Skip to content
2000
Volume 24, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Objective

In this review, we have summarized antifungal agents containing potent azole analogues.

Data acquisition

The provided literature is related to the development and application of azole derivatives and has been accessed from electronic data bases such as Science direct, Google Scholar, and Pubmed using keywords such as “design, synthesis and evaluation”, “azole hybrids”, “diazole hybrids”, “indazole derivatives”, “imidazole derivatives”, “triazole derivatives”, “tetrazole derivatives” and related combinations.

Results

From this review, it was identified that azole derivatives with promising antifungal activity play a vital role in drug discovery and development. The literature revealed that azole derivatives can effectively fight several types of microorganisms, such as , and others. The rational design and structure‒activity relationship of these compounds are discussed in this paper, highlighting their potential as effective therapeutic options against various fungal pathogens. Moreover, this work addresses the challenges and future directions in the development of azole hybrids. The results of docking studies of several of the hybrids that the researchers provided are also summarized.

Conclusion

The current work attempts to review such innovations, which may lead to the preparation of novel therapeutics. More research is required to confirm their safety and effectiveness in clinical practices.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266319532240822050311
2024-11-01
2025-09-18
Loading full text...

Full text loading...

References

  1. Infection GAfF. Global Plague: How 150 people die every hour from fungal infection while the world turns a blind eye.2013Available From https://gaffi.org/global-plague-how-150-people-die-every-hour-from-fungal-infection-while-the-world-turns-a-blind-eye/
  2. GarberG. An overview of fungal infections.Drugs2001611Suppl. 111210.2165/00003495‑200161001‑00001 11219546
    [Google Scholar]
  3. BongominF. GagoS. OladeleR. DenningD. Global and multi-national prevalence of fungal diseases—estimate precision.J. Fungi (Basel)2017345710.3390/jof3040057 29371573
    [Google Scholar]
  4. BanerjeeS. DenningD. ChakrabartiA. One Health aspects & priority roadmap for fungal diseases: A mini-review.Indian J. Med. Res.2021153331131910.4103/ijmr.IJMR_768_21 33906993
    [Google Scholar]
  5. BlancoJ.L. GarciaM.E. Immune response to fungal infections.Vet. Immunol. Immunopathol.20081251-2477010.1016/j.vetimm.2008.04.020 18565595
    [Google Scholar]
  6. JainE. PuniaR.S. ChanderJ. BhallaM. Clinico-morphological profile of cutaneous fungal infections: An experience from a tertiary care government hospital in North India. Annals Pahtol.Lab. Med.2021822953
    [Google Scholar]
  7. BorgersM. DegreefH. CauwenberghG. Fungal infections of the skin: Infection process and antimycotic therapy.Curr. Drug Targets20056884986210.2174/138945005774912726 16375669
    [Google Scholar]
  8. OgawaH. SummerbellR.C. ClemonsK.V. KogaT. RanY.P. RashidA. SohnleP.G. StevensD.A. TsuboiR. Dermatophytes and host defence in cutaneous mycoses.Med. Mycol.199836Suppl. 1166173 9988505
    [Google Scholar]
