Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Contact lenses have revolutionized vision correction, offering wearers a convenient and often cosmetically appealing alternative to traditional eyeglasses. However, their close interaction with the ocular surface also presents a potential interface for pathogen interaction, which can lead to ocular infections. This review provides a comprehensive examination of the intricate relationship between contact lens optics and pathogenic organisms, delving into key aspects such as microbial adhesion, biofilm formation, and host responses. The various factors that influence pathogen adherence and colonization on contact lens surfaces. Material composition, surface properties, and wear duration are among the critical factors explored, highlighting their significant impact on the susceptibility of contact lenses to microbial colonization. Understanding these factors is essential for identifying strategies to mitigate pathogen adherence and reduce the risk of infection among contact lens wearers. Strategies for mitigating pathogen adherence and biofilm formation on contact lens surfaces are then explored. This includes an examination of antimicrobial coatings, surface modifications, and the incorporation of antimicrobial agents into lens materials. By targeting these key factors, researchers aim to develop contact lenses that are more resistant to microbial colonization and offer enhanced wearer safety. Furthermore, the review highlights advancements in contact lens technology aimed at enhancing biocompatibility and reducing infection risk. These advancements include the development of novel materials with intrinsic antimicrobial properties, smart contact lenses capable of real-time monitoring of ocular health parameters, and bioinspired designs for improved wearer comfort and safety. Overall, understanding the dynamics of pathogen interactions with contact lenses is crucial for improving lens design, enhancing wearer safety, and minimizing the risk of ocular infections. By elucidating the mechanisms underlying microbial adhesion, biofilm formation, and host responses, researchers can continue to innovate in the field of contact lens technology, ultimately benefiting millions of contact lens wearers worldwide.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838319123241015153736
2025-02-24
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838319123.html?itemId=/content/journals/ctm/10.2174/0122150838319123241015153736&mimeType=html&fmt=ahah

References

  1. BarnettM. CoureyC. FadelD. LeeK. MichaudL. MontaniG. van der WorpE. VincentS.J. WalkerM. BilkhuP. MorganP.B. BCLA clear - scleral lenses.Cont. Lens Anterior Eye202144227028810.1016/j.clae.2021.02.00133775380
    [Google Scholar]
  2. KhanS.A. LeeC.S. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis.Acta Biomater.202011310111810.1016/j.actbio.2020.06.03932622052
    [Google Scholar]
  3. SalihA.E. ElsherifM. AlamF. YetisenA.K. ButtH. Gold nanocomposite contact lenses for color blindness management.ACS Nano20211534870488010.1021/acsnano.0c0965733570901
    [Google Scholar]
  4. RodriguesF.S.C. CamposA. MartinsJ. AmbrósioA.F. CamposE.J. Emerging trends in nanomedicine for improving ocular drug delivery: light-responsive nanoparticles, mesoporous silica nanoparticles, and contact lenses.ACS Biomater. Sci. Eng.20206126587659710.1021/acsbiomaterials.0c0134733320633
    [Google Scholar]
  5. FleiszigS.M.J. KrokenA.R. NietoV. GrosserM.R. WanS.J. MetruccioM.M.E. EvansD.J. Contact lens-related corneal infection: Intrinsic resistance and its compromise.Prog. Retin. Eye Res.20207610080410.1016/j.preteyeres.2019.10080431756497
    [Google Scholar]
  6. FinkJ.K. Contact lenses: Chemicals, methods, and applications.John Wiley & Sons2022
    [Google Scholar]
  7. YuliyaP.Y.A.O. Innovative triz-based approach to prevent clde symptoms in silicone-hydrogel eye contact lenses.Acta Technica Napocensis2020633S14
