Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Introduction

(bay laurel) is a widely used plant known for its culinary, cosmetic, therapeutic, and pharmacological properties. Its leaves are particularly valued due to their rich content of bioactive compounds, such as essential oils, phenolic substances, flavonoids, and alkaloids. This review provides a comprehensive overview of the botanical characteristics, chemical composition, and therapeutic and industrial applications of these compounds.

Methods

An extensive literature review was conducted using scientific databases to collect and analyze published studies on the botanical traits, chemical constituents, traditional uses, pharmacological activities, and industrial applications of leaves.

Results

The analysis revealed that bay leaves contain a variety of bioactive components, notably essential oils, phenolics, flavonoids, and alkaloids. These compounds exhibit significant pharmacological properties, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities, as supported by various and studies.

Discussion

The findings underscore the therapeutic relevance of leaves, aligning with traditional medicinal practices and modern pharmacological research. However, limitations exist in terms of standardized extraction methods and clinical trials, which must be addressed to validate and optimize their clinical application.

Conclusion

leaves are a promising natural source of pharmacologically active compounds. Their diverse applications across traditional medicine, modern pharmacology, and industrial sectors highlight their continuing relevance and potential for broader utilization.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838401509250818105001
2025-09-16
2025-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838401509.html?itemId=/content/journals/ctm/10.2174/0122150838401509250818105001&mimeType=html&fmt=ahah

References

  1. AhmadM.A. LimY.H. ChanY.S. HsuC.Y. WuT.Y. SitN.W. Chemical composition, antioxidant, antimicrobial and antiviral activities of the leaf extracts of Syzygium myrtifolium.Acta Pharm.202272231732810.2478/acph‑2022‑001336651512
    [Google Scholar]
  2. ElefeR.G. Total phenolics content/antioxidant potential of 8 selected plants in southern Nigeria.Int. J. Pharm. Phytopharmacol. Res.2021113111410.51847/Ni7naJjr46
    [Google Scholar]
  3. YasinG. AnwerI. MajeedI. SabirM. MumtazS. MehmoodA. Pharmacodynamics of secondary metabolites extracts of some plants from cholistan desert in altering in vitro human hematological indices.International Journal of Pharmaceutical and Phytopharmacological Research.202010132147
    [Google Scholar]
  4. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  5. IslamM.R. RaufA. AlashS. FakirM.N.H. ThufaG.K. SowaM.S. MukherjeeD. KumarH. HussainM.S. AljohaniA.S.M. ImranM. Al AbdulmonemW. ThiruvengadamR. ThiruvengadamM. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways.Med. Oncol.202441613410.1007/s12032‑024‑02333‑538703282
    [Google Scholar]
  6. Morais SMd Cavalcanti ES, Costa SMO, Aguiar LA. Antioxidant action of teas and seasonings more consumed in Brazil.Rev. Bras. Farmacogn.200919315320
    [Google Scholar]
  7. ChaabenH. MotriS. Ben SelmaM. Etude des Propriétés Physico-chimiques de l’Huile de Fruit de Laurus nobilis et Effet de la Macération par les Fruits et les Feuilles de Laurus nobilis sur les Propriétés Physico-Chimiques et la Stabilité Oxydative de l’Huile d’Olive.J. Nat. Sci.20158873880
    [Google Scholar]
  8. HanifM.A. NawazH. KhanM.M. ByrneH.J. Medicinal plants of South Asia: Novel sources for drug discovery.Elsevier2019