  9. Queiroz-TellesF. McGinnisM.R. SalkinI. GraybillJ.R. Subcutaneous mycoses.Infect. Dis. Clin. North Am.20031715985[viii].10.1016/S0891‑5520(02)00066‑1 12751261
    [Google Scholar]
  10. SchwarzJ. BaumG.L. Primary cutaneous mycoses.Arch. Dermatol.195571214314910.1001/archderm.1955.01540260001001 13227602
    [Google Scholar]
  11. BrownS.P. CornforthD.M. MideoN. Evolution of virulence in opportunistic pathogens: Generalism, plasticity, and control.Trends Microbiol.201220733634210.1016/j.tim.2012.04.005 22564248
    [Google Scholar]
  12. de PauwB.E. What are fungal infections?Mediterr. J. Hematol. Infect. Dis.201131e201100110.4084/mjhid.2011.001
    [Google Scholar]
  13. Rajendra SantoshA.B. MuddanaK. BakkiS.R. Fungal infections of oral cavity: Diagnosis, management, and association with COVID-19.SN Compr. Clin. Med.2021361373138410.1007/s42399‑021‑00873‑9 33817556
    [Google Scholar]
  14. BormanA.M. JohnsonE.M. Interpretation of fungal culture results.Curr. Fungal Infect. Rep.20148431232110.1007/s12281‑014‑0204‑z
    [Google Scholar]
  15. DanielC.R.III The diagnosis of nail fungal infection.Arch. Dermatol.1991127101566156710.1001/archderm.1991.01680090130018 1834027
    [Google Scholar]
  16. KourkoumpetisT.K. FuchsB.B. ColemanJ.J. DesalermosA. MylonakisE. Polymerase chain reaction-based assays for the diagnosis of invasive fungal infections.Clin. Infect. Dis.20125491322133110.1093/cid/cis132 22362884
    [Google Scholar]
  17. RepentignyL. Serological techniques for diagnosis of fungal infection.Eur. J. Clin. Microbiol. Infect. Dis.19898436237510.1007/BF01963470 2497015
    [Google Scholar]
  18. AnkrahA.O. SathekgeM.M. DierckxR.A.J.O. GlaudemansA.W.J.M. Imaging fungal infections in children.Clin. Transl. Imaging201641577210.1007/s40336‑015‑0159‑2 26913275
    [Google Scholar]
  19. SunilR. SarbaniP. JayashreeA. Molecular hybridization–an emanating tool in drug design.Med. Chem. (Los Angeles)201996
    [Google Scholar]
  20. Claudio Viegas-Junior, Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes.Curr. Med. Chem.200714171829185210.2174/092986707781058805 17627520
    [Google Scholar]
  21. BosquesiP.L. MeloT.R.F. VizioliE.O. SantosJ.L. ChungM.C. Anti-inflammatory drug design using a molecular hybridization approach.Pharmaceuticals (Basel)20114111450147410.3390/ph4111450 27721332
    [Google Scholar]
  22. AlkhzemA.H. WoodmanT.J. BlagbroughI.S. Design and synthesis of hybrid compounds as novel drugs and medicines.RSC Advances20221230194701948410.1039/D2RA03281C 35865575
    [Google Scholar]
  23. Medina-FrancoJ.L. GiulianottiM.A. WelmakerG.S. HoughtenR.A. Shifting from the single to the multitarget paradigm in drug discovery.Drug Discov. Today2013189-1049550110.1016/j.drudis.2013.01.008 23340113
    [Google Scholar]
  24. HossainM. NandaA.K. A review on heterocyclic: Synthesis and their application in medicinal chemistry of imidazole moiety.Science2018658394
    [Google Scholar]
  25. CostaR.F. TuronesL.C. CavalcanteK.V.N. Rosa JúniorI.A. XavierC.H. RossetoL.P. NapolitanoH.B. CastroP.F.S. NetoM.L.F. GalvãoG.M. MenegattiR. PedrinoG.R. CostaE.A. MartinsJ.L.R. FajemiroyeJ.O. Heterocyclic compounds: Pharmacology of pyrazole analogs from rational structural considerations.Front. Pharmacol.20211266672510.3389/fphar.2021.666725 34040529
    [Google Scholar]
  26. XuZ. ZhaoS.J. LiuY. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.Eur. J. Med. Chem.201918311170010.1016/j.ejmech.2019.111700 31546197
