Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

(), hill glory bower, locally known as bhant, has a rich ethno-medicinal history across tropical and subtropical regions. It has been widely studied for its diverse bioactive phytochemicals and their potential in cancer therapy. This review consolidates current research on , encompassing its phytochemical composition, antioxidant properties, and anticancer mechanisms documented globally. We comprehensively searched various scholarly databases, including Scopus, PubMed, Science Direct, and Google Scholar. The plant exhibits a range of secondary metabolites, including phenolics, phenylpropanoids, flavonoids, tannins, quercetin, saponins, alkaloids, terpenoids, and steroids. These compounds demonstrate antioxidant properties by scavenging reactive oxygen species (ROS). Notably, gallic acid, tannic acid, ellagic acid, and quercetin contribute to antioxidant efficacy. Several phytochemicals, such as flavonoids and phenolic compounds, show anticancer activities by inhibiting cancer cell proliferation, inducing apoptosis, and causing cell cycle arrest. For example, apigenin and acacetin, identified from , exhibited remarkable anticancer effects, including ROS generation, apoptosis initiation, and G2/M-phase cell cycle arrest. Also, extracts from different parts of the plant demonstrated selective cytotoxicity against various cancer cells, emphasizing their potential as natural anticancer agents. Therefore, this study could provide summative information regarding the pharmacological and therapeutic potential of as a natural source of various active chemicals. However, further research is warranted to explore the therapeutic applications of these plant-derived compounds in cancer treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838357493250122122451
2025-02-12
2025-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838357493.html?itemId=/content/journals/ctm/10.2174/0122150838357493250122122451&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. International Agency for Research on CancerWorld health organization global cancer observatory (2022).Available from: http://gco.iarc.who.int/tomorrow/en/dataviz/trends?multiple_populations=1 [Accessed on: April 25, 20242022
  3. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  4. HuangM.Y. ZhangL.L. DingJ. LuJ.J. Anticancer drug discovery from Chinese medicinal herbs.Chin. Med.20181313510.1186/s13020‑018‑0192‑y29997684
    [Google Scholar]
  5. RaeisiE. SoureshjaniH.S. SherwinM.C. BagheriZ. Radiotherapy enhancing and radioprotective properties of berberine: A systematic review.Rec. Patents Anticanc. Drug Discov.202419011574892831544224062412010410.2174/011574892831544224062412010438984581
    [Google Scholar]
  6. AsmaST AcarozU ImreK MorarA ShahSRA HussainSZ Arslan-AcarozD DemirbasH Hajrulai-MusliuZ Natural products/bioactive compounds as a source of anticancer drugs.Cancers20221424620310.3390/cancers14246203
    [Google Scholar]
  7. RaeisiE. SoureshjaniH.S. SherwinC.M.T. KhaghaniA. Anti-cancer effects of soy isoflavones against cancer by radiosensitizing properties: A systematic review.Curr. Cancer Ther. Rev.202420011573394731331624060310192610.2174/0115733947313316240603101926
    [Google Scholar]
  8. IslamJ. ShilaT.T. IslamZ. KabirE. HaqueN. KhatunM. KhanS. JubayarA.M. IslamF. NikkonF. HossainK. SaudZ.A. Clerodendrum viscosum leaves attenuate lead-induced neurotoxicity through upregulation of BDNF-Akt-Nrf2 pathway in mice.J. Ethnopharmacol.202330411602410.1016/j.jep.2022.11602436549369
    [Google Scholar]
  9. RahmanM RahamanA BasuniaMA FatimaN HossainS Antihemolytic activity of Clerodendrum viscosum Vent. is mediated by its antioxidant effect.European J. Med. Plants20133112713410.9734/EJMP/2013/2403
    [Google Scholar]
  10. AkihisaT. MatsubaraY. GhoshP. ThakurS. ShimizuN. TamuraT. MatsumotoT. The 24α- and 24β-epimers of 24-ethylcholesta-5,22-dien-3β-ol in two Clerodendrum species.Phytochemistry19882741169117210.1016/0031‑9422(88)80296‑6
    [Google Scholar]
  11. GhoshG PandaP RathM PalA SharmaT DasD GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves.Pharm. Res.201571110
    [Google Scholar]
