Skip to content
2000
Volume 24, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Diabetes mellitus (DM) is a metabolic disorder and is responsible for the death of more than 4.2 million people in 2019. Synthetic drugs for DM like metformin have been reported to induce numerous complications and side effects. Reports suggested that essential plant oil has been used as an herbal remedy to lower blood glucose levels. Essential oils (EOs) are complex combinations of small molecules obtained from plants the process of steam distillation and several solvents. EOs have already shown great efficacy as antimicrobials, anti-inflammatory, hepatoprotective, and anti-hypertensive. This review aims to summarize some potential EOs that have been reported to have anti-diabetic activity both in preclinical and clinical aspects while summarizing the probable mechanism of action. The authors went through a vast number of articles from various scientific databases like Google Scholar, PubMed, and Web of Science. It was found that EO from a total of 20 plants has been pre-clinically investigated to have anti-diabetic potential. Besides this, clinical studies have reported the antidiabetic efficacy of EOs from and at different concentrations. Bioactive phytoconstituents like carvacrol, thymol, α-pinene, . obtained from EOs ameliorate DM by inhibiting α-GLUC, α-amylase, lipase enzymes and increasing GLUT-4 expression, AKT phosphorylation, . Although fewer in number, EOs from plant sources have demonstrated significant efficacy in DM. Proper elucidation of the anti-diabetic efficacy of the EOs may open up new avenues for drug discovery and development subjected to clinical studies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314922240822091215
2024-11-01
2025-08-14
Loading full text...

Full text loading...

References

  1. GoyalR. SinghalM. JialalI. Type 2 Diabetes.Treasure Island, FLStatPearls Publishing LLC2023
    [Google Scholar]
  2. ChenL. MaglianoD.J. ZimmetP.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives.Nat. Rev. Endocrinol.20128422823610.1038/nrendo.2011.18322064493
    [Google Scholar]
  3. GinterE. SimkoV. Type 2 diabetes mellitus, pandemic in 21st century.Adv. Exp. Med. Biol.2013771425010.1007/978‑1‑4614‑5441‑0_623393670
    [Google Scholar]
  4. HurtadoM.D. VellaA. What is type 2 diabetes?Medicine (Abingdon)2019471101510.1016/j.mpmed.2018.10.010
    [Google Scholar]
  5. SamiW. AnsariT. ButtN.S. HamidM.R.A. Effect of diet on type 2 diabetes mellitus: A review.Int. J. Health Sci. (Qassim)2017112657128539866
    [Google Scholar]
  6. BarbhuiyaP.A. SenS. PathakM.P. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: A comprehensive review.Phytochem. Rev.202320230991210.1007/s11101‑023‑09912‑w
    [Google Scholar]
  7. SenS. ChakrabortyR. Toward the Integration and Advancement of Herbal Medicine: A Focus on Traditional Indian Medicine.Biologics Targets and Therapy2015201533
    [Google Scholar]
  8. BarbhuiyaP.A. LaskarA.M. MazumdarH. DuttaP.P. PathakM.P. DeyB.K. SenS. Ethnomedicinal Practices and Traditional Medicinal Plants of Barak Valley, Assam: A systematic review.J. Pharmacopuncture202225314918510.3831/KPI.2022.25.3.14936186100
    [Google Scholar]
  9. ElshafieH.S. CameleI. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health.BioMed Res. Int.2017201711410.1155/2017/926846829230418
    [Google Scholar]
  10. RautJ.S. KaruppayilS.M. A status review on the medicinal properties of essential oils.Ind. Crops Prod.20146225026410.1016/j.indcrop.2014.05.055
    [Google Scholar]