    [Google Scholar]
  27. OstrovskiiV.A. PopovaE.A. TrifonovR.E. Developments in tetrazole chemistry (2009–16).Adv. Heterocycl. Chem.201712316210.1016/bs.aihch.2016.12.003
    [Google Scholar]
  28. BegtrupM. Diazole, triazole, and tetrazole N-oxides. Advances in Heterocyclic Chemistry.AmsterdamElsevier20121109
    [Google Scholar]
  29. PaddaI.S. ParmarM. Flucytosine.Florida, United StatesStatPearls Publishing2022
    [Google Scholar]
  30. BenitezL.L. CarverP.L. Adverse effects associated with long-term administration of azole antifungal agents.Drugs201979883385310.1007/s40265‑019‑01127‑8 31093949
    [Google Scholar]
  31. El-SayedS.E. AbdelazizN.A. OsmanH.E.H. El-HousseinyG.S. AleissawyA.E. AboshanabK.M. Lysinibacillus Isolate MK212927: A Natural Producer of Allylamine Antifungal ‘Terbinafine’.Molecules202127120110.3390/molecules27010201 35011429
    [Google Scholar]
  32. WarthA.D. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: Effects on glycolytic metabolite levels, energy production, and intracellular pH.Appl. Environ. Microbiol.199157123410341410.1128/aem.57.12.3410‑3414.1991 1785916
    [Google Scholar]
  33. CarolusH. PiersonS. LagrouK. Van DijckP. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance.J. Fungi (Basel)20206432110.3390/jof6040321 33261213
    [Google Scholar]
  34. HashemianS.M. FarhadiT. VelayatiA.A. Caspofungin: A review of its characteristics, activity, and use in intensive care units.Expert Rev. Anti Infect. Ther.202018121213122010.1080/14787210.2020.1794817 32662712
    [Google Scholar]
  35. ArisP. WeiY. MohamadzadehM. XiaX. Griseofulvin: An updated overview of old and current knowledge.Molecules20222720703410.3390/molecules27207034 36296627
    [Google Scholar]
  36. Al-WabliR.I. Al-GhamdiA.R. GhabbourH.A. Al-AgamyM.H. AttiaM.I. Synthesis, structure elucidation, and antifungal potential of certain new benzodioxole–imidazole molecular hybrids bearing ester functionalities.Drug Des. Devel. Ther.20191377578910.2147/DDDT.S199135 30880911
    [Google Scholar]
  37. SuiY.F. AnsariM.F. ZhouC.H. Pyrimidinetrione‐imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation.Chem. Asian J.202116111417142910.1002/asia.202100146 33829660
    [Google Scholar]
  38. GondruR. SirishaK. RajS. GundaS.K. KumarC.G. PasupuletiM. BavantulaR. Design, synthesis, in vitro evaluation and docking studies of pyrazole‐thiazole hybrids as antimicrobial and antibiofilm agents.ChemistrySelect20183288270827610.1002/slct.201801391
    [Google Scholar]
  39. BolousM. ArumugamN. AlmansourA.I. Suresh KumarR. MaruokaK. AntharamV.C. ThangamaniS. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens.Bioorg. Med. Chem. Lett.201929162059206310.1016/j.bmcl.2019.07.022 31320146
    [Google Scholar]
  40. Antifungal activity and theoretical study of synthesized pyrazoleimidazole hybrids. Zinad, D.S.; Mahal, A.; Shareef, O.A., Eds.; IOP Conf. Ser.: Mater. Sci. Eng.2020770012053
    [Google Scholar]
  41. KhanF.A.K. SangshettiJ.N. Design, synthesis and molecular docking study of hybrid quinoline-4-yloxadiazoles/oxathiadiazoles as potent antifungal agents.Int. J. Pharm. Pharm. Sci.20157223229
    [Google Scholar]
