Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background and Objectives

Enterovirus A71 (EV-A71), is a hand, foot and mouth disease that has become one of the major health concerns in the Asia-Pacific region. Prior studies have reported that () extract may possess antiviral activity against EV-A71. In this study, the chemical composition of aqueous extract and its anti-EV-A71 properties were studied.

Materials and Methods

Anti-EV-A71 properties were studied according to different viral infection stages using cell survivability and viral titration assay repeatability against different EV-A71 sub-genotypes and stability in human saliva and hydrochloric acid was also tested. The total carbohydrate and protein content of the extract were estimated and active compounds were screened using LC-MS analysis.

Results

The extract exhibits significant inhibition against EV-A71 at a concentration of 1 mg/ml with minimal cytotoxicity. This antiviral effect is robust and resilient even in the presence of human salivary enzymes and an acidic environment. Intriguingly, our study indicates that the SCARB2 receptor does not seem to play a role in mediating the anti-EV-A71 activity. These promising results extend to various sub-genotypes of EV-A71. The total carbohydrate and protein content in the extract was 521.13 µg/ml and 21 µg/ml, respectively. LC-MS analysis unveiled the presence of 4 known and 16 unknown compounds, expanding our understanding of its composition.

Conclusion

These results underscore the potential of aqueous extract and its constituents as promising candidates for the development of novel antiviral agents. Furthermore, our findings contribute to the broader field of antiviral research and highlight the potential of traditional Chinese medicine in combating viral infections.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838320758241101041934
2025-02-19
2025-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838320758.html?itemId=/content/journals/ctm/10.2174/0122150838320758241101041934&mimeType=html&fmt=ahah