  12. JackeG. RimplerH. Distribution of iridoid glycosides in Clerodendrum species.Phytochemistry19832281729173410.1016/S0031‑9422(00)80260‑5
    [Google Scholar]
  13. NandiS. LyndemK.M.L. Clerodendrum viscosum : Traditional uses, pharmacological activities and phytochemical constituents.Nat. Prod. Res.201630549750610.1080/14786419.2015.102522925825067
    [Google Scholar]
  14. AshoorL.S. MohammdT.U. BakerR.K. Extraction, antimicrobialactivity and phytochemical of Clerodendrum viscosum.Plant Archiv.201818220872090
    [Google Scholar]
  15. SumiS.A. BiswasN.N. IslamK. Evaluation of analgesic and antioxidant properties in the ethanolic root extract of clerodendrum viscosum vent.Cell2015610469173485
    [Google Scholar]
  16. DasJ.K. ChoudhuryS. AdhikaryS. DasB. SamantaS. MandalS.C. DeyS.P. Anthelmintic activity of Clerodendrum viscosum.Orient. Pharm. Exp. Med.201111211912210.1007/s13596‑011‑0021‑7
    [Google Scholar]
  17. KarP GoyalAK DasAP SenA Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview.Int. J. Green Pharm.201484
    [Google Scholar]
  18. RoyS. KunduL.M. RoyG.C. BarmanM. RayS. Cell cycle delay, pro-metaphase arrest and C-metaphase inducing effects of petroleum ether fraction of leaf aqueous extract of <i>Clerodendrum viscosum</i> Vent.Cytologia2022872737910.1508/cytologia.87.73
    [Google Scholar]
  19. ChandrashekarR. RaiM. KalalB.S. Acute and chronic toxicity studies on ethanolic leaf extracts of clerodendrum viscosum and leucas indica in swiss albino mice.Int J Biochem Mol Biol20221344048
    [Google Scholar]
  20. AliR. HossainM. RunaJ.F. Assessment of anthelmintic potential of Averrhoa bilimbi, Clerodendrum viscosum and Drynaria quercifolia: As an alternative source for anthelmintics.Res. J. Pharm. Phytochem.201354178181
    [Google Scholar]
  21. IslamR. RahmanA. A GC-MS study: Identification of the essential oil compositions of Clerodendrum viscosum Vent flower.J. Essent. Oil-Bear. Plants20151851271127410.1080/0972060X.2015.1024448
    [Google Scholar]
  22. DasS.C. QaisM.N. KuddusM.R. HasanC.M. Isolation and characterization of (22E, 24S)-Stigmasta-5, 22, 25-trien-3β-ol from Clerodendrum viscosum Vent.Asian J. Chem.201325116447644810.14233/ajchem.2013.14188
    [Google Scholar]
  23. RahmanM.M. RumzhumN.N. ZinnaK-E-K. Evaluation of antioxidant and antinociceptive properties of methanolic extract of <i>Clerodendrum viscosum</i> Vent.Stamford J. Pharm. Sci.197041747810.3329/sjps.v4i1.8873
    [Google Scholar]
  24. AhmedF. ShahidI.Z. BiswasU.K. RoyB.A. DasA.K. ChoudhuriM.S.K. Anti-inflammatory, antinociceptive, and neuropharmacological activities of Clerodendron viscosum. Pharm. Biol.200745758759310.1080/13880200701501342
    [Google Scholar]
  25. GouthamchandraK. MahmoodR. ManjunathaH. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L.Environ. Toxicol. Pharmacol.2010301111810.1016/j.etap.2010.03.00521787623
    [Google Scholar]
  26. HaqueN. ChowdhuryS.A.R. NutanM.T.H. RahmanG.M.S. RahmanK.M. RashidM.A. Evaluation of antitumor activity of some medicinal plants of Bangladesh by potato disk bioassay.Fitoterapia200071554755210.1016/S0367‑326X(00)00162‑311449504
    [Google Scholar]
  27. PraveenM RadhaK Hari KumarA MathewA KumarA Preliminary phytochemical, antimicrobial and toxicity studies on Clerodendrum paniculatum Linn. leaves.J. Drug. Med.2012414150
    [Google Scholar]
  28. YenG.C. DuhP.D. TsaiH.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid.Food Chem.200279330731310.1016/S0308‑8146(02)00145‑0
    [Google Scholar]
  29. KahkeshaniN FarzaeiF FotouhiM AlaviSS BahramsoltaniR NaseriR MomtazS AbbasabadiZ RahimiR FarzaeiMH BishayeeA Pharmacological effects of gallic acid in health and diseases: A mechanistic review.Iran. J. Basic Med. Sci.201922322510.22038/ijbms.2019.32806.789731156781
    [Google Scholar]
  30. LiangH. HuangQ. ZouL. WeiP. LuJ. ZhangY. Methyl gallate: Review of pharmacological activity.Pharmacol. Res.202319410684910.1016/j.phrs.2023.10684937429335
    [Google Scholar]
  31. BaldwinA. BoothB.W. Biomedical applications of tannic acid.J. Biomater. Appl.20223681503152310.1177/0885328221105809934991392
    [Google Scholar]