  42. Chiguils-PérezY. Rodríguez-HurtadoA.I. Pérez-PicasoL. Ramírez-MarroquínO.A. Martínez-PascualR. Hernández-NúñezE. Viñas-BravoO. López-TorresA. Synthesis and antifungal activity of new valine-azole hybrids.Russ. J. Gen. Chem.202191S1Suppl. 1S123S13010.1134/S1070363222020268
    [Google Scholar]
  43. GavarkarS. SomaniR. Synthesis of novel azole heterocycles with their antitubercular and antifungal evaluation.Int. J. Chem. Sci.2015131432440
    [Google Scholar]
  44. MalinowskaM. SawickaD. Niemirowicz-LaskowskaK. WielgatP. CarH. HauschildT. HryniewickaA. Steroid-functionalized imidazolium salts with an extended spectrum of antifungal and antibacterial activity.Int. J. Mol. Sci.202122221218010.3390/ijms222212180 34830061
    [Google Scholar]
  45. LeventS. Kaya ÇavuşoğluB. SağlıkB. OsmaniyeD. Acar ÇevikU. AtlıÖ. ÖzkayY. KaplancıklıZ. Synthesis of oxadiazole-thiadiazole hybrids and their anticandidal activity.Molecules20172211200410.3390/molecules22112004 29156575
    [Google Scholar]
  46. RiyadhS.M. El-MotairiS.A. AhmedH.E.A. KhalilK.D. HabibE.L.S.E. Synthesis, biological evaluation, and molecular docking of novel thiazoles and [1, 3, 4] thiadiazoles incorporating sulfonamide group as DHFR Inhibitors.Chem. Biodivers.2018159e180023110.1002/cbdv.201800231 29956887
    [Google Scholar]
  47. ÖzdemirA. AltintopM.D. KaplancıklıZ.A. Turan-ZitouniG. KaracaH. TunalıY. Synthesis and biological evaluation of pyrazoline derivatives bearing an indole moiety as new antimicrobial agents.Arch. Pharm. (Weinheim)2013346646346910.1002/ardp.201200479 23681942
    [Google Scholar]
  48. SumiyaT. IshigakiM. OhK. Synthesis of imidazole and indole hybrid molecules and antifungal activity against rice blast.Int. J. Chem. Eng. Appl.20178323323610.18178/ijcea.2017.8.3.662
    [Google Scholar]
  49. SakthinathanS.P. VanangamudiG. ThirunarayananG. Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives.Spectrochim. Acta A Mol. Biomol. Spectrosc.20129569370010.1016/j.saa.2012.04.082 22595249
    [Google Scholar]
  50. El-DashY. ElzayatE. AbdouA.M. HassanR.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition.Bioorg. Chem.202111410513710.1016/j.bioorg.2021.105137 34237644
    [Google Scholar]
  51. WiktorowiczW. A series of imidazole derivatives as potential new antifungal drugs. Acta Puluniac Pharmaccuticu—.Drug Res.2002594295306
    [Google Scholar]
  52. PooniaN. KumarA. KumarV. YadavM. LalK. Recent progress in 1H-1, 2, 3-triazoles as potential antifungal agents.Curr. Top. Med. Chem.202121232109213310.2174/1568026621666210913122828 34517801
    [Google Scholar]
  53. ParkB. Olorofim Under Review for Invasive Fungal Infections: Haymarket medical netwrok.2022Available From: https://www.empr.com/home/news/drugs-in-the-pipeline/olorofim-under-review-for-invasive-fungal-infections/
    [Google Scholar]
  54. F2G Biotech GmbH. Olorofim Aspergillus Infection Study (OASIS).2023Available From: https://clinicaltrials.gov/study/NCT05101187
  55. OliverJ.D. ThainJ.L. BromleyM.J. SibleyG.E.M. BirchM. Dihydroorotate dehydrogenase as antifungal drug target and quinazolinone-based inhibitors thereof.WO Patent 2009133379A82015
  56. PharmaM.S. Inventor Topical antifungal agent.Tokyo2015
    [Google Scholar]
  57. Al-QawasmehR.H. Young, A.H.; Huesca, M.; Lee, Y.S. 2, 4, 5- trisubstituted imidazoles and their use as anti-microbial agents.CN Patent 1688194A2013
  58. AusmaJ. Modified azole compounds as antifungal and antibacterial agents. US Patent 20080182885A12006
