Skip to content
2000
Volume 24, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer is a disease that affects people of all ages, socioeconomic backgrounds, genders, and demographics. It places a significant burden not just on those who are diagnosed but also on their families and communities. Targeted therapeutic medications have surpassed more conventional forms of chemotherapy in terms of both their effectiveness and safety, which leads to their rapid ascent to the forefront of cancer treatment. A growing number of small molecules have been created for the treatment of cancer, and several of these drugs have been approved to be sold in the market by the Food and Drug Administration of the United States. Small molecule targeted anticancer therapies have made significant progress in recent years, yet they continue to struggle with a number of obstacles, including a low response rate and drug resistance. We have carried out an exhaustive study on approved small-molecule targeted anticancer medications, as well as important drug candidates. This review describes the significance of approved anticancer drugs from 2021 to 2024, clinically active anticancer drugs, and the methods used for their synthesis.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266321816240822060818
2024-11-01
2025-10-03
Loading full text...

Full text loading...

References

  1. American Cancer Society. Understanding Advanced and Metastatic Cancer.2020Available from:https://www.cancer.org/treatment/understanding-your-diagnosis/advanced-cancer/whatis.html(accessed on 8-8-2024)
  2. American Cancer Society. Treatment Options Based on the Extent of Bile Duct Cancer.2021Available from:https://www.cancer.org/cancer/bile-duct-cancer/treating/based-onsituation.html(accessed on 8-8-2024)
  3. BergersG. HanahanD. Modes of resistance to anti-angiogenic therapy.Nat. Rev. Cancer20088859260310.1038/nrc244218650835
    [Google Scholar]
  4. Hunting for Drugs in Chemical Space.Available from: https://cen.acs.org/pharmaceuticals/drug-discovery/Hunting-drugschemical-space/100/i23(accessed on 8-8-2024)
  5. OginoH. HanibuchiM. KakiuchiS. TrungV.T. GotoH. IkutaK. YamadaT. UeharaH. TsuruokaA. UenakaT. WangW. LiQ. TakeuchiS. YanoS. NishiokaY. SoneS. E7080 suppresses hematogenous multiple organ metastases of lung cancer cells with nonmutated epidermal growth factor receptor.Mol. Cancer Ther.20111071218122810.1158/1535‑7163.MCT‑10‑070721551260
    [Google Scholar]
  6. Ayala-AguileraC.C. ValeroT. Lorente-MacíasÁ. BaillacheD.J. CrokeS. Unciti-BrocetaA. Small Molecule Kinase Inhibitor Drugs (1995–2021): Medical Indication, Pharmacology, and Synthesis.J. Med. Chem.20226521047113110.1021/acs.jmedchem.1c0096334624192
    [Google Scholar]
  7. Benedetto TizD. BagnoliL. RosatiO. MariniF. SancinetoL. SantiC. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use.Molecules2022275164310.3390/molecules2705164335268744
    [Google Scholar]
  8. LiangX. YangQ. WuP. HeC. YinL. XuF. YinZ. YueG. ZouY. LiL. SongX. LvC. ZhangW. JingB. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015–2020.Bioorg. Chem.202111310501110.1016/j.bioorg.2021.10501134091289
    [Google Scholar]
  9. WangJ. WangY. QinY. Synthesis of Tivozanib.Carol. J. Pharm.201344541544
    [Google Scholar]
  10. WangZ. CherukupalliS. XieM. WangW. JiangX. JiaR. PannecouqueC. De ClercqE. KangD. ZhanP. LiuX. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors.J. Med. Chem.20226553729375710.1021/acs.jmedchem.1c0175835175760
    [Google Scholar]
  11. LanmanB.A. AllenJ.R. AllenJ.G. AmegadzieA.K. AshtonK.S. BookerS.K. ChenJ.J. ChenN. FrohnM.J. GoodmanG. KopeckyD.J. LiuL. LopezP. LowJ.D. MaV. MinattiA.E. NguyenT.T. NishimuraN. PickrellA.J. ReedA.B. ShinY. SiegmundA.C. TamayoN.A. TegleyC.M. WaltonM.C. WangH.L. WurzR.P. XueM. YangK.C. AchantaP. BartbergerM.D. CanonJ. HollisL.S. McCarterJ.D. MohrC. RexK. SaikiA.Y. San MiguelT. VolakL.P. WangK.H. WhittingtonD.A. ZechS.G. LipfordJ.R. CeeV.J. Discovery of a Covalent Inhibitor of KRAS G12C (AMG 510) for the Treatment of Solid Tumors.J. Med. Chem.2020631526510.1021/acs.jmedchem.9b0118031820981
    [Google Scholar]
  12. LanmanB.A. ChenJ. ReedA.B. CeeV.J. LiuL. KopeckyD.J. LopezP. WurzR.P. NguyenT.T. BookerS. Kras G12c Inhibitors and Methods of Using the Same.Patent WO 2018,217651, 2018.