  32. VattemD.A. ShettyK. Biological functionality of ellagic acid: A review.J. Food Biochem.200529323426610.1111/j.1745‑4514.2005.00031.x
    [Google Scholar]
  33. StrawbridgeR. JavedR.R. CaveJ. JauharS. YoungA.H. The effects of reserpine on depression: A systematic review.J. Psychopharmacol.202337324826010.1177/0269881122111576236000248
    [Google Scholar]
  34. KimJ.K. ParkS.U. Quercetin and its role in biological functions: An updated review.EXCLI J.20181785686330233284
    [Google Scholar]
  35. RoyR PathakNKR BiswasM PandeyVB Flavonoids of Clerodendron infortunatum.Orient. J. Chem.199410169169
    [Google Scholar]
  36. KimJH KangDM ChoYJ HyunJW AhnMJ Medicarpin increases antioxidant genes by inducing NRF2 transcriptional level in HeLa cells.Antioxidants202211242110.3390/antiox11020421
    [Google Scholar]
  37. SubramanianS.S. NairA.G. Scutellarin and hispidulin-7-O-glucuronide from the leaves of Clerodendrum indicum and Clerodendron infortunatum.Phytochemistry.197312119510.1016/0031‑9422(73)85054‑X
    [Google Scholar]
  38. BhilwadeA.N.H. TatewakiN. NishidaH. KonishiT. Squalene as novel food factor.Curr. Pharm. Biotechnol.201011887588010.2174/13892011079326208820874681
    [Google Scholar]
  39. DeyP. DuttaS. ChaudhuriT. K. Comparative phytochemical profiling of Clerodendrum infortunatum L. using GC-MS method coupled with multivariate statistical approaches.Metabolomics2015531000147
    [Google Scholar]
  40. RochaL.D. MonteiroM.C. TeodoroA.J. Anticancer properties of hydroxycinnamic acids-A review.Cancer Clin. Oncol.20121210912110.5539/cco.v1n2p109
    [Google Scholar]
  41. LeeK.W. LeeH.J. ChoH.Y. KimY.J. Role of the conjugated linoleic acid in the prevention of cancer.Crit. Rev. Food Sci. Nutr.200545213514410.1080/1040869049091180015941017
    [Google Scholar]
  42. JirovetzL. BuchbauerG. PuschmannC. Essential oil analysis of the leaves and the root bark of the plant Clerodendrum infortunatum used in ayurvedic medicine.Herba Pol.19992458794
    [Google Scholar]
  43. VieiraA.J. BeserraF.P. SouzaM.C. TottiB.M. RozzaA.L. Limonene: Aroma of innovation in health and disease.Chem. Biol. Interact.20182839710610.1016/j.cbi.2018.02.00729427589
    [Google Scholar]
  44. AllenspachM. SteuerC. α-Pinene: A never-ending story.Phytochemistry202119011285710.1016/j.phytochem.2021.11285734365295
    [Google Scholar]
  45. SalehiB UpadhyayS Erdogan OrhanI Kumar JugranA L D JayaweeraS A DiasD SharopovF TaheriY MartinsN BaghalpourN ChoWC Sharifi-RadJ Therapeutic potential of α-and β-pinene: A miracle gift of nature.Biomolecules201991173810.3390/biom9110738
    [Google Scholar]
  46. ZhangF. ChenF. LiuW. GuoJ. WanF. ρ-Cymene inhibits growth and induces oxidative stress in rice seedling plants.Weed Sci.201260456457010.1614/WS‑D‑12‑00029.1
    [Google Scholar]
  47. SurendranS. QassadiF. SurendranG. LilleyD. HeinrichM. Myrcene-what are the potential health benefits of this flavouring and aroma agent?Front. Nutr.2021869966610.3389/fnut.2021.69966634350208
    [Google Scholar]
  48. FidytK. FiedorowiczA. StrządałaL. SzumnyA. β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties.Cancer Med.20165103007301710.1002/cam4.81627696789
    [Google Scholar]
  49. LiR. NatschkeM.S.L. LeeK.H. Clerodane diterpenes: Sources, structures, and biological activities.Nat. Prod. Rep.201633101166122610.1039/C5NP00137D27433555
    [Google Scholar]
  50. SindhuT.J. ArathiK.N. AkhileshK.J. JoseA. BinsiyaK.P. ThomasB. WilsonE. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: In silico approaches.Asian J. Pharm. Technol.2020102606410.5958/2231‑5713.2020.00012.4
    [Google Scholar]
  51. KhudaM.M. Constituents of Clerodendron infortunatum (BHAT)—II.Tetrahedron19662272377238610.1016/S0040‑4020(01)82158‑X
    [Google Scholar]
  52. ChoudhuryM.D. DuttaM. PaufS.B. Isolation, characterization and bio-activity screening of compound from Clerodendrum viscosum Vent.Assam Univ. J. Sci. Technol.2010412934
    [Google Scholar]
  53. SannigrahiS. MazumderU.K. PalD. MishraS.L. Terpenoids of methanol extract of Clerodendrum infortunatum exhibit anticancer activity against Ehrlich’s ascites carcinoma (EAC) in mice.Pharm. Biol.201250330430910.3109/13880209.2011.60408922321031
    [Google Scholar]