  11. DjilaniA. DickoA. The Therapeutic Benefits of EOs.Nutrition, Well-Being and Health. BouayedJ. LondonInTech201210.5772/25344
    [Google Scholar]
  12. AhamadJ. UthirapathyS. Mohammed AmeenM. Composition and Antidiabetic, Anticancer Activity of Rosmarinus Officinalis L. Leaves from Erbil (Iraq).J. EO Bear. Plants20192215441553
    [Google Scholar]
  13. BarbhuiyaP.A. DeyJ. SaikiaK. IshtiyakS.T. AqibA.B. MarshillongK.L. GogoiJ. WankharW. SarmaS. SenS. PathakM.P. Herbal tea used globally targeting metabolic syndrome: A systematic review.Int. J. Diabetes Dev. Ctries.2024202401361-110.1007/s13410‑024‑01361‑1
    [Google Scholar]
  14. GovindarajuS. ArulselviP.I. Characterization of Coleus aromaticus essential oil and its major constituent carvacrol for in vitro antidiabetic and antiproliferative activities.J. Herbs Spices Med. Plants2018241375110.1080/10496475.2017.1369483
    [Google Scholar]
  15. ÖzbekH. YılmazB.S. Anti-Inflammatory and Hypoglycemic Activities of Alpha-Pinene.Actapharm2017557
    [Google Scholar]
  16. KarimiE. AbbasiS. AidyA. GhaneialvarH. MohammadpourS. AkhavanM.M. AbbasiN. Anti-diabetic effect of a novel nano polymer of thymol in stz-induced diabetic wistar rats.Int J App Pharm201920198189
    [Google Scholar]
  17. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of Type 2 DM.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  18. LeahyJ.L. Pathogenesis of type 2 diabetes mellitus.Arch. Med. Res.200536319720910.1016/j.arcmed.2005.01.00315925010
    [Google Scholar]
  19. DeFronzoR.A. Pathogenesis of type 2 diabetes mellitus.Med. Clin. North Am.2004884787835, ix10.1016/j.mcna.2004.04.01315308380
    [Google Scholar]
  20. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_2033437689
    [Google Scholar]
  21. UmpierrezG. KorytkowskiM. Diabetic emergencies — ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia.Nat. Rev. Endocrinol.201612422223210.1038/nrendo.2016.1526893262
    [Google Scholar]
  22. FadiniG.P. BonoraB.M. AvogaroA. SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System.Diabetologia20176081385138910.1007/s00125‑017‑4301‑828500396
    [Google Scholar]
  23. ChristensenA.A. GannonM. The Beta Cell in Type 2 Diabetes.Curr. Diab. Rep.20191998110.1007/s11892‑019‑1196‑431399863
    [Google Scholar]
  24. HalbanP.A. PolonskyK.S. BowdenD.W. HawkinsM.A. LingC. MatherK.J. PowersA.C. RhodesC.J. SusselL. WeirG.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment.Diabetes Care20143761751175810.2337/dc14‑039624812433
    [Google Scholar]
  25. NishikawaT. EdelsteinD. DuX.L. YamagishiS. MatsumuraT. KanedaY. YorekM.A. BeebeD. OatesP.J. HammesH.P. GiardinoI. BrownleeM. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.Nature2000404677978779010.1038/3500812110783895
    [Google Scholar]
  26. KashtohH. BaekK.H. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects.Plants20231216294410.3390/plants1216294437631156
    [Google Scholar]
  27. BouyahyaA. BelmehdiO. El JemliM. MarmouziI. BouraisI. AbriniJ. FaouziM.E.A. DakkaN. BakriY. Chemical variability of Centaurium erythraea essential oils at three developmental stages and investigation of their in vitro antioxidant, antidiabetic, dermatoprotective and antibacterial activities.Ind. Crops Prod.201913211111710.1016/j.indcrop.2019.01.042
    [Google Scholar]
  28. IbrahimF. UsmanL. AkoladeJ. IdowuO. AbdulazeezA. AmuzatA. Antidiabetic Potentials of Citrus aurantifolia Leaf Essential Oil.Drug Res. (Stuttg.)201969420120610.1055/a‑0662‑560730273946
    [Google Scholar]
  29. ObohG. OlasehindeT.A. AdemosunA.O. Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon.Int. J. Food Prop.201720sup1S586S59410.1080/10942912.2017.1303709