  13. ParsonsA.T. BeaverM. Improved synthesis of kras g12c inhibitor compound.Patent WO 2021,097212, 2021.
  14. KangC. Infigratinib: First Approval.Drugs202181111355136010.1007/s40265‑021‑01567‑134279850
    [Google Scholar]
  15. Bridge Bio Pharma expands reach into China and other major Asian markets through strategic collaboration with perceptive advisors-founded company.2020Available from: http://www.bridgebio.com(accessed on 8-8-2024)
  16. BridgeBio Pharma. BridgeBio Pharma's affiliate QED Therapeutics and Helsinn Group announce strategic collaboration to co-develop and commercialize infigratinib in oncology.2021Available from:http://www.bridgebio.com(accessed on 8-8-2024)
  17. DhanasekaranR. HemmingA.W. ZendejasI. GeorgeT. NelsonD.R. Soldevila-PicoC. FirpiR.J. MorelliG. ClarkV. CabreraR. Treatment outcomes and prognostic factors of intrahepatic cholangiocarcinoma.Oncol. Rep.20132941259126710.3892/or.2013.229023426976
    [Google Scholar]
  18. BotrusG. RamanP. OliverT. Bekaii-SaabT. Infigratinib (BGJ398): an investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma.Exp. Opin. Investigat. Drugs202130430931510.1080/13543784.2021.1864320
    [Google Scholar]
  19. Infigratinib Orphan Drug Designations and Approvals2019Available from: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=707019(accessed on 7-8-2024)
    [Google Scholar]
  20. DhillonS. Avapritinib: First approval.Drugs201780443343910.1007/s40265‑020‑01275‑2
    [Google Scholar]
  21. AzadF. ZhangJ. WangE. Avapritinib for the treatment of KIT mutation–negative systemic mastocytosis.Proc. Bayl. Univ. Med. Cent.2023361818210.1080/08998280.2022.212366136578586
    [Google Scholar]
  22. BlairH.A. Belumosudil: First Approval.Drugs202181141677168210.1007/s40265‑021‑01593‑z34463931
    [Google Scholar]
  23. TaylorB. CohenJ. TejedaJ. WangT.P. Belumosudil for chronic graft-versus-host disease.Drugs Today (Barc)202258520321210.1358/dot.2022.58.5.340070535535812
    [Google Scholar]
  24. CutlerC. LeeS.J. AraiS. RottaM. ZoghiB. LazaryanA. RamakrishnanA. DeFilippZ. SalhotraA. Chai-HoW. MehtaR. WangT. AroraM. PusicI. SaadA. ShahN.N. AbhyankarS. BachierC. GalvinJ. ImA. LangstonA. LiesveldJ. JuckettM. LoganA. SchachterL. AlaviA. HowardD. WaksalH.W. RyanJ. EiznhamerD. AggarwalS.K. IeyoubJ. SchuellerO. GreenL. YangZ. KrenzH. JagasiaM. BlazarB.R. PavleticS. Belumosudil for chronic graft-versus-host disease after 2 or more prior lines of therapy: the ROCKstar Study.Blood2021138222278228910.1182/blood.202101202134265047
    [Google Scholar]
  25. WallerE.K. MiklosD. CutlerC. AroraM. JagasiaM.H. PusicI. FlowersM.E.D. LoganA.C. NakamuraR. ChangS. ClowF. LalI.D. StylesL. JaglowskiS. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy: 1-Year update of a phase 1b/2 study.Biol. Blood Marrow Transplant.201925102002200710.1016/j.bbmt.2019.06.02331260802
    [Google Scholar]
  26. YalnizF.F. MuradM.H. LeeS.J. PavleticS.Z. KheraN. ShahN.D. HashmiS.K. Steroid refractory chronic graft-versus-host disease: cost-effectiveness analysis.Biol. Blood Marrow Transplant.20182491920192710.1016/j.bbmt.2018.03.00829550629
    [Google Scholar]
  27. JagasiaM. LazaryanA. BachierC.R. SalhotraA. WeisdorfD.J. ZoghiB. EssellJ. GreenL. SchuellerO. PatelJ. Zanin-ZhorovA. WeissJ.M. YangZ. EiznhamerD. AggarwalS.K. BlazarB.R. LeeS.J. ROCK2 Inhibition With Belumosudil (KD025) for the Treatment of Chronic Graft-Versus-Host Disease.J. Clin. Oncol.202139171888189810.1200/JCO.20.0275433877856
    [Google Scholar]
  28. DeFilippZ. KimH.T. YangZ. NoonanJ. BlazarB.R. LeeS.J. PavleticS.Z. CutlerC. Clinical response to belumosudil in bronchiolitis obliterans syndrome: a combined analysis from 2 prospective trials.Blood Adv.20226246263627010.1182/bloodadvances.202200809536083121
    [Google Scholar]
  29. ZeiserR. BlazarB.R. Pathophysiology of Chronic Graft-versus-Host Disease and Therapeutic Targets.N. Engl. J. Med.2017377262565257910.1056/NEJMra170347229281578
    [Google Scholar]
  30. Zanin-ZhorovA. WeissJ.M. NyuydzefeM.S. ChenW. ScherJ.U. MoR. DepoilD. RaoN. LiuB. WeiJ. LucasS. KoslowM. RocheM. SchuellerO. WeissS. PoyurovskyM.V. TonraJ. HippenK.L. DustinM.L. BlazarB.R. LiuC. WaksalS.D. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism.Proc. Natl. Acad. Sci. USA201411147168141681910.1073/pnas.141418911125385601
    [Google Scholar]