  59. PagniezF. LebouvierN. NaY.M. Ourliac-GarnierI. PicotC. Le BorgneM. Le PapeP. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent.J. Enzyme Inhib. Med. Chem.202035139840310.1080/14756366.2019.1705292 31899979
    [Google Scholar]
  60. PatelN.B. KhanI.H. Synthesis of 1,2,4-triazole derivatives containing benzothiazoles as pharmacologically active molecule.J. Enzyme Inhib. Med. Chem.201126452753410.3109/14756366.2010.535794 21714763
    [Google Scholar]
  61. BitlaS. GayatriA.A. PuchakayalaM.R. Kumar BhukyaV. VannadaJ. DhanavathR. KuthatiB. KothulaD. SagurthiS.R. AtchaK.R. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents.Bioorg. Med. Chem. Lett.20214112800410.1016/j.bmcl.2021.128004 33811989
    [Google Scholar]
  62. KushwahaK. KaushikN.; Lata,; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials.Bioorg. Med. Chem. Lett.20142471795180110.1016/j.bmcl.2014.02.027 24594353
    [Google Scholar]
  63. KantR. KumarD. AgarwalD. GuptaR.D. TilakR. AwasthiS.K. AgarwalA. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities.Eur. J. Med. Chem.2016113344910.1016/j.ejmech.2016.02.041 26922227
    [Google Scholar]
  64. BlokhinaS.V. SharapovaA.V. Ol’khovichM.V. DoroshenkoI.A. LevshinI.B. PerlovichG.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole.Bioorg. Med. Chem. Lett.20214012794410.1016/j.bmcl.2021.127944 33713781
    [Google Scholar]
  65. HuoX.Y. GuoL. ChenX.F. ZhouY.T. ZhangJ. HanX.Q. DaiB. Design, synthesis, and antifungal activity of novel aryl-1, 2, 3-triazole-β-carboline hybrids.Molecules2018236134410.3390/molecules23061344 29866988
    [Google Scholar]
  66. SharmaS. SaquibM. VermaS. MishraN.N. ShuklaP.K. SrivastavaR. PrabhakarY.S. ShawA.K. Synthesis of 2,3,6-trideoxy sugar triazole hybrids as potential new broad spectrum antimicrobial agents.Eur. J. Med. Chem.20148347448910.1016/j.ejmech.2014.06.048 24992075
    [Google Scholar]
  67. NuralY. OzdemirS. DolucaO. DemirB. YalcinM.S. AtabeyH. KanatB. EratS. SariH. SeferogluZ. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids.Bioorg. Chem.202010510444110.1016/j.bioorg.2020.104441 33181409
    [Google Scholar]
  68. LalK. YadavP. KumarA. KumarA. PaulA.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids.Bioorg. Chem.20187723624410.1016/j.bioorg.2018.01.016 29421698
    [Google Scholar]
  69. GondruR. KanugalaS. RajS. Ganesh KumarC. PasupuletiM. BanothuJ. BavantulaR. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies.Bioorg. Med. Chem. Lett.20213312774610.1016/j.bmcl.2020.127746 33333162
    [Google Scholar]
  70. KumarK.S. SiddaiahV. LilakarJ.D. GaneshA. An efficient continuous-flow synthesis and evaluation of antimicrobial activity of novel 1,2,3-Triazole-Furan hybrid chalcone derivatives.Chem. Data Collect.20202810045710.1016/j.cdc.2020.100457
    [Google Scholar]
  71. WuW.N. JiangY.M. FeiQ. DuH.T. YangM.F. Synthesis and antifungal activity of novel 1,2,4‐triazole derivatives containing an amide moiety.J. Heterocycl. Chem.20205731379138610.1002/jhet.3874
    [Google Scholar]
  72. Al-WabliR.I. AlsulamiM.A. BukhariS.I. MoubayedN.M.S. Al-MutairiM.S. AttiaM.I. Design, synthesis, and antimicrobial activity of certain new indole-1, 2, 4 triazole conjugates.Molecules2021268229210.3390/molecules26082292 33920952
    [Google Scholar]