  54. LiuJ. Pharmacology of oleanolic acid and ursolic acid.J. Ethnopharmacol.1995492576810.1016/0378‑8741(95)90032‑28847885
    [Google Scholar]
  55. SantosC.C.D.M.P. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models.Neurosci. J.20132013949452
    [Google Scholar]
  56. HordyjewskaA. OstapiukA. HoreckaA. Betulin and betulinic acid in cancer research.J. Pre-Clinical Clin. Res.2018122727510.26444/jpccr/92743
    [Google Scholar]
  57. UddinM.J. ÇiçekS.S. WillerJ. ShulhaO. AbdallaM.A. SönnichsenF. GirreserU. ZidornC. Phenylpropanoid and flavonoid glycosides from the leaves of Clerodendrum infortunatum (Lamiaceae).Biochem. Syst. Ecol.20209210413110.1016/j.bse.2020.104131
    [Google Scholar]
  58. ChaeS. KimJ.S. KangK.A. BuH.D. LeeY. HyunJ.W. KangS.S. Antioxidant activity of jionoside D from Clerodendron trichotomum.Biol. Pharm. Bull.200427101504150810.1248/bpb.27.150415467185
    [Google Scholar]
  59. RoyR PandeyVB SinghUP PrithivirajB Antifungal activity of the flavonoids from Clerodendron infortunatum roots.Fitoterapia199667473474
    [Google Scholar]
  60. SaeidniaS ManayiA GohariAR AbdollahiM The story of beta-sitosterol-A review.European J. Med. Plants20144559060910.9734/EJMP/2014/7764
    [Google Scholar]
  61. XuC. WuP. GaoJ. ZhangL. MaT. MaB. YangS. ShaoG. YuY. HuangX. YangX. ZhangB. Heptadecanoic acid inhibits cell proliferation in PC-9 non-small-cell lung cancer cells with acquired gefitinib resistance.Oncol. Rep.20194163499350710.3892/or.2019.713031002344
    [Google Scholar]
  62. SinhaN. SethK. PandeyV. DasguptaB. ShahA. Flavonoids from the flowers of Clerodendron infortunatum.Planta Med.198142729629810.1055/s‑2007‑97164517401979
    [Google Scholar]
  63. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x29034071
    [Google Scholar]
  64. VoTK TaQTH ChuQT NguyenTT VoVG Anti-hepatocellular-cancer activity exerted by β-sitosterol and β-sitosterol-glucoside from Indigofera zollingeriana Miq.Molecules20202513302110.3390/molecules25133021
    [Google Scholar]
  65. BakrimS. BenkhairaN. BouraisI. BenaliT. LeeL.H. OmariE.N. SheikhR.A. GohK.W. MingL.C. BouyahyaA. Health benefits and pharmacological properties of stigmasterol.Antioxidants20221110191210.3390/antiox1110191236290632
    [Google Scholar]
  66. SinhaN.K. PandeyV.B. Chemical constituents of the flowers of Clerodendron [Clerodendrum] infortunatum.Indian J Pharma Sci19814239697
    [Google Scholar]
  67. LinkerR.A. LeeD.H. RyanS. Damv.A.M. ConradR. BistaP. ZengW. HronowskyX. BukoA. ChollateS. EllrichmannG. BrückW. DawsonK. GoelzS. WieseS. ScannevinR.H. LukashevM. GoldR. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway.Brain2011134367869210.1093/brain/awq38621354971
    [Google Scholar]
  68. SilvaH. LopesN.M.F. Cardiovascular effects of caffeic acid and its derivatives: A comprehensive review.Front. Physiol.20201159551610.3389/fphys.2020.59551633343392
    [Google Scholar]
  69. ManciniA. ImperliniE. NigroE. MontagneseC. DanieleA. OrrùS. BuonoP. Biological and nutritional properties of palm oil and palmitic acid: Effects on health.Molecules2015209173391736110.3390/molecules20091733926393565
    [Google Scholar]
  70. CamposS.H. SouzaP.R. PeghiniB.C. Silvad.J.S. CardosoC.R. An overview of the modulatory effects of oleic acid in health and disease.Mini Rev. Med. Chem.201313220121023278117
    [Google Scholar]
  71. ChoqueB. CathelineD. RiouxV. LegrandP. Linoleic acid: Between doubts and certainties.Biochimie201496142110.1016/j.biochi.2013.07.01223900039
    [Google Scholar]
  72. PandaP. AppalashettiM. JudehZ.M. Phenylpropanoid sucrose esters: Plant-derived natural products as potential leads for new therapeutics.Curr. Med. Chem.201118213234325110.2174/09298671179639158921671860
    [Google Scholar]
  73. NeelamA.K. KhatkarA. SharmaK.K. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries.Crit. Rev. Food Sci. Nutr.202060162655267510.1080/10408398.2019.165382231456411
    [Google Scholar]
  74. UddinMJ RussoD HaqueMA ÇiçekSS SönnichsenFD MilellaL ZidornC Bioactive abietane-type diterpenoid glycosides from leaves of Clerodendrum infortunatum (Lamiaceae).Molecules20212614412110.3390/molecules26144121
    [Google Scholar]