  31. ScottL.J. Lenvatinib: first global approval.Drugs201575555356010.1007/s40265‑015‑0383‑025795101
    [Google Scholar]
  32. CapozziM. De DivitiisC. OttaianoA. von ArxC. ScalaS. TatangeloF. DelrioP. TafutoS. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment.Cancer Manag. Res.2019113847386010.2147/CMAR.S18831631118801
    [Google Scholar]
  33. TohyamaO. MatsuiJ. KodamaK. Hata-SugiN. KimuraT. OkamotoK. MinoshimaY. IwataM. FunahashiY. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models.J. Thyroid Res.2014201411310.1155/2014/63874725295214
    [Google Scholar]
  34. FerrariS. BocciG. Di DesideroT. EliaG. RuffilliI. RagusaF. OrlandiP. PaparoS. PatrizioA. PiaggiS. La MottaC. UlisseS. BaldiniE. MaterazziG. MiccoliP. AntonelliA. FallahiP. Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo.Oncol. Rep.20183952225223410.3892/or.2018.630629517103
    [Google Scholar]
  35. JingC. GaoZ. WangR. YangZ. ShiB. HouP. Lenvatinib enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer.Am. J. Cancer Res.20177490391228469962
    [Google Scholar]
  36. RolnyC. MazzoneM. TuguesS. LaouiD. JohanssonI. CoulonC. SquadritoM.L. SeguraI. LiX. KnevelsE. CostaS. VinckierS. DresselaerT. ÅkerudP. De MolM. SalomäkiH. PhillipsonM. WynsS. LarssonE. BuysschaertI. BotlingJ. HimmelreichU. Van GinderachterJ.A. De PalmaM. DewerchinM. Claesson-WelshL. CarmelietP. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF.Cancer Cell2011191314410.1016/j.ccr.2010.11.00921215706
    [Google Scholar]
  37. OkamotoK. KodamaK. TakaseK. SugiN.H. YamamotoY. IwataM. TsuruokaA. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models.Cancer Lett.201334019710310.1016/j.canlet.2013.07.00723856031
    [Google Scholar]
  38. WiegeringA. KorbD. ThalheimerA. KämmererU. AllmanritterJ. MatthesN. LinnebacherM. SchlegelN. KleinI. ErgünS. GermerC.T. OttoC. E7080 (lenvatinib), a multi-targeted tyrosine kinase inhibitor, demonstrates antitumor activities against colorectal cancer xenografts.Neoplasia2014161197298110.1016/j.neo.2014.09.00825425971
    [Google Scholar]
  39. SchlumbergerM. TaharaM. WirthL.J. RobinsonB. BroseM.S. EliseiR. HabraM.A. NewboldK. ShahM.H. HoffA.O. GianoukakisA.G. KiyotaN. TaylorM.H. KimS.B. KrzyzanowskaM.K. DutcusC.E. de las HerasB. ZhuJ. ShermanS.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer.N. Engl. J. Med.2015372762163010.1056/NEJMoa140647025671254
    [Google Scholar]
  40. Al-AbdA.M. AlamoudiA.J. Abdel-NaimA.B. NeamatallahT.A. AshourO.M. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies – A review.J. Adv. Res.20178659160510.1016/j.jare.2017.06.00628808589
    [Google Scholar]
  41. ZschäbitzS. GrüllichC. Lenvantinib: A Tyrosine Kinase Inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα, KIT and RET.Recent Results Cancer Res.201821118719810.1007/978‑3‑319‑91442‑8_1330069768
    [Google Scholar]
  42. AitaY. IshiiK. SaitoY. IkedaT. KawakamiY. ShimanoH. HaraH. TakekoshiK. Sunitinib inhibits catecholamine synthesis and secretion in pheochromocytoma tumor cells by blocking VEGF receptor 2 via PLC-γ-related pathways.Am. J. Physiol. Endocrinol. Metab.20123038E1006E101410.1152/ajpendo.00156.201222912364
    [Google Scholar]
  43. Ayala-RamirezM. FengL. JohnsonM.M. EjazS. HabraM.A. RichT. BusaidyN. CoteG.J. PerrierN. PhanA. PatelS. WaguespackS. JimenezC. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators.J. Clin. Endocrinol. Metab.201196371772510.1210/jc.2010‑194621190975
    [Google Scholar]
  44. HuangR. ZhuG. FuX. LiuW. TaoC. GaoJ. QuW. FangY. JiangX. DingZ. ZhouJ. ShiY. FanJ. TangZ. Comprehensive analysis of complement-associated molecular features in hepatocellular carcinoma.Acta Biochim. Biophys. Sin. (Shanghai)202254111694170710.3724/abbs.202209735929594
    [Google Scholar]
  45. Coping with Advanced Cancer: Choices for Care Near the End of Life.2020Available from: https://www.cancer.gov/publications/patient-education/advanced-cancer(accessed on 8-8-2024)
  46. CasakS.J. PradhanS. Fashoyin-AjeL.A. RenY. ShenY.L. XuY. ChowE.C.Y. XiongY. ZirklelbachJ.F. LiuJ. CharlabR. PierceW.F. FesenkoN. BeaverJ.A. PazdurR. KluetzP.G. LemeryS.J. FDA Approval Summary: Ivosidenib for the Treatment of Patients with Advanced Unresectable or Metastatic, Chemotherapy Refractory Cholangiocarcinoma with an IDH1 Mutation.Clin. Cancer Res.202228132733273710.1158/1078‑0432.CCR‑21‑446235259259