    [Google Scholar]
  9. NabilaB. PirasA. FouziaB. FalconieriD. KheiraG. FedoulF.F. MajdaS.R. Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves.Nat. Prod. Res.202236498999310.1080/14786419.2020.183945033111582
    [Google Scholar]
  10. FidanH. StefanovaG. KostovaI. StankovS. DamyanovaS. StoyanovaA. ZheljazkovV.D. Chemical composition and antimicrobial activity of laurus nobilis L. Essential oils from Bulgaria.Molecules201924480410.3390/molecules2404080430813368
    [Google Scholar]
  11. ZibiR.D.N. TalaV.R.S. MbopiP.Y. BayagaN.H. TcheuffaG.M.N. NgoupayoJ. Comparative antiplasmodial and cytotoxic activities of coffea arabica and coffea canephora alkaloids extracts.Int. J. Pharm. Phytopharmacol. Res.2022121545910.51847/md2J5bMnQF
    [Google Scholar]
  12. GuenaneH. GheribA. Carbonell-BarrachinaÁ. Cano-LamadridM. KrikaF. BerrabahM. Minerals analysis, antioxidant and chemical composition of extracts of Laurus nobilis from southern Algeria.J. Mater. Environ. Sci.2016742534261
    [Google Scholar]
  13. CaputoL. NazzaroF. SouzaL. AlibertiL. De MartinoL. FratianniF. CoppolaR. De FeoV. Laurus nobilis: Composition of essential oil and its biological activities.Molecules201722693010.3390/molecules2206093028587201
    [Google Scholar]
  14. Alejo-ArmijoA. AltarejosJ. SalidoS. Phytochemicals and biological activities of laurel tree ( Laurus nobilis ).Nat. Prod. Commun.20171251934578X170120051910.1177/1934578X170120051930496684
    [Google Scholar]
  15. ChahalK. KaurM. BhardwajU. SinglaN. KaurA. A review on chemistry and biological activities of Laurus nobilis L. Essential oil.J. Pharmacogn. Phytochem.2017611531161
    [Google Scholar]
  16. KhodjaY.K. Bachir-beyM. LadjouziR. KatiaD. KhettalB. In vitro antioxidant and antibacterial activities of phenolic and alkaloid extracts of Laurus nobilis.South Asian J. Exp. Biol.202111334535410.38150/sajeb.11(3).p345‑354
    [Google Scholar]
  17. KhodjaY.K. DahmouneF. Bachir beyM. MadaniK. KhettalB. Conventional method and microwave drying kinetics of Laurus nobilis leaves: Effects on phenolic compounds and antioxidant activity.Braz. J. Food. Technol.202023e201921410.1590/1981‑6723.21419
    [Google Scholar]
  18. HussainM.S. ChaturvediV. GoyalS. SinghS. MirR.H. An Update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases.Curr. Bioact. Compd.2024205e25102322264810.2174/0115734072258656231013085318
    [Google Scholar]
  19. ButoS.K. TsangT.K. SielaffG.W. GutsteinL.L. MeiselmanM.S. Bay leaf impaction in the esophagus and hypopharynx.Ann. Intern. Med.19901131828310.7326/0003‑4819‑113‑1‑822350114
    [Google Scholar]
  20. BallabioR. GoetzP. Huile de graine/fruit de laurier Laurus nobilis L., Laurus azorica (Seub.) Franco, Laurus novocanariensis Rivas Mart., Lousã, Fern. Prieto, E. Dias, J.C. Costa et C. Aguiar.Phytotherapie20108214114410.1007/s10298‑010‑0547‑8
    [Google Scholar]
  21. ElzebroekATG Guide to Cultivated PlantsCABI2008496
    [Google Scholar]
  22. CandolleA. The Origin of Cultivated Plants. Lit. Res.202110.1017/CBO9781139107365
    [Google Scholar]
  23. TrofimovD. CadarD. Schmidt-ChanasitJ. Rodrigues de MoraesP.L. RohwerJ.G. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex.Sci. Rep.2022121112010.1038/s41598‑021‑04635‑435064146
    [Google Scholar]
  24. GuerdouhG BenabdekaderME Physicochemical and Antifungal Properties of Extracts of Two Medicinal Species: Noble Bay (Laurus Nobilis L) and Oleander (Nerium Oleander L). . 2017. Mohammed Seddik Ben Yahia University - Jijel, Master's Thesis.