  73. LiangZ. XuH. TianY. GuoM. SuX. GuoC. Design, synthesis and antifungal activity of novel benzofuran-triazole hybrids.Molecules201621673210.3390/molecules21060732 27338311
    [Google Scholar]
  74. ZhangY. DamuG.L.V. CuiS.F. MiJ.L. TangadanchuV.K.R. ZhouC.H. Discovery of potential antifungal triazoles: Design, synthesis, biological evaluation, and preliminary antifungal mechanism exploration.MedChemComm2017881631163910.1039/C7MD00112F 30108874
    [Google Scholar]
  75. ShengC. ZhangW. JiH. ZhangM. SongY. XuH. ZhuJ. MiaoZ. JiangQ. YaoJ. ZhouY. ZhuJ. LüJ. Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking.J. Med. Chem.20064982512252510.1021/jm051211n 16610794
    [Google Scholar]
  76. KashyapA. SilakariO. Triazoles: Multidimensional 5-membered nucleus for designing multitargeting agents.Key Heterocycle Cores for Designing Multitargeting Molecules.AmsterdamElsevier201832334210.1016/B978‑0‑08‑102083‑8.00009‑1
    [Google Scholar]
  77. DofeV.S. SarkateA.P. LokwaniD.K. KathwateS.H. GillC.H. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles.Res. Chem. Intermed.2017431152810.1007/s11164‑016‑2602‑z
    [Google Scholar]
  78. DrugBank. Ibrexafungerp.2024Available From: https://go.drugbank.com/drugs/DB12471
  79. DrugBank. Efinaconazole.2024Available From: https://go.drugbank.com/drugs/DB09040
  80. BorateH.B. MaujanS.R. SawargaveS.P. ChavanS.P. ChandavarkarM.A. IyerR.R. Enantiomers of fluconazole analogues containing thieno-[2,-3-D]pyrimidin-4(3H)-one moiety as antifungal agents.US Patent 9181269B22015
  81. ParkJ.S. KyungA.Y. YoonY.S. HanM.R. Antifungal triazole derivatives, method for the preparation thereof and pharmaceutical composition containing same.WO Patent 2008082198A12011
  82. ParkJ.S. KyungA.Y. KimS.Y. SongY.J. KimK-P. YoonY.S. Antifungal triazole derivatives.US Patent 8940768B22011
  83. JoshiH. Antifungal compounds containing benzothiazinone, benzoxazinone or benzoxazolinone and process thereof.EP Patent 2337562B12012
  84. QianA. ZhengY. WangR. WeiJ. CuiY. CaoX. YangY. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity.Bioorg. Med. Chem. Lett.201828334435010.1016/j.bmcl.2017.12.040 29289430
    [Google Scholar]
  85. ChiX. ZhangH. WuH. LiX. LiL. JiangY. NiT. Discovery of novel tetrazoles featuring a pyrazole moiety as potent and highly selective antifungal agents.ACS Omega2023819171031711510.1021/acsomega.3c01421 37214706
    [Google Scholar]
  86. Łukowska-ChojnackaE. KowalkowskaA. GizińskaM. KoronkiewiczM. StaniszewskaM. Synthesis of tetrazole derivatives bearing pyrrolidine scaffold and evaluation of their antifungal activity against Candida albicans.Eur. J. Med. Chem.201916410612010.1016/j.ejmech.2018.12.044 30594027
    [Google Scholar]
  87. AmbhoreA.N. Design and synthesis of some new derivatives of chlorobenzyl-oxy-phenyl-ethyl-thio-1h-tetrazole and study their anti-bacterial and antifungal activity.Preprints202110.21203/rs.3.rs‑1173153/v1
    [Google Scholar]
  88. KanakarajuS. ChandramouliG.V.P. Synthesis and antimicrobial studies of some novel series of fused naphthopyranotetrazole derivatives.Res. Chem. Intermed.20154152809282210.1007/s11164‑013‑1390‑y
    [Google Scholar]
  89. Kinali-DemirciS. İdilÖ. DişliA. Synthesis of some novel purine derivatives incorporating tetrazole ring and investigation of their antimicrobial activity and DNA interactions.Med. Chem. Res.20152431218122510.1007/s00044‑014‑1209‑4