    [Google Scholar]
  8. SelingerR.L.B. History of vision correction: contact and intraocular lenses.MRS Bull.19972286510.1557/S0883769400033868
    [Google Scholar]
  9. LambJ. BowdenT. The history of contact lenses.Contact LensesElsevier201910.1016/B978‑0‑7020‑7168‑3.00001‑5
    [Google Scholar]
  10. MichálekJ.I. PodešvaJ. Dušková-SmrčkováM. True story of poly (2-hydroxyethyl methacrylate)-based contact lenses: How did it really happen.Substantia.2022627991
    [Google Scholar]
  11. MalikY. Clinical contact lens practiceLippincott Williams & Wilkins2005
    [Google Scholar]
  12. LorentzH. JonesL. Lipid deposition on hydrogel contact lenses: how history can help us today.Optom. Vis. Sci.200784428629510.1097/OPX.0b013e3180485d4b17435512
    [Google Scholar]
  13. NgaiV. MedleyJ.B. JonesL. ForrestJ. TeiehroebJ. Friction of contact lenses: Silicone hydrogel versus conventional hydrogel.Tribol. Interface Engin. Ser.20054837137810.1016/S0167‑8922(05)80039‑2
    [Google Scholar]
  14. KeyJ.E. Development of contact lenses and their worldwide use.Eye & Contact Lens200733634334510.1097/ICL.0b013e318157c230
    [Google Scholar]
  15. MusgraveC.S.A. FangF. Contact lens materials: a materials science perspective.Materials (Basel)201912226110.3390/ma1202026130646633
    [Google Scholar]
  16. BhamraT.S. TigheB.J. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development.Cont. Lens Anterior Eye2017402708110.1016/j.clae.2016.11.00527884616
    [Google Scholar]
  17. CarntN.A. EvansV.E. NaduvilathT.J. WillcoxM.D. PapasE.B. FrickK.D. HoldenB.A. Contact lens-related adverse events and the silicone hydrogel lenses and daily wear care system used.Arch. Ophthalmol.2009127121616162310.1001/archophthalmol.2009.31320008717
    [Google Scholar]
  18. LipenerC. TavaresC.M. Contact lens fitting in pellucid marginal degeneration.Keratoconus: A Comprehensive Guide to Diagnosis and TreatmentSpringer International Publishing202210.1007/978‑3‑030‑85361‑7_29
    [Google Scholar]
  19. WolffsohnJ.S. CalossiA. ChoP. GiffordK. JonesL. JonesD. GuthrieS. LiM. LipenerC. LoganN.S. MaletF. Peixoto-de-MatosS.C. González-MéijomeJ.M. NicholsJ.J. OrrJ.B. Santodomingo-RubidoJ. SchaeferT. ThiteN. van der WorpE. TaruttaE. IomdinaE. AliB.M. Villa-CollarC. Abesamis-DichosoC. ChenC. PultH. BlaserP. Parra Sandra JohannaG. IqbalF. RamosR. Carrillo OrihuelaG. BoychevN. Global trends in myopia management attitudes and strategies in clinical practice – 2019 Update.Cont. Lens Anterior Eye202043191710.1016/j.clae.2019.11.00231761738
    [Google Scholar]
  20. BradleyC.S. SicksL.A. PuckerA.D. Common ophthalmic preservatives in soft contact lens care products: benefits, complications, and a comparison to non-preserved solutions.Clin. Optom. (Auckl.)20211327128510.2147/OPTO.S23567934522149
    [Google Scholar]
  21. ShakerL.M. Al-AmieryA.A. Al-AzzawiW.K. A clearer vision: a mini-review on contact lenses.J. Opt.202453294995810.1007/s12596‑023‑01222‑w
    [Google Scholar]
  22. CoxI. Contact lenses.Handbook of Visual OpticsCRC Press201710.1201/9781315373027‑11
    [Google Scholar]
  23. JonesL. DumbletonK. Contact lenses. optometry: science, techniques and clinical management. RosenfieldM. LoganN. EdinburghButterworth-Heinemann Elsevier2009335355
    [Google Scholar]
  24. MoredduR. VigoloD. YetisenA.K. Contact lens technology: From fundamentals to applications.Adv. Healthc. Mater.2019815e1900368
    [Google Scholar]
  25. ShakerL.M. Al-AmieryA. IsahakW.N.R.W. Revolutionizing contact lens manufacturing: exploring cutting-edge techniques and innovations for enhanced vision and comfort.Int. J. Low Carbon Technol.20241935938510.1093/ijlct/ctad136
    [Google Scholar]
  26. ShakerL.M. AlamieryA. TakriffM.S. IsahakW.N. Integrated TiO2 nanoparticle for electronic polymeric contact lenses.J. Opt.202310
    [Google Scholar]
  27. ShakerL.M. Al-HamdaniA.H. Al-AmieryA.A. A comparative study of optical quality for different polymeric contact lenses.J. Phys.: Conf. Ser.2019123401204210.1088/1742‑6596/1234/1/012042