    [Google Scholar]
  25. MezianeA RezaiguiaA. Protective effect of Laurus nobilis against oxidative stress induced by a synthetic fungicide.2021Available from: http://oldspace.univ-tebessa.dz:8080/ xmlui/handle/123456789/7471
  26. AmbroseDC ManickavasaganA NaikR Leafy medicinal herbs: Botany, chemistry, postharvest technology and usesCABI2016
    [Google Scholar]
  27. Díaz-MarotoM.C. Pérez-CoelloM.S. CabezudoM.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.).J. Agric. Food Chem.200250164520452410.1021/jf011573d12137470
    [Google Scholar]
  28. SellamiI.H. WannesW.A. BettaiebI. BerrimaS. ChahedT. MarzoukB. LimamF. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. Leaves as affected by different drying methods.Food Chem.2011126269169710.1016/j.foodchem.2010.11.022
    [Google Scholar]
  29. CakmakH. KumcuogluS. TavmanS. Thin layer drying of bay leaves Laurus nobilis L. In conventional and microwave oven.Akademik Gıda.2013112026
    [Google Scholar]
  30. KuzgunkayaE.H. HepbasliA. Exergetic evaluation of drying of laurel leaves in a vertical ground-source heat pump drying cabinet.Int. J. Energy Res.200731324525810.1002/er.1245
    [Google Scholar]
  31. RizwanaH. KubaisiN.A. Al-MeghailaithN.N. MoubayedN.M.S. AlbasherG. Evaluation of chemical composition, antibacterial, antifungal, and cytotoxic activity of laurus nobilis l grown in Saudi Arabia.J. Pure Appl. Microbiol.20191342073208510.22207/JPAM.13.4.19
    [Google Scholar]
  32. BarrosoW. Duarte GondimR. MarquesV. LaelM. SantosP. Oliveira CastroA. Pharmacognostic characterization of laurus nobilis L. Leaves.J. Chem. Pharm. Res.2018103037
    [Google Scholar]
  33. YasinG. NoorS. IrshadS. HaqI. FatimaS. AnwerI. Solvents based extraction of antioxidants and their activity from some plants of cholistan desert, Pakistan.Int. J. Pharm. Phytopharmacol. Res.2020103707610.51847/wPk8ui4
    [Google Scholar]
  34. PincemailJ. BonjeanK. CayeuxK. DefraigneJ.O. Mécanismes physiologiques de la défense antioxydante.Nutr. Clin. Metab.200216423323910.1016/S0985‑0562(02)00166‑8
    [Google Scholar]
  35. PincemailJ. MeurisseM. LimetR. Defraigne J. Fumée de cigarette: une source potentielle de production d’espèces oxygénées activées.Medi-Sphere199878
    [Google Scholar]
  36. DebydupontG. DebyC. LamyM. Données actuelles sur la toxicité de l’oxygèneCurrent data on the toxicity of oxygen.Reanimation2002111283910.1016/S1624‑0693(01)00208‑0
    [Google Scholar]
  37. HoffmannK.H. Essential oils. Zeitschrift fur Naturforschung C.J. Biosci.202075177
    [Google Scholar]
  38. KhanG. HussainM.S. SultanaA. KhanY. FatimaR. MaqboolM. BishtA.S. Unveiling the Therapeutic Potential of Rumex abyssinicus: Phytochemical Insights and Pharmacological Applications.Curr. Pharmacol. Rep.20251113210.1007/s40495‑025‑00411‑4
    [Google Scholar]
  39. Abu-DahabR. KasabriV. AfifiF.U. Evaluation of the volatile oil composition and antiproliferative activity of laurus nobilis l.(lauraceae) on breast cancer cell line models.Rec. Nat. Prod.201482136147
    [Google Scholar]
  40. GhannadiA. ZolfaghariB. Samsam-ShariatS.H. Chemical composition of volatile oils from the endocarp and hulls of persian bay laurel fruit: A fragrant herb used in traditional Iranian medicine.Journal of Reports in Pharmaceutical Sciences2013211410.4103/2322‑1232.222232
    [Google Scholar]
  41. MoghtaderM. SalariH. Comparative survey on the essential oil composition from the leaves and flowers of Laurus nobilis L. From Kerman province.J. Ecol. Nat. Environ.2012415015310.5897/JENE11.126