    [Google Scholar]
  30. BadalamentiN. BrunoM. SchicchiR. GeraciA. LeporiniM. TundisR. LoizzoM.R. Reuse of Food Waste: The Chemical Composition and Health Properties of Pomelo (Citrus maxima) Cultivar Essential Oils.Molecules20222710327310.3390/molecules2710327335630750
    [Google Scholar]
  31. LeeH.S. Cuminaldehyde: Aldose Reductase and α-Glucosidase Inhibitor Derived from Cuminum cyminum L. Seeds.J. Agric. Food Chem.20055372446245010.1021/jf048451g15796577
    [Google Scholar]
  32. BadalamentiN. IlardiV. RosselliS. BrunoM. MaggiF. LeporiniM. FalcoT. LoizzoM.R. TundisR. Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity.Molecules20202514324910.3390/molecules2514324932708773
    [Google Scholar]
  33. El-SoudN.A. El-LaithyN. Antidiabetic activities of foeniculum vulgare mill. essential oil in streptozotocin-induced diabetic rats.Macedonian J. Med. Sci.20111501734139146139
    [Google Scholar]
  34. BAŞAKS. Effect of Laurus Nobilis L. EO and Its Main Components on α-GLUC and Reactive Oxygen Species Scavenging Activity.IJPR2013201312
    [Google Scholar]
  35. SebaiH. SelmiS. RtibiK. SouliA. GharbiN. SaklyM. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats.Lipids Health Dis.201312118910.1186/1476‑511X‑12‑18924373672
    [Google Scholar]
  36. ChungM.J. ChoS.Y. BhuiyanM.J.H. KimK.H. LeeS.J. Anti-diabetic effects of lemon balm ( Melissa officinalis ) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice.Br. J. Nutr.2010104218018810.1017/S000711451000176520487577
    [Google Scholar]
  37. AbdellatiefS.A. BeheiryR.R. El-MandrawyS.A.M. PeppermintE.O. Alleviates Hyperglycemia Caused by STZ- Nicotinamide-Induced Type 2 Diabetes in Rats.Biomed. Pharmacother.20179599099910.1016/j.biopha.2017.09.02028922713
    [Google Scholar]
  38. BouyahyaA. LagrouhF. El OmariN. BouraisI. El JemliM. MarmouziI. SalhiN. FaouziM.E.A. BelmehdiO. DakkaN. BakriY. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties.Biocatal. Agric. Biotechnol.20202310147110.1016/j.bcab.2019.101471
    [Google Scholar]
  39. SultanM.T. ButtM.S. KarimR. Zia-Ul-HaqM. BatoolR. AhmadS. AlibertiL. De FeoV. Nigella Sativa Fixed and EO Supplementation Modulates Hyperglycemia and Allied Complications in STZ-Induced DM.Evid. Based Complement. Alternat. Med.2014201482638010.1155/2014/82638024511321
    [Google Scholar]
  40. SelmiS. RtibiK. GramiD. SebaiH. MarzoukiL. Rosemary ( Rosmarinus officinalis ) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes.Pathophysiology201724429730310.1016/j.pathophys.2017.08.00228928060
    [Google Scholar]
  41. RaafatK. HabibJ. Phytochemical Compositions and Antidiabetic Potentials of Salvia sclarea L. Essential Oils.J. Oleo Sci.20186781015102510.5650/jos.ess1718730012894
    [Google Scholar]
  42. ÖzekG. Chemical Diversity and Biological Potential of Tanacetum praeteritum subsp. praeteritum Essential Oils.J. Turkish Chem. Soc. Sec. A: Chem.20185249351010.18596/jotcsa.389075
    [Google Scholar]
  43. TaumaR.J. Effect of thyme (Thymus Vulgaris l.) oil on some biochemical parameters of diabetic female rats.World J Pharm Sci20164320325
    [Google Scholar]
  44. HamdenK. KeskesH. BelhajS. MnafguiK. fekiA. AlloucheN. Inhibitory potential of omega-3 fatty and fenugreek essential oil on key enzymes of carbohydrate-digestion and hypertension in diabetes rats.Lipids Health Dis.201110122610.1186/1476‑511X‑10‑22622142357
    [Google Scholar]
