Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

One of the most common long-term complications of diabetes is a condition known as diabetic neuropathy. Chronic neuropathic pain is an important and debilitating disease that poses a huge healthcare challenge. Pathogenesis includes abnormalities in the blood arteries supplying the peripheral neurons, metabolic diseases such as myo-inositol depletion, and enhanced nonenzymatic glycation, among other things. Several metabolic processes are triggered when neurons are under oxidative stress, and free radicals are generated. Conventional treatments for neuropathic pain are ineffective despite the abundance of medications on the market today. The use of herbal-based natural medicines to treat hyperglycemia and its accompanying consequences is being studied extensively in addition to the commercially available formulations already on the market. Now that herbal formulations are becoming more common, researchers are paying more attention to them in medication discovery. Therefore, we conducted a comprehensive assessment of herbal medicines and plants that have been shown to have a protective effect on neuropathic pain. Here, the therapeutic effects of each plant have been documented in several neuropathic pain models in animals and humans. Furthermore, the various mechanisms for the protective effects are examined. This review's goal is to summarise the current research on herbal-based therapy for diabetic neuropathy, including pure chemicals derived from plant materials, plant extracts, and Ayurvedic formulations.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838252589230925112544
2023-10-05
2025-09-02
Loading full text...

Full text loading...

References

  1. HicksC.W. SelvinE. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes.Curr. Diab. Rep.201919108610.1007/s11892‑019‑1212‑8 31456118
    [Google Scholar]
  2. FeldmanE.L. CallaghanB.C. Pop-BusuiR. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑1 31197153
    [Google Scholar]
  3. RichnerM. FerreiraN. DudeleA. JensenT.S. VaegterC.B. GonçalvesN.P. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy.Front. Neurosci.201912103810.3389/fnins.2018.01038 30692907
    [Google Scholar]
  4. BarrettE.J. LiuZ. KhamaisiM. Diabetic microvascular disease: An endocrine society scientific statement.J. Clin. Endocrinol. Metab.2017102124343441010.1210/jc.2017‑01922 29126250
    [Google Scholar]
  5. LiR. LiD. ZhangH. WangJ. LiX. XiaoJ. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration.Acta Pharmacol. Sin.202041101289130010.1038/s41401‑019‑0338‑1 32123299
    [Google Scholar]
  6. ZhangJ. ZhangB. ZhangJ. LinW. ZhangS. Magnesium promotes the regeneration of the peripheral nerve.Front. Cell Dev. Biol.2021971785410.3389/fcell.2021.717854 34458271
    [Google Scholar]
  7. NascimentoO.J. CamilaC.B. CavalcantiE.B. Diabetic neuropathy.Rev. Dor20161714651
    [Google Scholar]
  8. YangH. SloanG. YeY. New perspective in diabetic neuropathy: From the periphery to the brain, a call for early detection, and precision medicine.Front. Endocrinol.20201092910.3389/fendo.2019.00929 32010062
    [Google Scholar]
  9. FinnerupN.B. KunerR. JensenT.S. Neuropathic Pain: From mechanisms to treatment.Physiol. Rev.2021101125930110.1152/physrev.00045.2019 32584191
    [Google Scholar]
  10. AbrahamM.M. Diabetic Peripheral Neuropathy. Sudan SHH.RijekaIntechOpen2022
    [Google Scholar]
  11. KumariR. BistR. Molecular basis of neurodegeneration and therapies in diabetic neuropathy.Curr. Res. Diabetes Obes. J.2021152555909
    [Google Scholar]
  12. NajmiA. JavedS.A. Al BrattyM. AlhazmiH.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents.Molecules202227234910.3390/molecules27020349 35056662