    [Google Scholar]
  42. ChalchatJ.C. ÖzcanM.M. FigueredoG. The composition of essential oils of different parts of laurel, mountain tea, sage and ajowan.J. Food Biochem.201135248449910.1111/j.1745‑4514.2010.00397.x
    [Google Scholar]
  43. OrdoudiS.A. PapapostolouM. NenadisN. MantzouridouF.T. TsimidouM.Z. Bay Laurel (Laurus nobilis L.) Essential oil as a food preservative source: Chemistry, quality control, activity assessment, and applications to olive industry products.Foods202211575210.3390/foods1105075235267385
    [Google Scholar]
  44. HarborneJ.B. MabryT.J. The flavonoids: Advances in research.Springer2013
    [Google Scholar]
  45. NaczkM. ShahidiF. Extraction and analysis of phenolics in food.J. Chromatogr. A200410541-29511110.1016/S0021‑9673(04)01409‑815553136
    [Google Scholar]
  46. NithyaT. JayanthiJ. RagunathanM. Antioxidant activity, total phenol, flavonoid, alkaloid, tannin, and saponin contents of leaf extracts of Salvinia molesta DS Mitchell (1972).Asian J. Pharm. Clin. Res.20169200203
    [Google Scholar]
  47. ZerroukiK. RiaziA. Antimicrobial activity of phenolic extracts of Juniperus phoenicea and Glycyrrhiza glabra from Western Algeria.Int. J. Pharm. Phytopharmacol. Res.2021115182410.51847/CUNIhT0KbT
    [Google Scholar]
  48. ZhilyakovaET NovikovOO PisarevDI MalyutinaAY Studying the polyphenolic structure of Laurus Nobilis L. leaves.Indo Am. J. Pharm. Sci.2017430663077
    [Google Scholar]
  49. DobroslavićE. RepajićM. Dragović-UzelacV. Elez GarofulićI. Isolation of Laurus nobilis leaf polyphenols: A review on current techniques and future perspectives.Foods202211223510.3390/foods1102023535053967
    [Google Scholar]
  50. KhodjaY.K. Bachir-BeyM. BelmouhoubM. LadjouziR. DahmouneF. Khettal BJIJoSM. The botanical study, phytochemical composition, and biological activities of Laurus nobilis L. leaves.RE:view202310269296
    [Google Scholar]
  51. HavsteenB.H. The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.2002962-36720210.1016/S0163‑7258(02)00298‑X12453566
    [Google Scholar]
  52. BravoL. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance.Nutr. Rev.1998561131733310.1111/j.1753‑4887.1998.tb01670.x9838798
    [Google Scholar]
  53. Di CarloG. MascoloN. IzzoA.A. CapassoF. Flavonoids: Old and new aspects of a class of natural therapeutic drugs.Life Sci.199965433735310.1016/S0024‑3205(99)00120‑410421421
    [Google Scholar]
  54. HossainM.H. JahanF. HowladerM. DeyS. HiraA. AhmedA. Evaluation of antiinflammatory activity and total flavonoids content of Manilkara zapota (linn.) bark.Int. J. Pharm. Phytopharmacol. Res.201223539
    [Google Scholar]
  55. MontoroP. BracaA. PizzaC. DetommasiN. Structure?antioxidant activity relationships of flavonoids isolated from different plant species.Food Chem.200592234935510.1016/j.foodchem.2004.07.028
    [Google Scholar]
  56. HussainM.S. GuptaG. GoyalA. ThapaR. almalkiW.H. KazmiI. AlzareaS.I. FuloriaS. MeenakshiD.U. JakhmolaV. PandeyM. SinghS.K. DuaK. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.2348237530602
    [Google Scholar]
  57. Muñiz-MárquezD.B. Martínez-ÁvilaG.C. Wong-PazJ.E. Belmares-CerdaR. Rodríguez-HerreraR. AguilarC.N. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. And their antioxidant activity.Ultrason. Sonochem.20132051149115410.1016/j.ultsonch.2013.02.00823523026
    [Google Scholar]