  45. Nait IrahalI. DarifD. GuenaouI. HmimidF. azzahra LahlouF. Ez-zahra OusaidF. Abdou-AllahF. AitsiL. AkaridK. BourhimN. Therapeutic Potential of Clove Essential Oil in Diabetes: Modulation of Pro-Inflammatory Mediators, Oxidative Stress and Metabolic Enzyme Activities.Chem. Biodivers.2023203e20220116910.1002/cbdv.20220116936823346
    [Google Scholar]
  46. KhanN.T. Nigella Sativa (Kalonji), Its EOs and Their Therapeutic Potential.BJSTR2021202133
    [Google Scholar]
  47. Al-HaderA. AqelM. HasanZ. Hypoglycemic Effects of the Volatile Oil of Nigella sativa Seeds.Int. J Pharmacogn19933129610010.3109/13880209309082925
    [Google Scholar]
  48. SharopovF. ValievA. SatyalP. GulmurodovI. YusufiS. SetzerW. WinkM. Cytotoxicity of the Essential Oil of Fennel (Foeniculum vulgare) from Tajikistan.Foods2017697310.3390/foods609007328846628
    [Google Scholar]
  49. HussainA.I. AnwarF. ChathaS.A.S. JabbarA. MahboobS. NigamP.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities.Braz. J. Microbiol.20104141070107810.1590/S1517‑8382201000040002724031588
    [Google Scholar]
  50. DobT. DahmaneD. AgliM. ChelghoumC. Essential Oil Composition of Lavandula stoechas. from Algeria.Pharm. Biol.2006441606410.1080/13880200500496421
    [Google Scholar]
  51. Al-AamriM.S. Al-AbousiN.M. Al-JabriS.S. AlamT. KhanS.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman.J. Taibah Univ. Med. Sci.201813210811210.1016/j.jtumed.2017.12.00231435312
    [Google Scholar]
  52. AbdollahiF. MobaderyT. The effect of aromatherapy with bitter orange (Citrus aurantium) extract on anxiety and fatigue in type 2 diabetic patients.Adv. Integr. Med.2020713710.1016/j.aimed.2019.01.002
    [Google Scholar]
  53. Ben HsounaA. Ben HalimaN. SmaouiS. HamdiN. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat.Lipids Health Dis.201716114610.1186/s12944‑017‑0487‑528774297
    [Google Scholar]
  54. GuoQ. LiuK. DengW. ZhongB. YangW. ChunJ. Chemical composition and antimicrobial activity of Gannan navel orange ( Citrus sinensis Osbeck cv. Newhall) peel essential oils.Food Sci. Nutr.2018661431143710.1002/fsn3.68830258585
    [Google Scholar]
  55. SchmidtE. BailS. BuchbauerG. StoilovaI. AtanasovaT. StoyanovaA. KrastanovA. JirovetzL. Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita.Nat. Prod. Commun.2009481934578X090040010.1177/1934578X090040081919768994
    [Google Scholar]
  56. GuL.B. LiuX.N. LiuH.M. PangH.L. QinG.Y. Extraction of Fenugreek (Trigonella foenum-graceum L.) Seed Oil Using Subcritical Butane: Characterization and Process Optimization.Molecules201722222810.3390/molecules2202022828157172
    [Google Scholar]
  57. SoulelesC. Constituents of the EO of Salvia Sclarea Growing Wild in Greece.Int. J. Pharmacogn.19973521822010.1076/phbi.35.3.218.13295
    [Google Scholar]
  58. SapkotaB. DevkotaH.P. PoudelP. Citrus maxima (Brum.) Merr. (Rutaceae): Bioactive Chemical Constituents and Pharmacological Activities.Evid. Based Complement. Alternat. Med.2022202211610.1155/2022/874166935677374
    [Google Scholar]
  59. TunçM.T. Kocaİ. Ohmic heating assisted hydrodistillation of clove essential oil.Ind. Crops Prod.201914111176310.1016/j.indcrop.2019.111763
    [Google Scholar]
  60. GolmakaniM.T. ZareM. RazzaghiS. Eugenol Enrichment of Clove Bud Essential Oil Using Different Microwave-assisted Distillation Methods.Food Sci. Technol. Res.201723338539410.3136/fstr.23.385
    [Google Scholar]
  61. IrahalI.N. GuenaouI. LahlouF.A. HmimidF. BourhimN. Syzygium aromaticum bud (clove) essential oil is a novel and safe aldose reductase inhibitor: In silico, in vitro, and in vivo evidence.Hormones (Athens)202221222924010.1007/s42000‑021‑00347‑635212917
    [Google Scholar]