  75. TeixeiraJ. GasparA. GarridoE.M. GarridoJ. BorgesF. Hydroxycinnamic acid antioxidants: An electrochemical overview.BioMed Res. Int.2013201311110.1155/2013/25175423956973
    [Google Scholar]
  76. NijveldtR.J. Noodv.E. Hoornv.D.E.C. BoelensP.G. Norrenv.K. Leeuwenv.P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr.200174441842510.1093/ajcn/74.4.41811566638
    [Google Scholar]
  77. GuptaS. GuptaR. Detection and quantification of quercetin in roots, leaves and flowers of Clerodendrum infortunatum L.Asian Pac. J. Trop. Dis.20122S940S94310.1016/S2222‑1808(12)60296‑5
    [Google Scholar]
  78. WangJ.H. LuanF. HeX.D. WangY. LiM.X. Traditional uses and pharmacological properties of Clerodendrum phytochemicals.J. Tradit. Complement. Med.201881243810.1016/j.jtcme.2017.04.00129321986
    [Google Scholar]
  79. RoyS. MukhopadhyayA. GurusubramanianG. Field efficacy of a biopesticide prepared from Clerodendrum viscosum Vent. (Verbenaceae) against two major tea pests in the sub Himalayan tea plantation of North Bengal, India.J. Pest Sci.201083437137710.1007/s10340‑010‑0306‑5
    [Google Scholar]
  80. SpencerJ.P.E. The impact of fruit flavonoids on memory and cognition.Br. J. Nutr.2010104S3S40S4710.1017/S000711451000393420955649
    [Google Scholar]
  81. SehgalS GuptaV GuptaR SarafSA Quantitative estimation of quercetin in Mimusops elengi L. (Bakul) leaves by HPTLC.Pharm. Lett.20111219
    [Google Scholar]
  82. SmeriglioA. BarrecaD. BelloccoE. TrombettaD. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects.Br. J. Pharmacol.2017174111244126210.1111/bph.1363027646690
    [Google Scholar]
  83. HazarikaA. SahaD. Preliminary phytochemical screening and evaluation of anti-diarrhoeal activity of ethanolic extract of leaves of Clerodendrum infortunatum.Int. J. Curr. Pharm. Res.201794143610.22159/ijcpr.2017v9i4.20980
    [Google Scholar]
  84. LeungA.Y. FosterS. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics.2nd Ed.Wiley-Interscience1995
    [Google Scholar]
  85. MarstonA. CaboM. LubranoC. RobinJ-R. FromageotC. HostettmannK. Clarification of the saponin composition of Ranunculus ficaria tubers.Nat. Prod. Commun.2006111934578X060010010510.1177/1934578X0600100105
    [Google Scholar]
  86. TamuraY. MiyakoshiM. YamamotoM. Application of saponin-containing plants in foods and cosmetics.Alt. Med.Semantic Scholar20128510110.5772/53333
    [Google Scholar]
  87. MazumderU.K. CNS activities of Cassia fistula in mice.Phytother. Res.199812752052210.1002/(SICI)1099‑1573(199811)12:7<520::AID‑PTR345>3.0.CO;2‑O
    [Google Scholar]
  88. KarA. Pharmacognosy and pharmacobiotechnology.New Age International2003216
    [Google Scholar]
  89. KokateC.K. PurohitA.P. GokhaleS.B. Pharmacognosy, nirali prakashan, pune.Med. J2002432077085
    [Google Scholar]
  90. PalD. SahooM. MishraA.K. Analgesic and anticonvulsant effects of saponin isolated from the stems of Opuntia vulgaris Mill in mice.Eur Bull Drug Res2005139197
    [Google Scholar]
  91. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology2802001735366261
    [Google Scholar]
  92. XuXH LiT FongCM ChenX ChenXJ WangYT HuangMQ LuJJ Saponins from Chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules21101326
    [Google Scholar]
  93. GevrenovaR. WengA. NazabadiokoV.L. ThakurM. DoytchinovaI. Quantitative structure–activity relationship study on saponins as cytotoxicity enhancers.Lett. Drug Des. Discov.201412316617110.2174/1570180811666140915221432
    [Google Scholar]
  94. XuK. ShuZ. XuQ.M. LiuY.L. LiX.R. WangY.L. YangS.L. Cytotoxic activity of Pulsatilla chinensis saponins and their structure–activity relationship.J. Asian Nat. Prod. Res.201315668068610.1080/10286020.2013.79090123659376
    [Google Scholar]
  95. NagS.A. QinJ.J. WangW. WangM.H. WangH. ZhangR. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action.Front. Pharmacol.201232510.3389/fphar.2012.0002522403544
    [Google Scholar]
  96. AbbaszadehG. SrivastavaC. WaliaS. Insecticidal and antifeedant activities of clerodane diterpenoids isolated from the Indian bhant tree, Clerodendron infortunatum, against the cotton bollworm, Helicoverpa armigera.J. Insect Sci.201414129
    [Google Scholar]