    [Google Scholar]
  47. ChengC.Y. ChenC.P. WuC.E. Precision Medicine in Cholangiocarcinoma: Past, Present, and Future.Life (Basel)202212682910.3390/life1206082935743860
    [Google Scholar]
  48. LodlE. RamnaraignB. SahinI. WheelerS. Updates in the use of targeted therapies for the treatment of cholangiocarcinoma.Off. Publicat. Int. Soc. Oncol. Pharm. Practit.20232951206121710.1177/10781552231171079
    [Google Scholar]
  49. BodduP. BorthakurG. Therapeutic targeting of isocitrate dehydrogenase mutant AML.Expert Opin. Investig. Drugs201726552553010.1080/13543784.2017.131774528388242
    [Google Scholar]
  50. DiNardoC.D. SteinE.M. SOHO State of the Art Update and Next Questions: IDH Therapeutic Targeting in AML.Clin. Lymphoma Myeloma Leuk.2018181276977210.1016/j.clml.2018.10.00730416011
    [Google Scholar]
  51. DiNardoC.D. SteinE.M. de BottonS. RobozG.J. AltmanJ.K. MimsA.S. SwordsR. CollinsR.H. MannisG.N. PollyeaD.A. DonnellanW. FathiA.T. PigneuxA. ErbaH.P. PrinceG.T. SteinA.S. UyG.L. ForanJ.M. TraerE. StuartR.K. ArellanoM.L. SlackJ.L. SekeresM.A. WillekensC. ChoeS. WangH. ZhangV. YenK.E. KapsalisS.M. YangH. DaiD. FanB. GoldwasserM. LiuH. AgrestaS. WuB. AttarE.C. TallmanM.S. StoneR.M. KantarjianH.M. Durable Remissions with Ivosidenib in IDH1 -Mutated Relapsed or Refractory AML.N. Engl. J. Med.2018378252386239810.1056/NEJMoa171698429860938
    [Google Scholar]
  52. FujiiT. KhawajaM.R. DiNardoC.D. AtkinsJ.T. JankuF. Targeting isocitrate dehydrogenase (IDH) in cancer.Discov. Med.20162111737338027355333
    [Google Scholar]
  53. LeventogluE. SahinG. YesilS. BozkurtC. YuksekN. FettahA. ToprakS. Kurucu BilginB. CapkinogluE. ErogluN. Akpinar TekgunduzS. ErtemA.U. Isocitrate dehydrogenase 1 and 2 mutations in pediatric neuroblastoma patients.Medeniyet Med. J.202338210211010.4274/MMJ.galenos.2023.48768
    [Google Scholar]
  54. KurimotoM. RockenbachY. KatoA. NatsumeA. Prediction of tumor development and urine-based liquid biopsy for molecule- targeted therapy of gliomas.Genes2023146120110.3390/genes14061201
    [Google Scholar]
  55. McKenneyA.S. LevineR.L. Isocitrate dehydrogenase mutations in leukemia.J. Clin. Invest.201312393672367710.1172/JCI6726623999441
    [Google Scholar]
  56. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  57. NassereddineS. LapC.J. HarounF. TabbaraI. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia.Ann. Hematol.201796121983199110.1007/s00277‑017‑3161‑029090344
    [Google Scholar]
  58. NorsworthyK.J. MulkeyF. WardA.F. PrzepiorkaD. DeisserothA.B. FarrellA.T. PazdurR. Incidence of differentiation syndrome with Ivosidenib (IVO) and Enasidenib (ENA) for treatment of patients with Relapsed or Refractory (R/R) isocitrate dehydrogenase (idh)1- or idh2-mutated acute myeloid leukemia (aml): a systematic analysis by the U.S. food and drug administration (FDA).Blood2018132Suppl. 128810.1182/blood‑2018‑99‑117426
    [Google Scholar]
  59. PlattM.Y. FathiA.T. BorgerD.R. BrunnerA.M. HasserjianR.P. BalajL. LumA. YipS. Dias-SantagataD. ZhengZ. LeL.P. GraubertT.A. IafrateA.J. NardiV. Detection of Dual IDH1 and IDH2 Mutations by Targeted Next-Generation Sequencing in Acute Myeloid Leukemia and Myelodysplastic Syndromes.J. Mol. Diagn.201517666166810.1016/j.jmoldx.2015.06.00426331834
    [Google Scholar]
  60. FanB. MellinghoffI.K. WenP.Y. LoweryM.A. GoyalL. TapW.D. PandyaS.S. ManyakE. JiangL. LiuG. NimkarT. GliserC. Prahl JudgeM. AgrestaS. YangH. DaiD. Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors.Invest. New Drugs202038243344410.1007/s10637‑019‑00771‑x31028664
    [Google Scholar]
  61. ZhangT. LiS. YuanW. WuQ. WangL. YangS. SunQ. MengF. Discovery and biological evaluation of some (1H-1,2,3- triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors.Bioorg. Med. Chem. Lett.201727472973210.1016/j.bmcl.2017.01.04928131711
    [Google Scholar]
  62. Popovici-MullerJ. LemieuxR.M. ArtinE. SaundersJ.O. SalituroF.G. TravinsJ. CianchettaG. CaiZ. ZhouD. CuiD. ChenP. StraleyK. TobinE. WangF. DavidM.D. Penard-LacroniqueV. QuivoronC. SaadaV. de BottonS. GrossS. DangL. YangH. UtleyL. ChenY. KimH. JinS. GuZ. YaoG. LuoZ. LvX. FangC. YanL. OlaharskiA. SilvermanL. BillerS. SuS.S.M. YenK. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers.ACS Med. Chem. Lett.20189430030510.1021/acsmedchemlett.7b0042129670690
    [Google Scholar]