    [Google Scholar]
  13. KopardeA.A. Natural Products in Drug Discovery. DoijadR.C. RijekaIntechOpen201910.5772/intechopen.82860
    [Google Scholar]
  14. MathurS. HoskinsC. Drug development: Lessons from nature.Biomed. Rep.20176661261410.3892/br.2017.909 28584631
    [Google Scholar]
  15. AhmadS. ZahiruddinS. ParveenB. Indian medicinal plants and formulations and their potential against covid-19–preclinical and clinical research.Front. Pharmacol.20211157897010.3389/fphar.2020.578970 33737875
    [Google Scholar]
  16. PatelM. KumarR. KishorK. MlsnaT. PittmanC.U.Jr MohanD. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods.Chem. Rev.201911963510367310.1021/acs.chemrev.8b00299 30830758
    [Google Scholar]
  17. SaxenaS. BhardwajA.K. KumarV. PatelM.K. KumarR. ChaurasiaO.P. Sustainable utilization of medicinal plants of ladakh and lahaul-spiti of trans-himalaya.Def. Life Sci. J.20183212010.14429/dlsj.3.12566
    [Google Scholar]
  18. OziomaE.J. Herbal Medicines in African Traditional Medicine In: Herbal Medicine. intechopen2019
    [Google Scholar]
  19. MsomiN.Z. Herbal Medicine.IntechOpen2018
    [Google Scholar]
  20. BaileyC.J. Metformin: Historical overview.Diabetologia20176091566157610.1007/s00125‑017‑4318‑z 28776081
    [Google Scholar]
  21. ChangC.L. LinY. BartolomeA.P. ChenY.C. ChiuS.C. YangW.C. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry.Biology, and Potential Application of Selected Plants and Compounds Cho WC2013378657
    [Google Scholar]
  22. BakerC. Retzik-StahrC. SinghV. PlomondonR. AndersonV. RasouliN. Should metformin remain the first-line therapy for treatment of type 2 diabetes?Ther. Adv. Endocrinol. Metab.20211210.1177/2042018820980225 33489086
    [Google Scholar]
  23. CollocaL. LudmanT. BouhassiraD. Neuropathic pain.Nat. Rev. Dis. Primers2017311700210.1038/nrdp.2017.2 28205574
    [Google Scholar]
  24. ForouzanfarF. HosseinzadehH. Medicinal herbs in the treatment of neuropathic pain: A review.Iran. J. Basic Med. Sci.2018214347358 29796216
    [Google Scholar]
  25. della RoccaG. GambaD. Chronic pain in dogs and cats: Is there place for dietary intervention with micro-palmitoylethanolamide?Animals202111495210.3390/ani11040952 33805489
    [Google Scholar]
  26. LeeJ. JoD.G. ParkD. ChungH.Y. MattsonM.P. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system.Pharmacol. Rev.201466381586810.1124/pr.113.007757 24958636
    [Google Scholar]
  27. FuldaS. GormanA.M. HoriO. SamaliA. Cellular stress responses: cell survival and cell death.Int. J. Cell Biol.20102010214074
    [Google Scholar]
  28. Cell-autonomous(cell-Intrinsic) stress responses BT-damage-associated molecular patterns in human diseases.In: Injury-Induced Innate Immune Responses.ChamSpringer International Publishing2018Vol. 1377426
    [Google Scholar]
  29. SchreiberA.K. NonesC.F. ReisR.C. ChichorroJ.G. CunhaJ.M. Diabetic neuropathic pain: Physiopathology and treatment.World J. Diabetes20156343244410.4239/wjd.v6.i3.432 25897354
    [Google Scholar]
  30. SloanG. SelvarajahD. TesfayeS. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy.Nat. Rev. Endocrinol.202117740042010.1038/s41574‑021‑00496‑z 34050323
    [Google Scholar]
  31. DeliG. BosnyakE. PuschG. KomolyS. FeherG. Diabetic neuropathies: Diagnosis and management.Neuroendocrinology201398426728010.1159/000358728 24458095
    [Google Scholar]
  32. Pop-BusuiR. BoultonA.J.M. FeldmanE.L. Diabetic neuropathy: A position statement by the american diabetes association.Diabetes Care201740113615410.2337/dc16‑2042 27999003
    [Google Scholar]