References

  1. PradhanS. Nutritional profile and pharmacological aspect of Houttuynia cordata Thunb. and their therapeutic applications.Pharmacol. Res. Mod. Chinese Med.2023910031110.1016/j.prmcm.2023.10031136061012
    [Google Scholar]
  2. LaldinsangiC. The therapeutic potential of Houttuynia cordata: A current review.Heliyon202288e1038610.1016/j.heliyon.2022.e1038636061012
    [Google Scholar]
  3. KumarM.K. PrasadS. LalooD. JoshiA. HemalathaS. Pharmacognostical and phytochemical standardization of Houttuynia cordata Thunb.: A potent medicinal herb of North–Eastern India and China.Pharmacogn. J.201461344210.5530/pj.2014.1.6
    [Google Scholar]
  4. RafiqS. HaoH. IjazM. RazaA. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review.Pharmaceuticals2022159107910.3390/ph1509107936145299
    [Google Scholar]
  5. RamisJ. TorrentJ. MisR. BarbanojM. AbadiasM. JaneF. FornJ. Pharmacokinetics of fosfosal after single and multiple oral doses in man.Int. J. Clin. Pharmacol. Ther. Toxicol.19882694214273264273
    [Google Scholar]
  6. ChenX. WangZ. YangZ. WangJ. XuY. TanR. LiE. Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation.Antiviral Res.201192234134510.1016/j.antiviral.2011.09.00521951655
    [Google Scholar]
  7. HungP.Y. HoB.C. LeeS.Y. ChangS.Y. KaoC.L. LeeS.S. LeeC.N. Houttuynia cordata targets the beginning stage of herpes simplex virus infection.PLoS One2015102e011547510.1371/journal.pone.011547525643242
    [Google Scholar]
  8. LiJ.J. ChenG.D. FanH.X. HuD. ZhouZ.Q. LanK.H. ZhangH.P. MaedaH. YaoX.S. GaoH. Houttuynoid M, an Anti-HSV Active Houttuynoid from Houttuynia cordata Featuring a Bis-houttuynin Chain Tethered to a Flavonoid Core.J. Nat. Prod.201780113010301310.1021/acs.jnatprod.7b0062029099182
    [Google Scholar]
  9. LiuP. YangC. LinS. ZhaoG. ZhangT. GuoS. JiangK. WuH. QiuC. GuoM. DengG. Sodium houttuyfonate inhibits LPS-induced mastitis in mice via the NF-κB signalling pathway.Mol. Med. Rep.20191932279228610.3892/mmr.2019.984630664199
    [Google Scholar]
  10. LingL. LuY. ZhangY. ZhuH. TuP. LiH. ChenD. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling.Phytomedicine20206715315010.1016/j.phymed.2019.15315031958713
    [Google Scholar]
  11. AswathyrajS. ArunkumarG. AlidjinouE.K. HoberD. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy.Med. Microbiol. Immunol. (Berl.)2016205539740710.1007/s00430‑016‑0465‑y27406374
    [Google Scholar]
  12. NayakG. BhuyanS.K. BhuyanR. SahuA. KarD. KuanarA. Global emergence of Enterovirus 71: a systematic review.Beni. Suef Univ. J. Basic Appl. Sci.20221117810.1186/s43088‑022‑00258‑435730010
    [Google Scholar]
  13. WongK.T. OngK.C. CoudercT. LecuitM. Enterovirus A71 Infection.Virology2020411228830510.1002/9781119467748.ch22
    [Google Scholar]
  14. SolomonT. LewthwaiteP. PereraD. CardosaM.J. McMinnP. OoiM.H. Virology, epidemiology, pathogenesis, and control of enterovirus 71.Lancet Infect. Dis.2010101177879010.1016/S1473‑3099(10)70194‑820961813
    [Google Scholar]
  15. SwainS.K. GadnayakA. MohantyJ.N. SarangiR. DasJ. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion.Rev. Med. Virol.2022324e232210.1002/rmv.232234997684
    [Google Scholar]
  16. TanC.W. LaiJ.K.F. SamI.C. ChanY.F. Recent developments in antiviral agents against enterovirus 71 infection.J. Biomed. Sci.20142111410.1186/1423‑0127‑21‑1424521134
    [Google Scholar]
  17. TanS.H. OngK.C. PereraD. WongK.T. A monoclonal antibody to ameliorate central nervous system infection and improve survival in a murine model of human Enterovirus-A71 encephalomyelitis.Antiviral Res.201613219620310.1016/j.antiviral.2016.04.01527340013
    [Google Scholar]
  18. TanS.H. OngK.C. WongK.T. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization.J. Neuropathol. Exp. Neurol.20147311999100810.1097/NEN.000000000000012225289894
    [Google Scholar]
  19. ChenX. WangC. XuL. ChenX. WangW. YangG. TanR.X. LiE. JinY. A laboratory evaluation of medicinal herbs used in china for the treatment of hand, foot, and mouth disease.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/50456323554831
    [Google Scholar]
  20. ZhangD. ChenJ. Ba-TheinW. Hand-foot-mouth disease and use of steroids, intravenous immunoglobulin, and traditional Chinese herbs in a tertiary hospital in Shantou, China.BMC Complement. Altern. Med.201818119010.1186/s12906‑018‑2259‑929925360
    [Google Scholar]
  21. HeX. ZhangM. ZhaoC. ZhengP. ZhangX. XuJ. From monovalent to multivalent vaccines, the exploration for potential preventive strategies against hand, foot, and mouth disease (HFMD).Virol. Sin.202136216717510.1007/s12250‑020‑00294‑332997323
    [Google Scholar]
  22. HuL. SunJ. WangY. TanD. CaoZ. GaoL. GuanY. JiaX. MaoJ. A review of inactivated COVID-19 vaccine development in China: Focusing on safety and efficacy in special populations.Vaccines (Basel)2023116104510.3390/vaccines1106104537376434
    [Google Scholar]
  23. ZhangH. Observation on the inhibitory effect of Houttuynia cordata water extract and its main components on enterovirus type 71 in vitro.Shandong Med.2018572832
    [Google Scholar]
  24. LinT.Y. LiuY.C. JhengJ.R. TsaiH.P. JanJ.T. WongW.R. HorngJ.T. Anti-enterovirus 71 activity screening of chinese herbs with anti-infection and inflammation activities.Am. J. Chin. Med.200937114315810.1142/S0192415X0900673419222118