  58. VinhaA.F. GuidoL.F. CostaA.S.G. AlvesR.C. OliveiraM.B.P.P. Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp.Food Funct.2015661944194910.1039/C5FO00229J25976492
    [Google Scholar]
  59. HassanS.B. GullboJ. HuK. BerenjianS. MoreinB. NygrenP. The nanoparticulate Quillaja Saponin BBE is selectively active towards renal cell carcinoma.Anticancer Res.201333114315123267139
    [Google Scholar]
  60. PechB. BrunetonJ. Alcaloïdes du laurier noble, Laurus nobilis.J. Nat. Prod.198245556056310.1021/np50023a008
    [Google Scholar]
  61. RavindranP. The encyclopedia of herbs & spices.CABI2017
    [Google Scholar]
  62. FangF. SangS. ChenK.Y. GosslauA. HoC.T. RosenR.T. Isolation and identification of cytotoxic compounds from Bay leaf (Laurus nobilis).Food Chem.200593349750110.1016/j.foodchem.2004.10.029
    [Google Scholar]
  63. SayyahM. SaroukhaniG. PeiroviA. KamalinejadM. Analgesic and anti-inflammatory activity of the leaf essential oil of Laurus nobilis Linn.Phytother. Res.200317773373610.1002/ptr.119712916069
    [Google Scholar]
  64. BarlaA. TopçuG. ÖksüzS. TümenG. KingstonD. Identification of cytotoxic sesquiterpenes from Laurus nobilis L.Food Chem.200710441478148410.1016/j.foodchem.2007.02.019
    [Google Scholar]
  65. Mirbadal ZadehR.I ShirdelZ. Antidiabetic effect of Laurus nobilis hydroalcoholic extract in rat.Journal of North Khorasan University of Medical Sciences201132818510.29252/jnkums.3.2.81
    [Google Scholar]
  66. AljamalA. Effects of bay leaves on blood glucose and lipid profiles on the patients with type 1 diabetes.World Acad. Sci. Eng. Technol.201069211214
    [Google Scholar]
  67. ParthasarathyVA ChempakamB ZachariahTJ Chemistry of spicesCABI2008
    [Google Scholar]
  68. BatoolS. KheraR.A. HanifM.A. AyubM.A. Bay leaf. Medicinal Plants of South Asia.Elsevier2020637410.1016/B978‑0‑08‑102659‑5.00005‑7
    [Google Scholar]
  69. ElmastaşM. GülçinI. IşildakÖ. KüfrevioğluÖ. İbaoğluK. Aboul-EneinH. Radical scavenging activity and antioxidant capacity of bay leaf extracts.J. Indian Chem. Soc.20063258266
    [Google Scholar]
  70. KhanA. ZamanG. AndersonR.A. Bay leaves improve glucose and lipid profile of people with type 2 diabetes.J. Clin. Biochem. Nutr.2009441525610.3164/jcbn.08‑18819177188
    [Google Scholar]
  71. BourebabaN. Kornicka-GarbowskaK. MaryczK. BourebabaL. KowalczukA. Laurus nobilis ethanolic extract attenuates hyperglycemia and hyperinsulinemia-induced insulin resistance in HepG2 cell line through the reduction of oxidative stress and improvement of mitochondrial biogenesis – Possible implication in pharmacotherapy.Mitochondrion20215919021310.1016/j.mito.2021.06.00334091077
    [Google Scholar]
  72. MohammedR.R. OmerA.K. YenerZ. UyarA. AhmedA.K. Biomedical effects of Laurus nobilis L. Leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research.Ann. Med. Surg. (Lond.)2020616118819733520200
    [Google Scholar]
  73. Al ChalabiS.M.M. MajeedD.M. JasimA.A. Al-AzzawiK.S. Benefit effect of ethanolic extract of Bay leaves (Laura nobilis) on blood sugar level in adult diabetic rats induced by alloxan monohydrate.Ann. Trop. Med. Public Health2020231623160810.36295/ASRO.2020.231608
    [Google Scholar]
  74. CostantineF.D. RobinI.T. MohamadA.M. BilalN. HachemA. RawanH.C. AimeeM.D. KamarH.E. MariaK.E.K. PamelaF.E.H. HalaT.F. ElioJ.F. AhmadG.G. TonyP.H. AbirR.J. SulaH.N. NouhadS. DonnaG.T. JoeyC.D. EstherT. WassimN.S. Laurus nobilis leaves extract protects against high fat diet-induced type 2 Diabetes in rats.J. Pharmacogn. Phytother.2021133829010.5897/JPP2021.0609