  33. ThakkarR.S. Del GrandeF. ThawaitG.K. AndreisekG. CarrinoJ.A. ChhabraA. Spectrum of high-resolution MRI findings in diabetic neuropathy.AJR Am. J. Roentgenol.2012199240741210.2214/AJR.11.7893 22826404
    [Google Scholar]
  34. HosseiniA. AbdollahiM. Diabetic neuropathy and oxidative stress: Therapeutic perspectives.Oxid. Med. Cell. Longev.20132013168039 2373803310.1155/2013/168039
    [Google Scholar]
  35. Al-TaieA. ElseidyA. VictoriaA. HafeezA. AhmadS. Diabetic microvascular complications and proposed interventions and approaches of management for patient care.Biomed. Biotechnol. Res. J.20215438038810.4103/bbrj.bbrj_153_21
    [Google Scholar]
  36. PangL. LianX. LiuH. Understanding diabetic neuropathy: Focus on oxidative stress.Oxid. Med. Cell. Longev.2020202011310.1155/2020/9524635 32832011
    [Google Scholar]
  37. BayramE.H. Diabetic Neuropathy and Treatment Strategy – New Challenges and Applications.RijekaIntechOpen2016
    [Google Scholar]
  38. KootiW. FarokhipourM. AsadzadehZ. Ashtary-LarkyD. Asadi-SamaniM. The role of medicinal plants in the treatment of diabetes: A systematic review.Electron. Physician2016811832184210.19082/1832 26955456
    [Google Scholar]
  39. WasanaK.G.P. AttanayakeA.P. JayatilakaK.A.P.W. WeerarathnaT.P. Antidiabetic activity of widely used medicinal plants in the Sri Lankan Traditional Healthcare System: New insight to medicinal flora in Sri Lanka.Evid. Based Complement. Alternat. Med.20216644004 3362830710.1155/2021/6644004
    [Google Scholar]
  40. DoddaD. CiddiV. Plants used in the management of diabetic complications.Indian J. Pharm. Sci.201476297106 24843182
    [Google Scholar]
  41. KhanM.S. AzizS. KhanM.Z. Antihyperglycemic effect and phytochemical investigation of Rubia cordifolia (Indian Madder) leaves extract.Open Chem.202119158659910.1515/chem‑2021‑0053
    [Google Scholar]
  42. KaurG. JaggiA.S. SinghN. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats.J. Brachial Plex. Peripher. Nerve Inj.201053 20181005
    [Google Scholar]
  43. KaurG. BaliA. SinghN. JaggiA.S. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats.An. Acad. Bras. Cienc.201587141742910.1590/0001‑3765201520130008 25673470
    [Google Scholar]
  44. HrdF. WmsskK. PeirisA. LdamA. A review on the therapeutic potentials of Ocimum sanctum Linn: In the management of diabetes mellitus (madhumeha).J. Pharmacogn. Phytochem.2015434752
    [Google Scholar]
  45. MuthuramanA. SinghN. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: An evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects.BMC Complement. Altern. Med.20111112410.1186/1472‑6882‑11‑24 21426568
    [Google Scholar]
  46. MuthuramanA. SinghN. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain.J. Ethnopharmacol.2012142372373110.1016/j.jep.2012.05.049 22706151
    [Google Scholar]
  47. ComelliF. BettoniI. ColleoniM. GiagnoniG. CostaB. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress.Phytother. Res.200923121678168410.1002/ptr.2806 19441010
    [Google Scholar]
  48. WallaceM.S. MarcotteT.D. UmlaufA. GouauxB. AtkinsonJ.H. Efficacy of inhaled cannabis on painful diabetic neuropathy.J. Pain201516761662710.1016/j.jpain.2015.03.008 25843054
    [Google Scholar]
  49. AroraA. TaliyanR. SharmaP. Ameliorative potential of cannabis sativa extract on diabetes induced neuropathic pain in rats.IJPSR2010019199
    [Google Scholar]
  50. JosephB. JiniD. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency.Asian Pac. J. Trop. Dis.2013329310210.1016/S2222‑1808(13)60052‑3
    [Google Scholar]
  51. LiuZ. GongJ. HuangW. LuF. DongH. The Effect of Momordica charantia in the Treatment of Diabetes Mellitus: A Review.Evid. Based Complement. Alternat. Med.2021202111410.1155/2021/3796265 33510802