    [Google Scholar]
  25. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_1932801594
    [Google Scholar]
  26. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: a comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x29692864
    [Google Scholar]
  27. KärberG. Beitrag zur kollektiven behandlung pharmakologischer reihenversuche.Archiv. f. experiment Pathol. u. Pharmakol.1931162448048310.1007/BF01863914
    [Google Scholar]
  28. BhattaraiK.R. KimH.R. ChaeH.J. Compliance with saliva collection protocol in healthy volunteers: Strategies for managing risk and errors.Int. J. Med. Sci.201815882383110.7150/ijms.2514630008593
    [Google Scholar]
  29. DiT. ChenG. SunY. OuS. ZengX. YeH. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra.J. Funct. Foods201840182710.1016/j.jff.2017.10.040
    [Google Scholar]
  30. PedersenP.B. BerthelsenR. RadesT. JørgensenS.A. VilmannP. Bar-ShalomD. BaldursdottirS. MüllertzA. Physico-chemical characterization of aspirated and simulated human gastric fluids to study their influence on the intrinsic dissolution rate of cinnarizine.Int. J. Pharm.202262212185610.1016/j.ijpharm.2022.12185635618175
    [Google Scholar]
  31. DuBoisM. GillesK.A. HamiltonJ.K. RebersP.A. SmithF. Colorimetric method for determination of sugars and related substances.Anal. Chem.195628335035610.1021/ac60111a017
    [Google Scholar]
  32. HemalathaS. KumarM. PrasadS.K. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb.Pharmacogn. Rev.2014815223510.4103/0973‑7847.12552524600193
    [Google Scholar]
  33. ChiowK.H. PhoonM.C. PuttiT. TanB.K.H. ChowV.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection.Asian Pac. J. Trop. Med.2016911710.1016/j.apjtm.2015.12.00226851778
    [Google Scholar]
  34. DasS.K. MahantaS. TantiB. TagH. HuiP.K. Identification of phytocompounds from Houttuynia cordata Thunb. as potential inhibitors for SARS-CoV-2 replication proteins through GC–MS/LC–MS characterization, molecular docking and molecular dynamics simulation.Mol. Divers.202226136538810.1007/s11030‑021‑10226‑233961167
    [Google Scholar]
  35. ChenH. ShaX. LuoY. ChenJ. LiX. WangJ. CaoG. PengX. Acute and subacute toxicity evaluation of Houttuynia cordata ethanol extract and plasma metabolic profiling analysis in both male and female rats.J. Appl. Toxicol.202141122068208210.1002/jat.419834057207
    [Google Scholar]
  36. WuZ. DengX. HuQ. XiaoX. JiangJ. MaX. WuM. Houttuynia cordata thunb: An ethnopharmacological review.Front. Pharmacol.20211271469410.3389/fphar.2021.71469434539401
    [Google Scholar]
  37. YamayoshiS. YamashitaY. LiJ. HanagataN. MinowaT. TakemuraT. KoikeS. Scavenger receptor B2 is a cellular receptor for enterovirus 71.Nat. Med.200915779880110.1038/nm.199219543282
    [Google Scholar]
  38. ShenC. XuY. JiJ. WeiJ. JiangY. YangY. YangM. HuangH. ZouR. FangC. ZengF. YangF. WangX. YuanJ. LiJ. WangX. YangH. GongS. WangH. XiaH. MaJ. LiuY. Intestinal microbiota has important effect on severity of hand foot and mouth disease in children.BMC Infect. Dis.2021211106210.1186/s12879‑021‑06748‑734645414
    [Google Scholar]
  39. ZhaoY. ZhongX. YanJ. SunC. ZhaoX. WangX. Potential roles of gut microbes in biotransformation of natural products: An overview.Front. Microbiol.20221395637810.3389/fmicb.2022.95637836246222
    [Google Scholar]
  40. ZhangS. HuJ. SunY. TanH. YinJ. GengF. NieS. Review of structure and bioactivity of the Plantago (Plantaginaceae) polysaccharides.Food Chem. X20211210015810.1016/j.fochx.2021.10015834825168
    [Google Scholar]
  41. ChengD. SunL. ZouS. ChenJ. MaoH. ZhangY. LiaoN. ZhangR. Antiviral effects of Houttuynia cordata polysaccharide extract on murine norovirus-1 (MNV-1)—a human norovirus surrogate.Molecules2019249183510.3390/molecules2409183531086065
    [Google Scholar]
  42. ChoiJ. JooJ. InJ. KimD. KimY. ChoiS.T. KimJ.H. JungH.S. The small molecule kobusone can stimulate islet β-cell replication in vivo.J. Int. Med. Res.20214970300060521103284910.1177/0300060521103284934320857
    [Google Scholar]
  43. SunJ. TianZ. WuJ. LiJ. WangQ. HuangS. WangM. Pristimerin exerts pharmacological effects through multiple signaling pathways: A comprehensive review.Drug Des. Devel. Ther.2024181673169410.2147/DDDT.S46009338779590
    [Google Scholar]
  44. ChenR.Z. YangF. ZhangM. SunZ.G. ZhangN. Cellular and molecular mechanisms of pristimerin in cancer therapy: Recent advances.Front. Oncol.20211167154810.3389/fonc.2021.67154834026649
    [Google Scholar]
  45. WangJ. HuY. ZhengM. Enterovirus A71 antivirals: Past, present, and future.Acta Pharm. Sin. B20221241542156610.1016/j.apsb.2021.08.01735847514
    [Google Scholar]
  46. WeiY. LiuH. HuD. HeQ. YaoC. LiH. HuK. WangJ. Recent Advances in Enterovirus A71 Infection and Antiviral Agents.Lab. Invest.2024104210029810.1016/j.labinv.2023.10029838008182
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838320758241101041934
Loading
/content/journals/ctm/10.2174/0122150838320758241101041934
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antiviral activity; EV-A71; foot; hand; houttuynia cordata; inhibition; LC-MS; mouth disease (HFMD)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test