    [Google Scholar]
  90. KategaonkarA.H. SadaphalS.A. ShelkeK.F. KategaonkarA.H. ShingateB.B. ShingareM.S. Synthesis and in vitro Antimicrobial Activity of New Ethyl 2‐(Ethoxyphosphono)‐1‐cyano‐2‐(substituted tetrazolo[1,5‐ a]quinolin‐4‐yl)ethanoate Derivatives.Chin. J. Chem.201028224324910.1002/cjoc.201090060
    [Google Scholar]
  91. ShaikhS.K.J. KambleR.R. SomagondS.M. DevarajegowdaH.C. DixitS.R. JoshiS.D. Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses.Eur. J. Med. Chem.201712825827310.1016/j.ejmech.2017.01.043 28192709
    [Google Scholar]
  92. Łukowska-ChojnackaE. MierzejewskaJ. Milner-KrawczykM. BondarykM. StaniszewskaM. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity.Bioorg. Med. Chem.201624226058606510.1016/j.bmc.2016.09.066 27745991
    [Google Scholar]
  93. MungraD.C. PatelM.P. PatelR.G. Microwave-assisted synthesis of some new tetrazolo[1,5-a]quinoline-based benzimidazoles catalyzed by p-TsOH and investigation of their antimicrobial activity.Med. Chem. Res.201120678278910.1007/s00044‑010‑9388‑0
    [Google Scholar]
  94. VembuS. PazhamalaiS. GopalakrishnanM. Synthesis, spectral characterization, and effective antifungal evaluation of 1H-tetrazole containing 1,3,5-triazine dendrimers.Med. Chem. Res.20162591916192410.1007/s00044‑016‑1627‑6
    [Google Scholar]
  95. BalšánekV. TichotováL. KunešJ. ŠpulákM. PourM. VotrubaI. BuchtaV. Cytostatic tetrazole–butenolide conjugates: Linking tetrazole and butenolide rings via stille coupling and biological activity of the target substances.Collect. Czech. Chem. Commun.2009747-81161117810.1135/cccc2009040
    [Google Scholar]
  96. AntypenkoL.M. KovalenkoS.I. AntypenkoO.M. KatsevA.M. AchkasovaO.M. Design and evaluation of novel antimicrobial and anticancer agents among tetrazolo [1, 5-c] quinazoline-5-thione S-derivatives.Sci. Pharm.2013811154210.3797/scipharm.1208‑13 23641327
    [Google Scholar]
  97. Sudhakar BabuK. Swarna KumariM. RavindranathL. LathaJ. Synthesis, characterization and biological activity of 1, 6, 7-triazaspiro-thiazolidine, tetrazoles and azetidines.J. Chem. Pharm. Res.20135108119
    [Google Scholar]
  98. VembuS. PavadaiP. GopalakrishnanM. Synthesis, in vitro antifungal and antitubercular evaluation of novel amino pyrimidines based tetrazole derivatives.J. Pharm. Res.20148815521558
    [Google Scholar]
  99. WangS.Q. WangY.F. XuZ. Tetrazole hybrids and their antifungal activities.Eur. J. Med. Chem.201917022523410.1016/j.ejmech.2019.03.023 30904780
    [Google Scholar]
  100. Mycovia Pharmaceuticals Inc.. Study of oral oteseconazole (VT- 1161) for acute yeast infections in patients with recurrent yeast infections (ultraVIOLET).2022Available From: https://clinicaltrials.gov/study/NCT03840616
  101. MartensM.G. MaximosB. DegenhardtT. PersonK. CurelopS. Ghannoum, M Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections.Am. J. Obstet. Gynecol.20222276880.e1880.e1110.1016/j.ajog.2022.07.023
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266319532240822050311
Loading
/content/journals/ctmc/10.2174/0115680266319532240822050311
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antifungal agents; Azoles; Diazoles; Molecular hybridization; Tetrazoles; Triazoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test