    [Google Scholar]
  52. ThaifaM.S. RoshnaN. AryaU.S. BabuA.G. A review on diabetes mellitus and diabetic neuropathy: A plant based approach.J. Pharmacogn. Phytochem.201763506510
    [Google Scholar]
  53. KanterM. Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy.Neurochem. Res.2008331879610.1007/s11064‑007‑9419‑5 17713854
    [Google Scholar]
  54. AlkhalafM.I. HusseinR.H. HamzaA. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects.Saudi J. Biol. Sci.20202792410241910.1016/j.sjbs.2020.05.005 32884424
    [Google Scholar]
  55. YangR. LiL. YuanH. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia.J. Cell. Physiol.201923432756276410.1002/jcp.27091 30145789
    [Google Scholar]
  56. XieJ. SongW. LiangX. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level.Biomed. Pharmacother.202012711014710.1016/j.biopha.2020.110147 32559841
    [Google Scholar]
  57. ZhaoB. ZhangQ. LiangX. XieJ. SunQ. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway.Eur. J. Pharmacol.202191217460710.1016/j.ejphar.2021.174607 34743981
    [Google Scholar]
  58. ZhangQ. SongW. ZhaoB. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of ampk/pgc-1α pathway in vivo and in vitro.Front. Neurosci.20211563617210.3389/fnins.2021.636172
    [Google Scholar]
  59. GanesanD. HolkarA. AlbertA. PaulE. MariakuttikanJ. Sadasivam SelvamG. Combination of ramipril and rutin alleviate alloxan induced diabetic nephropathy targeting multiple stress pathways in vivo.Biomed. Pharmacother.20181081338134610.1016/j.biopha.2018.09.142 30372836
    [Google Scholar]
  60. YangM. KanL. WuL. ZhuY. WangQ. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism.Exp. Ther. Med.20191732071207610.3892/etm.2019.7181 30867693
    [Google Scholar]
  61. YanY. ZhouX. GuoK. ZhouF. YangH. Use of chlorogenic acid against diabetes mellitus and its complications.J. Immunol. Res.202020201610.1155/2020/9680508 32566690
    [Google Scholar]
  62. SunW. LiuX. ZhangH. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1.Free Radic. Biol. Med.201710884085710.1016/j.freeradbiomed.2017.04.365 28457936
    [Google Scholar]
  63. ZhouB. LiQ. WangJ. ChenP. JiangS. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling.Food Chem. Toxicol.2019123162710.1016/j.fct.2018.10.036 30342113
    [Google Scholar]
  64. ZhangJ. YangS. LiH. ChenF. ShiJ. Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4.Eur. J. Pharmacol.20178041610.1016/j.ejphar.2017.04.006 28395989
    [Google Scholar]
  65. LuM. YinN. LiuW. CuiX. ChenS. WangE. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling.BioMed Res. Int.2017201711010.1155/2017/1516985 28194406
    [Google Scholar]
  66. LiX. ZhuQ. ZhengR. Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes.Front. Physiol.2020117310.3389/fphys.2020.00073 32116781
    [Google Scholar]
  67. MaL. WuF. ShaoQ. ChenG. XuL. LuF. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway.Drug Des. Devel. Ther.2021153207322110.2147/DDDT.S319260 34321869
    [Google Scholar]
  68. BarhomaR.A.E. The role of eugenol in the prevention of chromium-induced acute kidney injury in male albino rats.Alex. J. Med.201854471171510.1016/j.ajme.2018.05.006
    [Google Scholar]
  69. SharmaE. BehlT. SachdevaM. MakkarR. AroraS. Protective role of herbal drugs in diabetic neuropathy: An updated review.J Pharm Technol Res201861213110.15415/jptrm.2018.61003
    [Google Scholar]
  70. WangP. WenC. OlatunjiO.J. Anti-inflammatory and antinociceptive effects of boesenbergia rotunda polyphenol extract in diabetic peripheral neuropathic rats.J. Pain Res.20221577978810.2147/JPR.S359766 35356266
    [Google Scholar]