    [Google Scholar]
  75. Duletić-LauševićS. OalđeM. Alimpić-AradskiA. In vitro evaluation of antioxidant, antineurodegenerative and antidiabetic activities of Ocimum basilicum L., Laurus nobilis L. leaves and Citrus reticulata Blanco peel extracts.Lekovite sirovine2019391606810.5937/leksir1939060D
    [Google Scholar]
  76. SamarraiAL NajiNA HameedRR Effect of Bay leaf (Laurus nobilis L.) and its isolated (flavonoids and glycosides) on the lipids profile in the local Iraqi female rabbits.Tikrit J. Pure Sci.2018227275
    [Google Scholar]
  77. ChbiliC. MaouaM. SelmiM. MradS. KhairiH. LimemK. MrizekN. SaguemS. Ben FredjM. Evaluation of daily Laurus nobilis tea consumption on lipid profile biomarkers in healthy volunteers.J. Am. Coll. Nutr.202039873373810.1080/07315724.2020.172778732213118
    [Google Scholar]
  78. AyoubN.A. HashimA.N. HusseinS.A. HegaziN.M. HassaneinH.M. NawwarM.A. Hepatoprotective effect of bay leaves crude extract on primary cultured rat hepatocytes.Eur. Sci. J.20133647655
    [Google Scholar]
  79. RavindranC.A. MurugaiyahV. KhiangP. XaviorR. Hepatoprotective activity of leaf of methanol extract of Laurus nobilis L. Against paracetamol induced hepatotoxicity in rats.Asian J. Pharm. Clin. Res.20136153157
    [Google Scholar]
  80. GG. ST. ShK. HV. Effect of Laurus nobilis extract on the functioning of liver against ccl4 induced toxicity.J. Exp. Biol. Agric. Sci.20153217418310.18006/2015.3(2).174.183
    [Google Scholar]
  81. SamejimaK. KanazawaK. AshidaH. DannoG. Bay laurel contains antimutagenic kaempferyl coumarate acting against the dietary carcinogen 3-amino-1-methyl-5 H-pyrido [4, 3-b] indole (Trp-P-2).J. Agric. Food Chem.199846124864486810.1021/jf980714h
    [Google Scholar]
  82. BilenS. BulutM. Effects of laurel (Laurus nobilis) on the non-specific immune responses of rainbow trout (Oncorhynchus mykiss, Walbaum).J. Anim. Vet. Adv.2010981275127910.3923/javaa.2010.1275.1279
    [Google Scholar]
  83. SayyahM. ValizadehJ. KamalinejadM. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures.Phytomedicine20029321221610.1078/0944‑7113‑0011312046861
    [Google Scholar]
  84. OzcanB. EsenM. SangunM.K. ColeriA. CaliskanM. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil.J. Environ. Biol.201031563764121387914
    [Google Scholar]
  85. BenzianeZ. BoukirA. Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco.Aust. J. Basic Appl. Sci.2009338183824
    [Google Scholar]
  86. NafisA. KasratiA. JamaliC.A. CustódioL. VitaliniS. IritiM. HassaniL. A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from laurus nobilis l. and prunus armeniaca L. From Morocco with Antimicrobial Drugs: New approach for health promoting products.Antibiotics20209414010.3390/antibiotics904014032218155
    [Google Scholar]
  87. MerghniA. MarzoukiH. HentatiH. AouniM. MastouriM. Antibacterial and antibiofilm activities of Laurus nobilis L. Essential oil against Staphylococcus aureus strains associated with oral infections.Pathol. Biol.2015S0369-8114(15)00101-726657812
    [Google Scholar]
  88. BerendikaM. Domjanić DrozdekS. OdehD. OršolićN. DragičevićP. SokolovićM. GarofulićI.E. ĐikićD. JurčevićI.L. Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health.Molecules202227258110.3390/molecules2702058135056895
    [Google Scholar]