  63. FlickA.C. LeverettC.A. DingH.X. McInturffE. FinkS.J. HelalC.J. DeForestJ.C. MorseP.D. MahapatraS. O’DonnellC.J. Synthetic Approaches to New Drugs Approved during 2018.J. Med. Chem.20206319106521070410.1021/acs.jmedchem.0c0034532338902
    [Google Scholar]
  64. SyedY.Y. Zanubrutinib: First Approval.Drugs2020801919710.1007/s40265‑019‑01252‑431933167
    [Google Scholar]
  65. McInturffE.L. FranceS.P. LeverettC.A. FlickA.C. LindseyE.A. BerrittS. CarneyD.W. DeForestJ.C. DingH.X. FinkS.J. GibsonT.S. GrayK. HubbellA.K. JohnsonA.M. LiuY. MahapatraS. McAlpineI.J. WatsonR.B. O’DonnellC.J. Synthetic Approaches to the New Drugs Approved During 2021.J. Med. Chem.20236615101501020110.1021/acs.jmedchem.3c0050137528515
    [Google Scholar]
  66. FlickA.C. LeverettC.A. DingH.X. McInturffE.L. FinkS.J. MahapatraS. CarneyD.W. LindseyE.A. DeForestJ.C. FranceS.P. BerrittS. Bigi-BotterillS.V. GibsonT.S. WatsonR.B. LiuY. O’DonnellC.J. Synthetic Approaches to the New Drugs Approved During 2020.J. Med. Chem.202265149607966110.1021/acs.jmedchem.2c0071035833579
    [Google Scholar]
  67. ZhangJ.Y. WangY.T. SunL. WangS.Q. ChenZ.S. Synthesis and clinical application of new drugs approved by FDA in 2022.Molecular Biomedicine2023412610.1186/s43556‑023‑00138‑y37661221
    [Google Scholar]
  68. TamC.S. TrotmanJ. OpatS. BurgerJ.A. CullG. GottliebD. HarrupR. JohnstonP.B. MarltonP. MunozJ. SeymourJ.F. SimpsonD. TedeschiA. ElstromR. YuY. TangZ. HanL. HuangJ. NovotnyW. WangL. RobertsA.W. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL.Blood20191341185185910.1182/blood.201900116031340982
    [Google Scholar]
  69. GuoY. LiuY. HuN. YuD. ZhouC. ShiG. ZhangB. WeiM. LiuJ. LuoL. TangZ. SongH. GuoY. LiuX. SuD. ZhangS. SongX. ZhouX. HongY. ChenS. ChengZ. YoungS. WeiQ. WangH. WangQ. LvL. WangF. XuH. SunH. XingH. LiN. ZhangW. WangZ. LiuG. SunZ. ZhouD. LiW. LiuL. WangL. WangZ. Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase.J. Med. Chem.201962177923794010.1021/acs.jmedchem.9b0068731381333
    [Google Scholar]
  70. SinghS. UtrejaD. KumarV. Pyrrolo[2,1-f][1,2,4]triazine: a promising fused heterocycle to target kinases in cancer therapy.Med. chem. res.202231112510.1007/s00044‑021‑02819‑1
    [Google Scholar]
  71. FancelliD. BertaD. BindiS. CameronA. CappellaP. CarpinelliP. CatanaC. ForteB. GiordanoP. GiorginiM.L. ManteganiS. MarsiglioA. MeroniM. MollJ. PittalàV. RolettoF. SeverinoD. SonciniC. StoriciP. TonaniR. VarasiM. VulpettiA. VianelloP. Potent and selective Aurora inhibitors identified by the expansion of a novel scaffold for protein kinase inhibition.J. Med. Chem.20054883080308410.1021/jm049076m15828847
    [Google Scholar]
  72. MayurS. Jain, Shashikant D. Barhate, Rahul D. Shimpi. Mobocertinib is an Oral kinase inhibitor targeted against EGFR and used in the treatment of Non-small cell Lung cancer: A Review.Asian Journal of Pharmaceutical Research.2022122179210.52711/2231‑5691.2022.00029
    [Google Scholar]
  73. LiB. BarnhartR.W. HoffmanJ.E. NematallaA. RaggonJ. RichardsonP. SachN. WeaverJ. Exploratory Process Development of Lorlatinib.Org. Process Res. Dev.20182291289129310.1021/acs.oprd.8b00210
    [Google Scholar]
  74. ImranM. KhanS.A. AlshammariM.K. AlreshidiM.A. AlreshidiA.A. AlghonaimR.S. AlanaziF.A. AlshehriS. GhoneimM.M. ShakeelF. Discovery, Development, Inventions, and Patent Trends on Mobocertinib Succinate: The First-in- Class Oral Treatment for NSCLC with EGFR Exon 20 Insertions.Biomedicines2021912193810.3390/biomedicines912193834944754
    [Google Scholar]
  75. ZhangS. JinS. GriffinC. FengZ. LinJ. BarattaM. BrakeR. VenkatakrishnanK. GuptaN. Single-Dose Pharmacokinetics and Tolerability of the Oral Epidermal Growth Factor Receptor Inhibitor Mobocertinib (TAK-788) in Healthy Volunteers: Low-Fat Meal Effect and Relative Bioavailability of 2 Capsule Products.Clin. Pharmacol. Drug Dev.20211091028104310.1002/cpdd.95134118178
    [Google Scholar]
  76. FDA grants accelerated approval to mobocertinib for metastatic non-small cell lung cancer with EGFR exon 20 insertion mutations.2021Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mobocertinib-metastatic-non-small-cell-lung-cancer-egfr-exon-20(accessed on 8-8-2024)