  71. AlammarN. WangL. SaberiB. The impact of peppermint oil on the irritable bowel syndrome: A meta-analysis of the pooled clinical data.BMC Complement. Altern. Med.20191912110.1186/s12906‑018‑2409‑0 30654773
    [Google Scholar]
  72. KaramanT. KaramanS. DogruS. Evaluating the efficacy of lavender aromatherapy on peripheral venous cannulation pain and anxiety: A prospective, randomized study.Complement. Ther. Clin. Pract.201623646810.1016/j.ctcp.2016.03.008 27157961
    [Google Scholar]
  73. SalamatiA. MashoufS. SahbaeiF. MojabF. Effects of inhalation of lavender essential oil on open-heart surgery pain.Iran. J. Pharm. Res.201413412571261 25587315
    [Google Scholar]
  74. AssiriK. AlyamiY. UyanikJ.M. Romero-ReyesM. Hypericum perforatum (St. John’s Wort) as a possible therapeutic alternative for the management of trigeminal neuralgia (TN) – A case report.Complement. Ther. Med.201730363910.1016/j.ctim.2016.10.014 28137525
    [Google Scholar]
  75. JiangJ. ShenY.Y. LiJ. LinY.H. LuoC.X. ZhuD.Y. (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice.Eur. J. Pharmacol.2015757535810.1016/j.ejphar.2015.03.056 25835611
    [Google Scholar]
  76. SritoommaN. MoyleW. CookeM. O’DwyerS. The effectiveness of Swedish massage with aromatic ginger oil in treating chronic low back pain in older adults: A randomized controlled trial.Complement. Ther. Med.2014221263310.1016/j.ctim.2013.11.002 24559813
    [Google Scholar]
  77. GroverJ.K. RathiS.S. VatsV. Amelioration of experimental diabetic neuropathy and gastropathy in rats following oral administration of plant (Eugenia jambolana, Mucuna pruriens and Tinospora cordifolia) extracts.Indian J. Exp. Biol.2002403273276 12635695
    [Google Scholar]
  78. MalikZ.A. TabassumN. SharmaP.L. Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia.Adv. Biosci. Biotechnol.20134335636310.4236/abb.2013.43047
    [Google Scholar]
  79. FerreiraP.E.B. LopesC.R. AlvesA.M. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats.World J. Gastroenterol.201319386416642610.3748/wjg.v19.i38.6416 24151360
    [Google Scholar]
  80. OhY. Bioactive compounds and their neuroprotective effects in diabetic complications.Nutrients20168847210.3390/nu8080472 27483315
    [Google Scholar]
  81. PearsonJ. BrandeisL. CuelloA.C. Depletion of substance P-containing axons in substantia gelatinosa of patients with diminished pain sensitivity.Nature19822955844616310.1038/295061a0 6173753
    [Google Scholar]
  82. BuckS.H. BurksT.F. The neuropharmacology of capsaicin: Review of some recent observations.Pharmacol. Rev.1986383179226 3534898
    [Google Scholar]
  83. BaranowskiR. LynnB. PiniA. The effects of locally applied capsaicin on conduction in cutaneous nerves in four mammalian species.Br. J. Pharmacol.198689226727610.1111/j.1476‑5381.1986.tb10256.x 3779210
    [Google Scholar]
  84. SharmaS. KulkarniS.K. AgrewalaJ.N. ChopraK. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain.Eur. J. Pharmacol.2006536325626110.1016/j.ejphar.2006.03.006 16584726
    [Google Scholar]
  85. ZhouH. BeeversC.S. HuangS. The targets of curcumin.Curr. Drug Targets201112333234710.2174/138945011794815356 20955148
    [Google Scholar]
  86. VisnagriA. KandhareA.D. ChakravartyS. GhoshP. BodhankarS.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions.Pharm. Biol.201452781482810.3109/13880209.2013.870584 24559476
    [Google Scholar]
  87. SinghN HamidK GoelY SinghL PandeyRK A review on diabetic neuropathy (DN): Classification, Diagnosis, Management, and its treatments.2022201535193810.14704/NQ.2022.20.15.NQ88347
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838252589230925112544
Loading
/content/journals/ctm/10.2174/0122150838252589230925112544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test