  89. PeixotoL.R. RosalenP.L. FerreiraG.L.S. FreiresI.A. de CarvalhoF.G. CastellanoL.R. de CastroR.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.Arch. Oral Biol.20177317918510.1016/j.archoralbio.2016.10.01327771586
    [Google Scholar]
  90. PatrakarR. MansuriyaM. PatilP. Phytochemical and pharmacological review on Laurus nobilis.International Journal of Pharmaceutical and Chemical Sciences.20121595602
    [Google Scholar]
  91. RovielloV. RovielloG.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants.Environ. Chem. Lett.202119169971010.1007/s10311‑020‑01063‑032837486
    [Google Scholar]
  92. FranchommeP. JolloisR. PénoëlD. L’aromathérapie exactement: Encyclopédie de l’utilisation thérapeutique des extraits aromatiques.Paris, France2001
    [Google Scholar]
  93. ChahalK.K. BansalR. KaurR. Chemistry and insecticidal potential of bay leaf essential oil against stored grain pest of wheat.J. Appl. Nat. Sci.2016842049205410.31018/jans.v8i4.1085
    [Google Scholar]
  94. Mediouni Ben JemâaJ. TersimN. ToudertK.T. KhoujaM.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. From Tunisia, Algeria and Morocco, and comparative chemical composition.J. Stored Prod. Res.2012489710410.1016/j.jspr.2011.10.003
    [Google Scholar]
  95. ErlerF. UlugI. YalcinkayaB. Repellent activity of five essential oils against Culex pipiens.Fitoterapia2006777-849149410.1016/j.fitote.2006.05.02816890387
    [Google Scholar]
  96. El-SawiS. IbrahimM. AliA. In vitro cytotoxic, antioxidant and antimicrobial activities of essential oil of leaves of Laurus nobilis L. grown in Egypt and its chemical composition.Aromat. Plant Sci. Biotechnol.20092001623
    [Google Scholar]
  97. TehSS EeGC MahSH YongYK LimYM RahmaniM AhmadZ In vitro cytotoxic, antioxidant, and antimicrobial activities of Mesua beccariana (Baill.) Kosterm., Mesua ferrea Linn., and Mesua congestiflora extracts.Biomed Res Int.2013201351707210.1155/2013/51707224089682Epub 2013 Sep 8.
    [Google Scholar]
  98. ThanekarD. DhodiJ.B. JuvekarA.R. Evaluation of in vitro cytotoxic activity of petroleum ether, methanol and aqueous extracts of Indian bay leaf, Cinnamomum tamala (Buch.-ham.) T. Nees & eberm. on cancer cells.World J. Pharm. Pharm. Sci.20133519533
    [Google Scholar]
  99. RaghavanG.S.V. OrsatV. Recent advances in drying of biomaterials for superior quality bioproducts.Asia-Pac. J. Chem. Eng.200721202910.1002/apj.51
    [Google Scholar]
  100. SchweiggertU. CarleR. SchieberA. Conventional and alternative processes for spice production – A review.Trends Food Sci. Technol.200718526026810.1016/j.tifs.2007.01.005
    [Google Scholar]
  101. SpenceC. Why cook with bay leaves?Int. J. Gastron. Food Sci.202333610076610.1016/j.ijgfs.2023.100766
    [Google Scholar]
  102. Olvera-AguirreG. Piñeiro-VázquezÁ.T. Sanginés-GarcíaJ.R. Sánchez ZárateA. Ochoa-FloresA.A. Segura-CamposM.R. Vargas-Bello-PérezE. Chay-CanulA.J. Using plant-based compounds as preservatives for meat products: A review.Heliyon202396e1707110.1016/j.heliyon.2023.e1707137383206
    [Google Scholar]
  103. RehabM.A.E-B. ZeinabS.H. Eugenol and linalool: Comparison of their antibacterial and antifungal activities.Afr. J. Microbiol. Res.201610441860187210.5897/AJMR2016.8283
    [Google Scholar]
  104. Fajdek-BiedaA. PawlińskaJ. WróblewskaA. ŻwierełłoW. ŁuśA. KlimowiczA. Antibacterial and preservative potential of eugenol and isoeugenol in cosmetics: A natural solution for product stability.Appl. Sci.2025154212910.3390/app15042129