  62. JerkovićI. Gašo-SokačD. PavlovićH. MarijanovićZ. GugićM. PetrovićI. KovačS. Volatile organic compounds from Centaurium erythraea Rafn (Croatia) and the antimicrobial potential of its essential oil.Molecules20121722058207210.3390/molecules1702205822349896
    [Google Scholar]
  63. SharifiA. MohammadzadehA. SalehiT.Z. MahmoodiP. NourianA. Cuminum cyminum L. Essential Oil: A Promising Antibacterial and Antivirulence Agent Against Multidrug-Resistant Staphylococcus aureus. Front. Microbiol.20211266783310.3389/fmicb.2021.66783334421837
    [Google Scholar]
  64. IacobellisN.S. Lo CantoreP. CapassoF. SenatoreF. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils.J. Agric. Food Chem.2005531576110.1021/jf048735115631509
    [Google Scholar]
  65. CaputoL. NazzaroF. SouzaL. AlibertiL. De MartinoL. FratianniF. CoppolaR. De FeoV. Laurus nobilis: Composition of Essential Oil and Its Biological Activities.Molecules201722693010.3390/molecules2206093028587201
    [Google Scholar]
  66. StojanovićN.M. MladenovićM.Z. MaslovarićA. StojiljkovićN.I. RandjelovićP.J. RadulovićN.S. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms – In vitro and in vivo studies.J. Ethnopharmacol.202228411478810.1016/j.jep.2021.11478834718102
    [Google Scholar]
  67. MandalS. Thyme (Thymus Vulgaris L.) Oils.EOs in Food Preservation, Flavor and Safety.AmsterdamElsevier201682583410.1016/B978‑0‑12‑416641‑7.00094‑8
    [Google Scholar]
  68. BorugăO. JianuC. MişcăC. GoleţI. GruiaA.T. HorhatF.G. Thymus Vulgaris EO: Chemical Composition and Antimicrobial Activity.J. Med. Life2014735060
    [Google Scholar]
  69. SartoriusT. PeterA. SchulzN. DrescherA. BergheimI. MachannJ. SchickF. Siegel-AxelD. SchürmannA. WeigertC. HäringH.U. HennigeA.M. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.PLoS One201493e9235810.1371/journal.pone.009235824643026
    [Google Scholar]
  70. MuruganathanU. SrinivasanS. VinothkumarV. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin–nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes.Biomed. Pharmacother.20179222923910.1016/j.biopha.2017.05.06828549291
    [Google Scholar]
  71. MuraliR. SaravananR. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats.Biomed. Prev. Nutr.20122426927510.1016/j.bionut.2012.08.008
    [Google Scholar]
  72. SrinivasanS. MuruganathanU. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.Chem. Biol. Interact.2016250384610.1016/j.cbi.2016.02.02026944432
    [Google Scholar]
  73. BashaR.H. SankaranarayananC. β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats.Acta Histochem.201411681469147910.1016/j.acthis.2014.10.00125457874
    [Google Scholar]
  74. JafariS. SattariR. GhavamzadehS. Evaluation the effect of 50 and 100 mg doses of Cuminum cyminum essential oil on glycemic indices, insulin resistance and serum inflammatory factors on patients with diabetes type II: A double-blind randomized placebo- controlled clinical trial.J. Tradit. Complement. Med.20177333233810.1016/j.jtcme.2016.08.00428725629
    [Google Scholar]
  75. BilalA. MasudT. UppalA.M. NaveedA.K. Effects of Nigella sativa oil on some blood parameters in Type 2 DM patients.Asian J. Chem.20092153735381
    [Google Scholar]
  76. Samani KeihanG. GharibM.H. MomeniA. HematiZ. SedighinR. A Comparison Between the Effect of Cuminum Cyminum and Vitamin E on the Level of Leptin, Paraoxonase 1, HbA1c and Oxidized LDL in Diabetic Patients.Int. J. Mol. Cell. Med.20165422923528357199
    [Google Scholar]
  77. MorovatiA. Pourghassem GargariB. SarbakhshP. Effects of cumin ( Cuminum cyminum L.) essential oil supplementation on metabolic syndrome components: A randomized, triple-blind, placebo-controlled clinical trial.Phytother. Res.201933123261326910.1002/ptr.650031478290