    [Google Scholar]
  28. ShakerL.M. Al-AmieryA. TakriffM.S. Wan IsahakW.N.R. MahdiA.S. Al-AzzawiW.K. The future of vision: a review of electronic contact lenses technology.ACS Photonics20231061671168610.1021/acsphotonics.3c00523
    [Google Scholar]
  29. ShakerL.M. Al-AmieryA.A. KadhumA.A.H. TakriffM.S. Manufacture of contact lens of nanoparticle-doped polymer complemented with zemax.Nanomaterials (Basel)20201010202810.3390/nano1010202833076278
    [Google Scholar]
  30. ShakerL.M. Al-HamdaniA.H. Al-AmieryA.A. Plastic materials for modifying the refractive index of contact lens: overview.Res Dev Mater Sci.20191111531161
    [Google Scholar]
  31. ShakerL.M. Al-HamdaniA.H. Al-AmieryA.A. Nano-particle doped polymers to improve contact lenses optical quality.International Journal of Nanoelectronics & Materials.20201311930
    [Google Scholar]
  32. ShakerL.M. Al-AzzawiW.K. Al-AmieryA. TakriffM.S. Wan IsahakW.N.R. Highly transparent antibacterial hydrogel-polymeric contact lenses doped with silver nanoparticles.J. Vinyl Additive Technol.20232961023103510.1002/vnl.21995
    [Google Scholar]
  33. ShakerL.M. AlamieryA. TakriffM. Wan IsahakW.N.R. Novel blue-wavelength-blocking contact lens with Er3+/TiO2 NPs: manufacture and characterization.Nanomaterials (Basel)2021119219010.3390/nano1109219034578506
    [Google Scholar]
  34. ShakerL.M. Al-AmieryA. TakriffM.S. IsahakW.N. Al-AzzawiW.K. Clear vision, green choices: a review of optics, environmental effects, and eco-friendly advancements in contact lenses.J. Opt.202314
    [Google Scholar]
  35. ShakerL.M. AbdulhadiS. Al-AzzawiW.K. AlamieryA. TakriffM.S. IsahakW.N.R.W. Colorless poly(vinyl pyrrolidone) hydrogel contact lenses synergized with silver nanoparticles.J. Opt.202453284785610.1007/s12596‑023‑01176‑z
    [Google Scholar]
  36. CampoloA. PiferR. ShannonP. CraryM. Microbial adherence to contact lenses and Pseudomonas aeruginosa as a model organism for microbial keratitis.Pathogens20221111138310.3390/pathogens1111138336422634
    [Google Scholar]
  37. StapletonF. Contact lens-related corneal infection in Australia.Clin. Exp. Optom.2020103440841710.1111/cxo.1308232363626
    [Google Scholar]
  38. GangashettappaN. RakshaL. ShantalaG.B. NandanB. SinhaD. Study of biofilm formation in bacterial isolates from contact lens wearers.Indian J. Ophthalmol.2020681232810.4103/ijo.IJO_947_1931856459
    [Google Scholar]
  39. HilliamY. KayeS. WinstanleyC. Pseudomonas aeruginosa and microbial keratitis.J. Med. Microbiol.202069131310.1099/jmm.0.00111031750813
    [Google Scholar]
  40. BrahmachariG. MandalL.C. RoyR. JashS.K. MondalA. MajhiS. GoraiD. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L.(Apocynaceae).J. Indian Chem. Soc.2011882303
    [Google Scholar]
  41. ShahS. WozniakR.A.F. Staphylococcus aureus and Pseudomonas aeruginosa infectious keratitis: key bacterial mechanisms that mediate pathogenesis and emerging therapeutics.Front. Cell. Infect. Microbiol.202313125025710.3389/fcimb.2023.125025737671149
    [Google Scholar]
  42. NiuL. LiuX. MaZ. YinY. SunL. YangL. ZhengY. Fungal keratitis: Pathogenesis, diagnosis and prevention.Microb. Pathog.202013810380210.1016/j.micpath.2019.10380231626916
    [Google Scholar]
  43. KrishnanS. Biofilm formation on medical devices and infection: preventive approaches.Biofilm and Materials ScienceSpringer2015
    [Google Scholar]
  44. SongF. KooH. RenD. Effects of material properties on bacterial adhesion and biofilm formation.J. Dent. Res.20159481027103410.1177/002203451558769026001706
    [Google Scholar]
  45. AllizondV. CominiS. CuffiniA.M. BancheG. Current knowledge on biomaterials for orthopedic applications modified to reduce bacterial adhesive ability.Antibiotics (Basel)202211452910.3390/antibiotics1104052935453280
    [Google Scholar]