    [Google Scholar]
  105. KaurinovicB. VastagD. Flavonoids and phenolic acids as potential natural antioxidants.London, United KingdomIntechOpen201910.5772/intechopen.83731
    [Google Scholar]
  106. Faria-SilvaA.C. MotaA.L. CostaA.M. SilvaA.M. AscensoA. ReisC. Application of natural raw materials for development of cosmetics through nanotechnology. Nanotechnology for the preparation of cosmetics using plant-based extracts.Elsevier2022157201
    [Google Scholar]
  107. DadalioǧluI. EvrendilekG.A. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens.J. Agric. Food Chem.200452268255826010.1021/jf049033e15612826
    [Google Scholar]
  108. TometriS.S. AhmadyM. AriaiiP. SoltaniM.S. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef.J. Food Meas. Charact.20201463333334410.1007/s11694‑020‑00578‑y
    [Google Scholar]
  109. PaparellaA. NawadeB. Shaltiel-HarpazL. IbdahM. A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of laurus nobilis.Plants20221191209
    [Google Scholar]
  110. AnzanoA. de FalcoB. GrausoL. MottiR. LanzottiV. A review of its botany, traditional uses, phytochemistry and pharmacology.Phytochem. Rev.202221256561510.1007/s11101‑021‑09791‑z
    [Google Scholar]
  111. PaygudeP. ThiteS. KumarA. BhosleA. PawarR. ManeR. JoshiR. KasarM. ChavanP. GayakwadM. A dataset revolutionizing Indian bay leaf analysis.Data Brief20245711102410.1016/j.dib.2024.11102439554547
    [Google Scholar]
  112. Nouri Jdaidi Houcine Selmi Foued Aloui Abes Chaabane Ethno botanical study of some rare medicinal species in Tunisia: Case of Laurus nobilis L.Comprehensive Research and Reviews in Science and Technology20221103003610.57219/crrst.2022.1.1.0024
    [Google Scholar]
  113. DobroslavićE. Elez GarofulićI. ZorićZ. PedisićS. Dragović-UzelacV. Polyphenolic characterization and antioxidant capacity of Laurus nobilis L. Leaf extracts obtained by green and conventional extraction techniques.Processes2021910184010.3390/pr9101840
    [Google Scholar]
  114. StefanovaG. GirovaT. GochevV. StoyanovaM. PetkovaZ. StoyanovaA. ZheljazkovV.D. Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil.Heliyon2020612e0549110.1016/j.heliyon.2020.e0549133385077
    [Google Scholar]
  115. PapageorgiouV. MallouchosA. KomaitisM. Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle.J. Agric. Food Chem.200856145743575210.1021/jf800939318578534
    [Google Scholar]
  116. DiasM.I. BarrosL. DueñasM. AlvesR.C. OliveiraM.B.P.P. Santos-BuelgaC. FerreiraI.C.F.R. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample?Food Chem.201415633934610.1016/j.foodchem.2014.01.12224629978
    [Google Scholar]
  117. NasuhovaN.M. ShevchukO.M. LogvinenkoL.A. Investigation of phenolic compounds in extracts from the leaves of laurus nobilis l.Pharmacy & Pharmacology20175215016310.19163/2307‑9266‑2017‑5‑2‑150‑163
    [Google Scholar]
  118. Dall’AcquaS. CervellatiR. SperoniE. CostaS. GuerraM.C. StellaL. GrecoE. InnocentiG. Phytochemical composition and antioxidant activity of Laurus nobilis L. Leaf infusion.J. Med. Food200912486987610.1089/jmf.2008.011919735189
    [Google Scholar]
  119. LuM. YuanB. ZengM. ChenJ. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China.Food Res. Int.201144253053610.1016/j.foodres.2010.10.055
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838401509250818105001
Loading
/content/journals/ctm/10.2174/0122150838401509250818105001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test