  77. GonzalvezF. VincentS. BakerT.E. GouldA.E. LiS. WardwellS.D. NadwornyS. NingY. ZhangS. HuangW.S. HuY. LiF. GreenfieldM.T. ZechS.G. DasB. NarasimhanN.I. ClacksonT. DalgarnoD. ShakespeareW.C. FitzgeraldM. ChouitarJ. GriffinR.J. LiuS. WongK. ZhuX. RiveraV.M. Mobocertinib (TAK-788): A Targeted Inhibitor of EGFR Exon 20 Insertion Mutants in Non–Small Cell Lung Cancer.Cancer Discov.20211171672168710.1158/2159‑8290.CD‑20‑168333632773
    [Google Scholar]
  78. HanH. LiS. ChenT. FitzgeraldM. LiuS. PengC. TangK.H. CaoS. ChouitarJ. WuJ. PengD. DengJ. GaoZ. BakerT.E. LiF. ZhangH. PanY. DingH. HuH. PyonV. ThakurdinC. PapadopoulosE. TangS. GonzalvezF. ChenH. RiveraV.M. BrakeR. VincentS. WongK.K. Targeting HER2 Exon 20 Insertion–Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor Mobocertinib.Cancer Res.202181205311532410.1158/0008‑5472.CAN‑21‑152634380634
    [Google Scholar]
  79. WangJ. LamD. YangJ. HuL. Discovery of mobocertinib, a new irreversible tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer harboring EGFR exon 20 insertion mutations.Medic. Chem. Res.202231101647166210.1007/s00044‑022‑02952‑5
    [Google Scholar]
  80. RielyG.J. NealJ.W. CamidgeD.R. SpiraA.I. PiotrowskaZ. CostaD.B. TsaoA.S. PatelJ.D. GadgeelS.M. BazhenovaL. ZhuV.W. WestH.L. MekhailT. GentzlerR.D. NguyenD. VincentS. ZhangS. LinJ. BunnV. JinS. LiS. JänneP.A. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non–Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial.Cancer Discov.20211171688169910.1158/2159‑8290.CD‑20‑159833632775
    [Google Scholar]
  81. WangE.C. A New Route to N-Aryl 2-Alkenamides, N-Allyl N-Aryl 2-Alkenamides, and N-Aryl a, beta-Unsaturated gamma -Lactams from N-Aryl 3-(Phenylsulfonyl) propanamides.J. Chinese Chem. Soc.2001488390
    [Google Scholar]
  82. MarkhamA. Alpelisib: First Global Approval.Drugs201979111249125310.1007/s40265‑019‑01161‑631256368
    [Google Scholar]
  83. JuricD. JankuF. RodónJ. BurrisH.A. MayerI.A. SchulerM. Seggewiss-BernhardtR. Gil-MartinM. MiddletonM.R. BaselgaJ. BootleD. DemanseD. BlumensteinL. SchumacherK. HuangA. QuadtC. RugoH.S. Alpelisib Plus Fulvestrant in PIK3CA -Altered and PIK3CA -Wild-Type Estrogen Receptor–Positive Advanced Breast Cancer.JAMA Oncol.201952e18447510.1001/jamaoncol.2018.447530543347
    [Google Scholar]
  84. AndréF. CiruelosE. RubovszkyG. CamponeM. LoiblS. RugoH.S. IwataH. ConteP. MayerI.A. KaufmanB. YamashitaT. LuY.S. InoueK. TakahashiM. PápaiZ. LonginA.S. MillsD. WilkeC. HirawatS. JuricD. Alpelisib for PIK3CA -Mutated, Hormone Receptor–Positive Advanced Breast Cancer.N. Engl. J. Med.2019380201929194010.1056/NEJMoa181390431091374
    [Google Scholar]
  85. WuT.T. GuoQ.Q. ChenZ.L. WangL.L. DuY. ChenR. MaoY.H. YangS.G. HuangJ. WangJ.T. WangL. TangL. ZhangJ.Q. Design, synthesis and bio evaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors.Euro. J. Med. Chem.202020411263710.1016/j.ejmech.2020.112637
    [Google Scholar]
  86. WangL. LiR. SongC. ChenY. LongH. YangL. Small- Molecule Anti-Cancer Drugs From 2016 to 2020: Synthesis and Clinical Application.Nat. Prod. Commun.20211691934578X211040310.1177/1934578X211040326
    [Google Scholar]
  87. MarkhamA. Erdafitinib: First Global Approval.Drugs20197991017102110.1007/s40265‑019‑01142‑931161538
    [Google Scholar]
  88. SyedY.Y. Futibatinib: First Approval.Drugs202282181737174310.1007/s40265‑022‑01806‑z36441501
    [Google Scholar]
  89. GandhyS.U. CasakS.J. MushtiS.L. ChengJ. SubramaniamS. ZhaoH. ZhaoM. BiY. LiuG. FanJ. AdeniyiO. CharlabR. KufrinD. ThompsonM.D. JarrellK. AuthD. LemeryS.J. PazdurR. KluetzP.G. Fashoyin-AjeL.A. FDA Approval Summary: Futibatinib for Unresectable Advanced or Metastatic, Chemotherapy Refractory Intrahepatic Cholangiocarcinoma with FGFR2 Fusions or Other Rearrangements.Clin. Cancer Res.2023292040274031Advance online publication10.1158/1078‑0432.CCR‑23‑104237289037
    [Google Scholar]
  90. Meric-BernstamF. BahledaR. HierroC. SansonM. BridgewaterJ. ArkenauH.T. TranB. KelleyR.K. ParkJ.O. JavleM. HeY. BenhadjiK.A. GoyalL. Futibatinib, an Irreversible FGFR1–4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF / FGFR Aberrations: A Phase I Dose-Expansion Study.Cancer Discov.202212240241510.1158/2159‑8290.CD‑21‑069734551969
    [Google Scholar]
  91. RizzoA. RicciA.D. BrandiG. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: evidence to date and future perspectives.Expert Opin. Investig. Drugs202130431732410.1080/13543784.2021.183777433054456
    [Google Scholar]