    [Google Scholar]
  78. TalpurN. EchardB. IngramC. BagchiD. PreussH. Effects of a novel formulation of essential oils on glucose– insulin metabolism in diabetic and hypertensive rats: A pilot study.Diabetes Obes. Metab.20057219319910.1111/j.1463‑1326.2004.00386.x15715893
    [Google Scholar]
  79. LiY. MaiY. QiuX. ChenX. LiC. YuanW. HouN. Effect of long-term treatment of Carvacrol on glucose metabolism in Streptozotocin-induced diabetic mice.BMC Complemen. Med. Ther.202020114210.1186/s12906‑020‑02937‑032393384
    [Google Scholar]
  80. HyunT.K. KimH.C. KimJ.S. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak.Ind. Crops Prod.20145261161610.1016/j.indcrop.2013.11.039
    [Google Scholar]
  81. RussoE.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.Br. J. Pharmacol.201116371344136410.1111/j.1476‑5381.2011.01238.x21749363
    [Google Scholar]
  82. SantosE.S. Abrantes CoelhoG.L. Saraiva Fontes LoulaY.K. Saraiva LandimB.L. Fernandes LimaC.N. Tavares de Sousa MachadoS. Pereira LopesM.J. Soares GomesA.D. Martins da CostaJ.G. Alencar de MenezesI.R. CoutinhoH.D.M. KimB. Bezerra FelipeC.F. de Araújo NevesS. KerntopfM.R. Hypoglycemic, Hypolipidemic, and Anti-Inflammatory Effects of Beta-Pinene in Diabetic Rats.Evid. Based Complement. Alternat. Med.202220221810.1155/2022/817330735620400
    [Google Scholar]
  83. Arabloei SaniM. YaghmaeiP. HajebrahimiZ. Hayati RoodbariN. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in STZ-Induced DM in Wistar Rats.J. Obes.2022202211210.1155/2022/1015669
    [Google Scholar]
  84. PathakM.P. PatowaryP. GoyaryD. DasA. ChattopadhyayP. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets.Phytomedicine20218915361010.1016/j.phymed.2021.15361034175589
    [Google Scholar]
  85. MahnashiM.H. AlqahtaniY.S. AlyamiB.A. AlqarniA.O. AyazM. GhufranM. UllahF. SadiqA. UllahI. HaqI.U. KhalidM. MurthyH.C.A. Phytochemical Analysis, α-GLUC and Amylase Inhibitory, and Molecular Docking Studies on Persicaria Hydropiper L. Leaves EOs.Evid. Based Complement. Alternat. Med.20222022111
    [Google Scholar]
  86. HuaB. XiaoY. LiF. β-Caryophyllene reduced oxidative stress and expression of apoptotic markers in STZ-induced diabetic rats.Pharmacogn. Mag.202218373377
    [Google Scholar]
  87. KimS. ChoiY. ChoiS. ChoiY. ParkT. Dietary camphene attenuates hepatic steatosis and insulin resistance in mice.Obesity (Silver Spring)201422240841710.1002/oby.2055423818423
    [Google Scholar]
  88. AliS. EkbbalR. SalarS. Yasheshwar AliS.A. JaiswalA.K. SinghM. YadavD.K. KumarS. Gaurav Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives.ACS Omega2023843399453996310.1021/acsomega.3c0524137953833
    [Google Scholar]
  89. CapettiF. MarengoA. CaglieroC. LibertoE. BicchiC. RubioloP. SgorbiniB. Adulteration of Essential Oils: A Multitask Issue for Quality Control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel.Molecules20212618561010.3390/molecules2618561034577081
    [Google Scholar]
  90. TripathiS. KumarP. RoutP.K. KhareS.K. NaikS. An Innovative Approach for the Detection of High Boiler Adulterants in Sandalwood and Cedarwood Essential Oils.J. Sci. Ind. Res. (India)202180866874
    [Google Scholar]
  91. KhayyatS.A. RoselinL.S. Recent progress in photochemical reaction on main components of some essential oils.J. Saudi Chem. Soc.201822785587510.1016/j.jscs.2018.01.008
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314922240822091215
Loading
/content/journals/ctmc/10.2174/0115680266314922240822091215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test