  97. GhoshG. SahooS. DasD. Antibacterial and antioxidant activities of methanol extract and fractions of Clerodendrum viscosum Vent. leaves.Indian J. Nat. Prod. Resour.201452134142
    [Google Scholar]
  98. ChoiJ.W. ChoE.J. LeeD.G. ChoiK. KuJ. ParkK-W. LeeS. Antibacterial activity of triterpenoids from Clerodendron trichotomum.J. Appl. Biol. Chem.201255316917210.3839/jabc.2012.026
    [Google Scholar]
  99. BhattacharjeeD ChakraborthyGS DasSK Clerodendrum infortunatum linn: A review.J Adv Pharm Healthcare Res2011138285
    [Google Scholar]
  100. AkhilB.S. RaviR.P. LekshmiA. AbeeshP. GuruvayoorappanC. RadhakrishnanK.V. SujathanK. Exploring the phytochemical profile and biological activities of Clerodendrum infortunatum.ACS Omega2023811103831039610.1021/acsomega.2c0808036969395
    [Google Scholar]
  101. YangW. ChenX. XiulingY. Advances in pharmacological activities of terpenoids.Nat. Prod. Commun.20201531934578X2090355510.1177/1934578X20903555
    [Google Scholar]
  102. GuptaR. SinghH.K. Detection and quantitation of ß-sitosterol in clerodendrum infortunatum and alternanthera sessilis by HPTLC.Pharmacogn. Commun.201221313610.5530/pc.2012.1.6
    [Google Scholar]
  103. ThakurS. AkhisiaT. MatsubaraY. Configurations at c-24 of 24-alkylsterols from clerodendrum-infortunatum linn.Indian J. Chem. Sect. B-Org. Chem. Includ. Med. Chem.19882711720
    [Google Scholar]
  104. WangH. WangZ. ZhangZ. LiuJ. HongL. Beta-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects.Adv. Nutr.20231451085111010.1016/j.advnut.2023.05.01337247842
    [Google Scholar]
  105. GoyalA.K. BasisthaB.C. SenA. MiddhaS.K. Antioxidant profiling of Hippophae salicifolia growing in sacred forests of Sikkim, India.Funct. Plant Biol.201138969770110.1071/FP1101632480925
    [Google Scholar]
  106. HalliwellB. Free radicals and antioxidants: A personal view.Nutr. Rev.199452825326510.1111/j.1753‑4887.1994.tb01453.x7970288
    [Google Scholar]
  107. DreostiI.E. Antioxidant polyphenols in tea, cocoa, and wineNutrition2000167-8692410.1016/S0899‑9007(00)00304‑X
    [Google Scholar]
  108. DiplockA.T. Will the ‘good fairies’ please prove to us that vitamin E lessens human degenerative disease?Free Radic. Res.199727551153210.3109/107157697090657919518068
    [Google Scholar]
  109. HsiaoJ.Y. LinM.L. A chemotaxonomic study of essential oils from the leaves of genus Clerodendrum (Verbenaceae) native to Taiwan.Bot. Bull. Acad. Sin.199536247251
    [Google Scholar]
  110. PerchelletJP GaliHU PerchelletEM Antitumor-promoting activities of tannic acid, ellagic acid, and several gallic acid derivatives in mouse skin.Basic Life Sci199259783801
    [Google Scholar]
  111. NarayananB.A. GeoffroyO. WillinghamM.C. ReG.G. NixonD.W. p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells.Cancer Lett.1999136221522110.1016/S0304‑3835(98)00323‑110355751
    [Google Scholar]
  112. SwargiaryA. BrahmaK. BoroT. Study of phytochemical content, antioxidant and larvicidal property of different solvent extracts of Clerodendrum infortunatum and Citrus grandis.Indian J. Tradit. Knowl.2021202329334
    [Google Scholar]
  113. FormicaJ.V. RegelsonW. Review of the biology of quercetin and related bioflavonoids.Food Chem. Toxicol.199533121061108010.1016/0278‑6915(95)00077‑18847003
    [Google Scholar]
  114. PankajP. ManganahalliMS NarayanasamyVB Antioxidant potential of Clerodendron viscosum vent. Roots.Pharmacologyonline20072226235
    [Google Scholar]
  115. KabirE. IslamJ. ShilaT.T. BeautyS.A. SadiJ. GofurM.R. IslamF. HossainS. NikkonF. HossainK. SaudZ.A. Ameliorating effects of Clerodendrum viscosum leaves on lead-induced hepatotoxicity.Food Sci. Nutr.20241296472648110.1002/fsn3.428539554341
    [Google Scholar]
  116. MandalN. ShendgeA.K. BasuT. ChaudhuriD. PanjaS. In vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves.Pharmacogn. Mag.2017135034410.4103/pm.pm_395_1628808404
    [Google Scholar]
  117. SunC NirmalanandaS JenkinsCE First ayurvedic approach towards green drugs: Anti cervical cancer-cell properties of Clerodendrum viscosum root extract.Anti-Canc. Agents Med. Chem.201313101469147610.2174/18715206113139990138
    [Google Scholar]
  118. SchuchmannM. GalleP.R. Sensitizing to apoptosis—sharpening the medical sword.J. Hepatol.200440233533610.1016/j.jhep.2003.11.02214739108