  92. Futibatinib synthesis.Available from:https://newdrugapprovals.org/2022/10/07/futibatinib/(accessed on 8-8-2024).
  93. KangC. Olutasidenib: First Approval.Drugs202383434134610.1007/s40265‑023‑01844‑136848032
    [Google Scholar]
  94. WattsJ.M. BaerM.R. YangJ. PrebetT. LeeS. SchillerG.J. DinnerS.N. PigneuxA. MontesinosP. WangE.S. SeiterK.P. WeiA.H. De BottonS. ArnanM. DonnellanW. SchwarerA.P. RécherC. JonasB.A. FerrellP.B.Jr MarzacC. KellyP. SweeneyJ. ForsythS. GuichardS.M. BrevardJ. HenrickP. MohamedH. CortesJ.E. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial.Lancet Haematol.2023101e46e5810.1016/S2352‑3026(22)00292‑736370742
    [Google Scholar]
  95. MardisE.R. DingL. DoolingD.J. LarsonD.E. McLellanM.D. ChenK. KoboldtD.C. FultonR.S. DelehauntyK.D. McGrathS.D. FultonL.A. LockeD.P. MagriniV.J. AbbottR.M. VickeryT.L. ReedJ.S. RobinsonJ.S. WylieT. SmithS.M. CarmichaelL. EldredJ.M. HarrisC.C. WalkerJ. PeckJ.B. DuF. DukesA.F. SandersonG.E. BrummettA.M. ClarkE. McMichaelJ.F. MeyerR.J. SchindlerJ.K. PohlC.S. WallisJ.W. ShiX. LinL. SchmidtH. TangY. HaipekC. WiechertM.E. IvyJ.V. KalickiJ. ElliottG. RiesR.E. PaytonJ.E. WesterveltP. TomassonM.H. WatsonM.A. BatyJ. HeathS. ShannonW.D. NagarajanR. LinkD.C. WalterM.J. GraubertT.A. DiPersioJ.F. WilsonR.K. LeyT.J. Recurring mutations found by sequencing an acute myeloid leukemia genome.N. Engl. J. Med.2009361111058106610.1056/NEJMoa090384019657110
    [Google Scholar]
  96. MarcucciG. MaharryK. WuY.Z. RadmacherM.D. MrózekK. MargesonD. HollandK.B. WhitmanS.P. BeckerH. SchwindS. MetzelerK.H. PowellB.L. CarterT.H. KolitzJ.E. WetzlerM. CarrollA.J. BaerM.R. CaligiuriM.A. LarsonR.A. BloomfieldC.D. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.J. Clin. Oncol.201028142348235510.1200/JCO.2009.27.373020368543
    [Google Scholar]
  97. MeggendorferM. CappelliL.V. WalterW. HaferlachC. KernW. FaliniB. HaferlachT. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies.Leukemia20183251249125310.1038/s41375‑018‑0026‑z29568090
    [Google Scholar]
  98. DöhnerH. WeiA.H. AppelbaumF.R. CraddockC. DiNardoC.D. DombretH. EbertB.L. FenauxP. GodleyL.A. HasserjianR.P. LarsonR.A. LevineR.L. MiyazakiY. NiederwieserD. OssenkoppeleG. RölligC. SierraJ. SteinE.M. TallmanM.S. TienH.F. WangJ. WierzbowskaA. LöwenbergB. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN.Blood2022140121345137710.1182/blood.202201686735797463
    [Google Scholar]
  99. DuchmannM. MicolJ.B. DuployezN. RaffouxE. ThomasX. MarolleauJ.P. BraunT. AdèsL. ChantepieS. LemasleE. BerthonC. MalfusonJ.V. PautasC. LambertJ. BoisselN. Celli-LebrasK. CaillotD. TurlureP. VeyN. PigneuxA. RecherC. TerréC. GardinC. ItzyksonR. PreudhommeC. DombretH. de BottonS. Prognostic significance of concurrent gene mutations in intensively treated patients with IDH -mutated AML: an ALFA study.Blood2021137202827283710.1182/blood.202001016533881523
    [Google Scholar]
  100. PollyeaD.A. DiNardoC.D. ArellanoM.L. PigneuxA. FiedlerW. KonoplevaM. RizzieriD.A. SmithB.D. ShinagawaA. LemoliR.M. DailM. DuanY. ChylaB. PotluriJ. MillerC.L. KantarjianH.M. Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations.Clin. Cancer Res.202228132753276110.1158/1078‑0432.CCR‑21‑346735046058
    [Google Scholar]
  101. PaschkaP. SchlenkR.F. GaidzikV.I. HabdankM. KrönkeJ. BullingerL. SpäthD. KayserS. ZucknickM. GötzeK. HorstH.A. GermingU. DöhnerH. DöhnerK. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication.J. Clin. Oncol.201028223636364310.1200/JCO.2010.28.376220567020
    [Google Scholar]
  102. PemmarajuN. KantarjianH. Garcia-ManeroG. PierceS. Cardenas-TuranzasM. CortesJ. RavandiF. Improving outcomes for patients with acute myeloid leukemia in first relapse: A single center experience.Am. J. Hematol.2015901273010.1002/ajh.2385825251041
    [Google Scholar]
  103. WuH. WangA. QiZ. LiX. ChenC. YuK. ZouF. HuC. WangW. ZhaoZ. WuJ. LiuJ. LiuX. WangL. WangW. ZhangS. StoneR.M. GalinskyI.A. GriffinJ.D. WeinstockD. ChristodoulouA. WangH. ShenY. ZhaiZ. WeisbergE.L. LiuJ. LiuQ. Discovery of a highly potent FLT3 kinase inhibitor for FLT3-ITD-positive AML.Leukemia201630102112211610.1038/leu.2016.15127220667
    [Google Scholar]
  104. SunD. YangY. LyuJ. ZhouW. SongW. ZhaoZ. ChenZ. XuY. LiH. Discovery and Rational Design of Pteridin-7(8 H )-one-Based Inhibitors Targeting FMS-like Tyrosine Kinase 3 (FLT3) and Its Mutants.J. Med. Chem.201659136187620010.1021/acs.jmedchem.6b0037427266526
    [Google Scholar]
