  130. YinS. YuZ. SongN. GuoZ. LiW. MaJ. WangX. LiuJ. LiangM. A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid.Biosens. Bioelectron.202424411582210.1016/j.bios.2023.115822 37956637
    [Google Scholar]
  131. JinX. LiG. XuT. SuL. YanD. ZhangX. Fully integrated flexible biosensor for wearable continuous glucose monitoring.Biosens. Bioelectron.202219611376010.1016/j.bios.2021.113760 34741953
    [Google Scholar]
  132. LiL. ZhouY. SunC. ZhouZ. ZhangJ. XuY. XiaoX. DengH. ZhongY. LiG. ChenZ. DengW. HuX. WangY. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring.Acta Biomater.202417519921310.1016/j.actbio.2023.12.044 38160859
    [Google Scholar]
  133. FoucherC.D. TubbenR.E. Lactic Acidosis.Treasure Island, FLStatPearls Publishing2023 29262026
    [Google Scholar]
  134. YangM. WangH. ChengJ. Continuous monitoring of multiple biomarkers with an ultrasensitive 3D-structured wearable biosensor.Cell Rep. Methods20233910057910.1016/j.crmeth.2023.100579 37751686
    [Google Scholar]
  135. WuY.T. TsaoP.K. ChenK.J. LinY.C. AuliaS. ChangL.Y. HoK.C. ChangC.Y. MizuguchiH. YehM.H. Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors.Sens. Actuators B Chem.202134613050510.1016/j.snb.2021.130505
    [Google Scholar]
  136. RezaM.S. SeonuS. Abu ZahedM. AsaduzzamanM. SongH. Hoon JeongS. ParkJ.Y. Reduced graphene oxide-functionalized polymer microneedle for continuous and wide-range monitoring of lactate in interstitial fluid.Talanta202427012558210.1016/j.talanta.2023.125582 38176248
    [Google Scholar]
  137. BollellaP. SharmaS. CassA.E.G. AntiochiaR. Microneedle-based biosensor for minimally-invasive lactate detection.Biosens. Bioelectron.201912315215910.1016/j.bios.2018.08.010 30177422
    [Google Scholar]
  138. KomkovaM.A. EliseevA.A. PoyarkovA.A. DabossE.V. EvdokimovP.V. EliseevA.A. KaryakinA.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors.Biosens. Bioelectron.202220211397010.1016/j.bios.2022.113970 35032921
    [Google Scholar]
  139. XuanX. Pérez-RàfolsC. ChenC. CuarteroM. CrespoG.A. Lactate biosensing for reliable on-body sweat analysis.ACS Sens.2021672763277110.1021/acssensors.1c01009 34228919
    [Google Scholar]
  140. XuanX. ChenC. Pérez-RàfolsC. SwarénM. WedholmL. CuarteroM. CrespoG.A. A wearable biosensor for sweat lactate as a proxy for sport performance monitoring.Anal. Sens.202334e20220004710.1002/anse.202200047
    [Google Scholar]
  141. DengS. Application of graphene oxide nanosheet lactate biosensors in continuous assessment of athlete fitness.Alex. Eng. J.202488313510.1016/j.aej.2024.01.017
    [Google Scholar]
  142. KimJ. SempionattoJ.R. ImaniS. HartelM.C. BarfidokhtA. TangG. CampbellA.S. MercierP.P. WangJ. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform.Adv. Sci. (Weinh.)2018510180088010.1002/advs.201800880 30356971
    [Google Scholar]
  143. DabossE.V. ShcherbachevaE.V. KaryakinA.A. Simultaneous noninvasive monitoring of diabetes and hypoxia using core-shell nanozyme – Oxidase enzyme biosensors.Sens. Actuators B Chem.202338013333710.1016/j.snb.2023.133337
    [Google Scholar]
  144. HeW. WangC. WangH. JianM. LuW. LiangX. ZhangX. YangF. ZhangY. Integrated textile sensor patch for real-time and multiplex sweat analysis.Sci. Adv.2019511eaax064910.1126/sciadv.aax0649 31723600
    [Google Scholar]
  145. BargnouxA.S. KusterN. SutraT. LarocheL. RodriguezA. MorenaM. ChenineL. ChalabiL. DupuyA.M. BadiouS. CristolJ.P. Evaluation of a new point-of-care testing for creatinine and urea measurement.Scand. J. Clin. Lab. Invest.202181429029710.1080/00365513.2021.1914344 33908840
    [Google Scholar]
  146. KucherenkoD.Y. KucherenkoI.S. SoldatkinO.O. TopolnikovaY.V. DzyadevychS.V. SoldatkinA.P. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate.Bioelectrochemistry201912810010810.1016/j.bioelechem.2019.03.010 30959397
    [Google Scholar]
  147. CheraghiS. TaherM.A. Karimi-MalehH. KarimiF. Shabani-NooshabadiM. AlizadehM. Al-OthmanA. ErkN. Yegya RamanP.K. KaramanC. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids.Chemosphere2022287Pt 213218710.1016/j.chemosphere.2021.132187 34509007
    [Google Scholar]
  148. NaveO.P. Modification of semi-analytical method applied system of ODE.Mod. Appl. Sci.20201467510.5539/mas.v14n6p75
    [Google Scholar]
  149. CayG. FincoM.G. GarciaJ. McNitt-GrayJ.L. ArmstrongD.G. NajafiB. Towards a remote patient monitoring platform for comprehensive risk evaluations for people with diabetic foot ulcers.Sensors20242410297910.3390/s24102979 38793835
    [Google Scholar]
  150. MillerK.M. HermannJ. FosterN. HoferS.E. RickelsM.R. DanneT. ClementsM.A. LilienthalE. MaahsD.M. HollR.W. Longitudinal changes in continuous glucose monitoring use among individuals with type 1 diabetes: International comparison in the German and Austrian DPV and US T1D exchange registries.Diabetes Care2020431e1e210.2337/dc19‑1214 31672703
    [Google Scholar]
  151. BlossC.S. WineingerN.E. PetersM. BoeldtD.L. ArinielloL. KimJ.Y. SheardJ. KomatireddyR. BarrettP. TopolE.J. A prospective randomized trial examining health care utilization in individuals using multiple smartphone-enabled biosensors.PeerJ20164e155410.7717/peerj.1554 26788432
    [Google Scholar]
  152. KarimM.E. Biosensors: Ethical, regulatory, and legal issues. In: Handbook of Cell Biosensors. ThouandG. ChamSpringer202167970510.1007/978‑3‑030‑23217‑7_23
    [Google Scholar]
  153. RestrepoM. HuffenbergerA.M. HansonC.W. DraugelisM. LaudanskiK. Remote monitoring of critically-ill post-surgical patients: Lessons from a biosensor implementation trial.Health care20219334310.3390/healthcare9030343 33803575
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266323004241015122441
Loading
/content/journals/ctmc/10.2174/0115680266323004241015122441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test