    [Google Scholar]
  119. ShendgeA.K. PanjaS. BasuT. MandalN. A tropical lichen, dirinaria consimilis selectively induces apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway.Anticancer. Agents Med. Chem.202020101173118710.2174/187152062066620031809541032188391
    [Google Scholar]
  120. LuY JiangF JiangH Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells.European J. Pharmacol.2010641.2-310210710.1016/j.ejphar.2010.05.043
    [Google Scholar]
  121. MauryaD.K. NandakumarN. DevasagayamT.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms.J. Clin. Biochem. Nutr.2010481859010.3164/jcbn.11‑004FR21297918
    [Google Scholar]
  122. NguyenT.T.T. TranE. NguyenT.H. DoP.T. HuynhT.H. HuynhH. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells.Carcinogenesis200325564765910.1093/carcin/bgh05214688022
    [Google Scholar]
  123. JeongJ.H. AnJ.Y. KwonY.T. RheeJ.G. LeeY.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression.J. Cell. Biochem.20091061738210.1002/jcb.2197719009557
    [Google Scholar]
  124. ShendgeA.K. ChaudhuriD. MandalN. The natural flavones, acacetin and apigenin, induce Cdk-Cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells.Mol. Biol. Rep.202148153954910.1007/s11033‑020‑06087‑x33394232
    [Google Scholar]
  125. ShendgeA.K. ChaudhuriD. BasuT. MandalN. A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway.Clin. Transl. Oncol.202123471873010.1007/s12094‑020‑02461‑032715386
    [Google Scholar]
  126. WangB. ZhaoX.H. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells.Oncol. Rep.20173721132114010.3892/or.2016.530327959417
    [Google Scholar]
  127. SouzaR.P. MendonçaB.P.S. GimenesF. RattiB.A. KaplumV. BruschiM.L. NakamuraC.V. SilvaS.O. EnglerM.S.S. ConsolaroM.E.L. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines.Oxid. Med. Cell. Longev.201720171151274510.1155/2017/151274528191273
    [Google Scholar]
  128. ChoiS.I. JeongC.S. ChoS.Y. LeeY.S. Mechanism of apoptosis induced by apigenin in hepg2 human hepatoma cells: Involvement of reactive oxygen species generated by NADPH oxidase.Arch. Pharm. Res.200730101328133510.1007/BF0298027418038912
    [Google Scholar]
  129. TavsanZ. KayaliH.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion.Biomed. Pharmacother.201911610900410.1016/j.biopha.2019.10900431128404
    [Google Scholar]
  130. MadunićO.V.I. MadunićJ. AntunovićM. ParadžikM. VrhovacG.V. BreljakD. MarijanovićI. GajskiG. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells.Naunyn Schmiedebergs Arch. Pharmacol.2018391553755010.1007/s00210‑018‑1486‑429541820
    [Google Scholar]
  131. ChanK.T. MengF.Y. LiQ. HoC.Y. LamT.S. ToY. LeeW.H. LiM. ChuK.H. TohM. Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration.Cancer Lett.2010294111812410.1016/j.canlet.2010.01.02920153103
    [Google Scholar]
  132. VogelsteinB. LaneD. LevineA.J. Surfing the p53 network.Nature2000408681030731010.1038/3504267511099028
    [Google Scholar]
  133. PalmaT.V. LenzL.S. BottariN.B. PereiraA. SchetingerM.R.C. MorschV.M. UlrichH. PillatM.M. Andraded.C.M. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity.Mol. Biol. Rep.20204764393440010.1007/s11033‑020‑05500‑932410137
    [Google Scholar]
  134. PanM.H. LaiC.S. HsuP.C. WangY.J. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species.J. Agric. Food Chem.200553362063010.1021/jf048430m15686411
    [Google Scholar]
  135. ShimH.Y. ParkJ.H. PaikH.D. NahS.Y. KimD.S.H.L. HanY.S. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation.Mol. Cells20072419510410.1016/S1016‑8478(23)10760‑617846503
    [Google Scholar]
  136. XuY. XinY. DiaoY. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells.PloS one2011612e2916910.1371/journal.pone.0029169
    [Google Scholar]
  137. LuH.F. ChieY.J. YangM.S. LuK.W. FuJ.J. YangJ.S. ChenH.Y. HsiaT.C. MaC.Y. IpS.W. ChungJ.G. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways.Hum. Exp. Toxicol.20113081053106110.1177/096032711038625820937639
    [Google Scholar]
  138. LimS. KaldisP. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation.Development2013140153079309310.1242/dev.09174423861057
    [Google Scholar]