  105. SalehA.M. TahaM.O. AzizM.A. Al-QudahM.A. AbuTayehR.F. RizviS.A. Novel anticancer compound [trifluoromethyl-substituted pyrazole N-nucleoside] inhibits FLT3 activity to induce differentiation in acute myeloid leukemia cells.Cancer Lett.2016375219920810.1016/j.canlet.2016.02.02826916980
    [Google Scholar]
  106. MashkaniB. TanipourM.H. SaadatmandzadehM. AshmanL.K. GriffithR. FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies.Eur. J. Pharmacol.201677615616610.1016/j.ejphar.2016.02.04826896780
    [Google Scholar]
  107. HatcherJ.M. WeisbergE. SimT. StoneR.M. LiuS. GriffinJ.D. GrayN.S. Discovery of a Highly Potent and Selective Indenoindolone Type 1 Pan-FLT3 Inhibitor.ACS Med. Chem. Lett.20167547648110.1021/acsmedchemlett.5b0049827190596
    [Google Scholar]
  108. HassaneinM. AlmahayniM.H. AhmedS.O. GaballaS. El FakihR. FLT3 Inhibitors for Treating Acute Myeloid Leukemia.Clin. Lymphoma Myeloma Leuk.2016161054354910.1016/j.clml.2016.06.00227450971
    [Google Scholar]
  109. ChenY. GuoY. ZhaoW. Tina HoW-T. FuX. ZhaoZ.J. Identification of an orally available compound with potent and broad FLT3 inhibition activity.Oncogene201635232971297810.1038/onc.2015.36226411368
    [Google Scholar]
  110. XuY. WangN.Y. SongX.J. LeiQ. YeT.H. YouX.Y. ZuoW.Q. XiaY. ZhangL.D. YuL.T. Discovery of novel N-(5-(tert-butyl)isoxazol-3-yl)-N′-phenylurea analogs as potent FLT3 inhibitors and evaluation of their activity against acute myeloid leukemia in vitro and in vivo.Bioorg. Med. Chem.201523154333434310.1016/j.bmc.2015.06.03326142317
    [Google Scholar]
  111. SimonT. TomuleasaC. BojanA. Berindan-NeagoeI. BocaS. AstileanS. Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia.Nanoscale Res. Lett.201510146610.1186/s11671‑015‑1154‑226625890
    [Google Scholar]
  112. GalanisA. MaH. RajkhowaT. RamachandranA. SmallD. CortesJ. LevisM. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants.Blood201412319410010.1182/blood‑2013‑10‑52931324227820
    [Google Scholar]
  113. GillH. LeungA. KwongY.L. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy.Int. J. Mol. Sci.201617444010.3390/ijms1704044027023522
    [Google Scholar]
  114. SangaM. JamesJ. MariniJ. GammonG. HaleC. LiJ. An open-label, single-dose, phase 1 study of the absorption, metabolism and excretion of quizartinib, a highly selective and potent FLT3 tyrosine kinase inhibitor, in healthy male subjects, for the treatment of acute myeloid leukemia.Xenobiotica2017471085686910.1080/00498254.2016.121710027460866
    [Google Scholar]
  115. CooperT.M. CassarJ. EckrothE. MalvarJ. SpostoR. GaynonP. ChangB.H. GoreL. AugustK. PollardJ.A. DuBoisS.G. SilvermanL.B. OesterheldJ. GammonG. MagoonD. AnnesleyC. BrownP.A. A Phase I Study of Quizartinib Combined with Chemotherapy in Relapsed Childhood Leukemia: A Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study.Clin. Cancer Res.201622164014402210.1158/1078‑0432.CCR‑15‑199826920889
    [Google Scholar]
  116. LevisM. Quizartinib in acute myeloid leukemia.Clin. Adv. Hematol. Oncol.2013119586588
    [Google Scholar]
  117. WolleschakD. MackT.S. PernerF. FreyS. SchnöderT.M. WagnerM.C. HödingC. PilsM.C. ParknerA. KlicheS. SchravenB. HebelK. Brunner-WeinzierlM. RanjanS. IsermannB. LipkaD.B. FischerT. HeidelF.H. Clinically relevant doses of FLT3-kinase inhibitors quizartinib and midostaurin do not impair T-cell reactivity and function.Haematologica2014996e90e9310.3324/haematol.2014.10433124633870
    [Google Scholar]
  118. StoneR.M. FischerT. PaquetteR. SchillerG. SchifferC.A. EhningerG. CortesJ. KantarjianH.M. DeAngeloD.J. Huntsman-LabedA. DutreixC. del CorralA. GilesF. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia.Leukemia20122692061206810.1038/leu.2012.11522627678
    [Google Scholar]
  119. FischerT. StoneR.M. DeAngeloD.J. GalinskyI. EsteyE. LanzaC. FoxE. EhningerG. FeldmanE.J. SchillerG.J. KlimekV.M. NimerS.D. GillilandD.G. DutreixC. Huntsman-LabedA. VirkusJ. GilesF.J. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3.J. Clin. Oncol.201028284339434510.1200/JCO.2010.28.967820733134
    [Google Scholar]
  120. BharateJ.B. McConnellN. NareshG. ZhangL. LakkanigaN.R. DingL. ShahN.P. FrettB. LiH. Rational Design, Synthesis and Biological Evaluation of Pyrimidine-4,6-diamine derivatives as Type-II inhibitors of FLT3 Selective Against c-KIT.Sci. Rep.201881372210.1038/s41598‑018‑21839‑329487300
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266321816240822060818
Loading
/content/journals/ctmc/10.2174/0115680266321816240822060818
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer; Drugs; FDA; New molecules; Small molecules; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test