  139. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  140. LiuK-C. HuangA.C. WuP.P. LinH.Y. ChuehF.S. YangJ.S. LuC.C. ChiangJ.H. MengM. ChungJ.G. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways.Oncol. Rep.201126117718410.3892/or.2011.126421503582
    [Google Scholar]
  141. SubramanianA.P. JohnA.A. VellayappanM.V. BalajiA. JaganathanS.K. SupriyantoE. YusofM. Gallic acid: Prospects and molecular mechanisms of its anticancer activity.RSC Advances2015545356083562110.1039/C5RA02727F
    [Google Scholar]
  142. JiangY. PeiJ. ZhengY. MiaoY. DuanB. HuangL. Gallic acid: A potential anti-cancer agent.Chin. J. Integr. Med.202228766167110.1007/s11655‑021‑3345‑234755289
    [Google Scholar]
  143. WangK. ZhuX. ZhangK. ZhuL. ZhouF. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells.J. Biochem. Mol. Toxicol.201428938739310.1002/jbt.2157524864015
    [Google Scholar]
  144. ZhangT. MaL. WuP. LiW. LiT. GuR. DanX. LiZ. FanX. XiaoZ. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway.Oncol. Rep.20194131779178810.3892/or.2019.697630747218
    [Google Scholar]
  145. ShendgeA.K. BasuT. PanjaS. ChaudhuriD. MandalN. An ellagic acid isolated from Clerodendrum viscosum leaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway.Biomed. Pharmacother.201810645446510.1016/j.biopha.2018.06.13329990833
    [Google Scholar]
  146. EdderkaouiM OdinokovaI OhnoI Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells.World J. Gastroenterol.200814233672
    [Google Scholar]
  147. LotfiN. YousefiZ. GolabiM. KhalilianP. GhezelbashB. MontazeriM. ShamsM.H. BaghbadoraniP.Z. EskandariN. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update.Front. Immunol.202314107753110.3389/fimmu.2023.107753136926328
    [Google Scholar]
  148. SrivastavaN.S. SrivastavaR.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells.Phytomedicine20195211712810.1016/j.phymed.2018.09.22430599890
    [Google Scholar]
  149. MauryaA.K. VinayakM. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line.Mol. Biol. Rep.20154291419142910.1007/s11033‑015‑3921‑726311153
    [Google Scholar]
  150. LiangH. ChenZ. YangR. HuangQ. ChenH. ChenW. ZouL. WeiP. WeiS. YangY. ZhangY. Methyl gallate suppresses the migration, invasion, and epithelial-mesenchymal transition of hepatocellular carcinoma cells via the ampk/nf-κb signaling pathway in vitro and in vivo.Front. Pharmacol.20221389428510.3389/fphar.2022.89428535770085
    [Google Scholar]
  151. JiangW. LiX. DongS. ZhouW. Betulinic acid in the treatment of tumour diseases: Application and research progress.Biomed. Pharmacother.202114211199010.1016/j.biopha.2021.11199034388528
    [Google Scholar]
  152. ZhengY. LiuP. WangN. WangS. YangB. LiM. ChenJ. SituH. XieM. LinY. WangZ. Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway.Oxid. Med. Cell. Longev.2019201911510.1155/2019/878169031531187
    [Google Scholar]
  153. AbeM. AsadaN. KimuraM. FukuiC. YamadaD. WangZ. MiyakeM. TakaradaT. OnoM. AoeM. KitamuraW. MatsudaM. MoriyamaT. MatsumuraA. MaedaY. Antitumor activity of α-pinene in T-cell tumors.Cancer Sci.202411541317133210.1111/cas.1608638279512
    [Google Scholar]
  154. MachadoT.Q. FelisbertoJ.R.S. GuimarãesE.F. QueirozG.A. FonsecaA.C.C. RamosY.J. MarquesA.M. MoreiraD.L. RobbsB.K. Apoptotic effect of β-pinene on oral squamous cell carcinoma as one of the major compounds from essential oil of medicinal plant Piper rivinoides Kunth.Nat. Prod. Res.20223661636164010.1080/14786419.2021.189514833678083
    [Google Scholar]
  155. NasiruddinM. AzadiM.A. NelyM.S. Piscicidal effects of extracts of karenja plant Pongamia pinnata (L.) Pierre and Vat plant Clerodendrum viscosum (Vent.) on singhi fish heteropneustes fossilis (Bloch).Chittagong Univ. J. Biol. Sci.202471657810.3329/cujbs.v7i1.73145
    [Google Scholar]
  156. NasiruddinM. AzadiM.A. NelyM.S. Histopathological effects of extracts of two indigenous plants, pongamia pinnata (l.) Pierre and clerodendrum viscosum (vent.) On the cat fish, heteropneustes fossilis (bloch).J. Asiat. Soc. Bangladesh. Sci.201339110511510.3329/jasbs.v39i1.16039
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838357493250122122451
Loading
/content/journals/ctm/10.2174/0122150838357493250122122451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test