  46. DhandC. OngC.Y. DwivediN. VaradarajanJ. Halleluyah PeriayahM. Jianyang LimE. MayandiV. GohE.T.L. NajjarR.P. ChanL.W. BeuermanR.W. FooL.L. LohX.J. LakshminarayananR. Mussel-inspired durable antimicrobial contact lenses: The role of covalent and noncovalent attachment of antimicrobials.ACS Biomater. Sci. Eng.2020653162317310.1021/acsbiomaterials.0c0022933463280
    [Google Scholar]
  47. MaoT. FangF. Biomimetic functional surfaces towards bactericidal soft contact lenses.Micromachines (Basel)202011983510.3390/mi1109083532878284
    [Google Scholar]
  48. LiuX. YeY. GeY. QuJ. LiedbergB. ZhangQ. WangY. Smart Contact Lenses for Healthcare Monitoring and Therapy.ACS Nano20241896817684410.1021/acsnano.3c1207238407063
    [Google Scholar]
  49. UrwinL. OkurowskaK. CrowtherG. RoyS. GargP. KarunakaranE. MacNeilS. PartridgeL.J. GreenL.R. MonkP.N. Corneal infection models: tools to investigate the role of biofilms in bacterial keratitis.Cells2020911245010.3390/cells911245033182687
    [Google Scholar]
  50. JonesL. WalshK. WillcoxM. MorganP. NicholsJ. The COVID-19 pandemic: Important considerations for contact lens practitioners.Cont. Lens Anterior Eye202043319620310.1016/j.clae.2020.03.01232273245
    [Google Scholar]
  51. DostertM. TrimbleM.J. HancockR.E.W. Antibiofilm peptides: overcoming biofilm-related treatment failure.RSC Advances20211152718272810.1039/D0RA09739J35424252
    [Google Scholar]
  52. ZhaoC. ZhouL. ChiaoM. YangW. Antibacterial hydrogel coating: Strategies in surface chemistry.Adv. Colloid Interface Sci.202028510228010.1016/j.cis.2020.10228033010575
    [Google Scholar]
  53. GuoQ. ZhaoY. DaiX. ZhangT. YuY. ZhangX. LiC. Functional silver nanocomposites as broad-spectrum antimicrobial and biofilm-disrupting agents.ACS Appl. Mater. Interfaces2017920168341684710.1021/acsami.7b0277528481506
    [Google Scholar]
  54. AlvesP.J. BarretoR.T. BarroisB.M. GrysonL.G. MeaumeS. MonstreyS.J. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm.Int. Wound J.202118334235810.1111/iwj.1353733314723
    [Google Scholar]
  55. SultanaA. ZareM. LuoH. RamakrishnaS. Surface engineering strategies to enhance the in situ performance of medical devices including atomic scale engineering.Int. J. Mol. Sci.202122211178810.3390/ijms22211178834769219
    [Google Scholar]
  56. ZareM. ZareM. ButlerJ.A. RamakrishnaS. Nanoscience-led antimicrobial surface engineering to prevent infections.ACS Appl. Nano Mater.2021454269428310.1021/acsanm.1c00466
    [Google Scholar]
  57. KhanS.A. ShakoorA. Recent strategies and future recommendations for the fabrication of antimicrobial, antibiofilm, and antibiofouling biomaterials.Int. J. Nanomedicine2023183377340510.2147/IJN.S40607837366489
    [Google Scholar]
  58. PietrocolaG. CampocciaD. MottaC. MontanaroL. ArciolaC.R. SpezialeP. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants.Int. J. Mol. Sci.20222311595810.3390/ijms2311595835682632
    [Google Scholar]
  59. PanneerselvamP. ChauhanN.P. SimorghS. Silicon-based polymers for biomedical application.Handbook of Polymers in MedicineWoodhead Publishing202310.1016/B978‑0‑12‑823797‑7.00016‑2
    [Google Scholar]
  60. UngL. ChodoshJ. Foundational concepts in the biology of bacterial keratitis.Exp. Eye Res.202120910864710.1016/j.exer.2021.10864734097906
    [Google Scholar]
  61. SharmaS. MohlerJ. MahajanS.D. SchwartzS.A. BruggemannL. AalinkeelR. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment.Microorganisms2023116161410.3390/microorganisms1106161437375116
    [Google Scholar]
  62. ChugM.K. BrisboisE.J. Recent developments in multifunctional antimicrobial surfaces and applications toward advanced nitric oxide-based biomaterials.ACS Materials Au20222552555110.1021/acsmaterialsau.2c0004036124001
    [Google Scholar]
  63. QianY. DengS. LuZ. SheY. XieJ. CongZ. ZhangW. LiuR. Using in vivo assessment on host defense peptide mimicking polymer-modified surfaces for combating implant infections.ACS Appl. Bio Mater.2021453811382910.1021/acsabm.0c0106635006811
    [Google Scholar]
  64. Joshi NavareK. EggermontL.J. RogersZ.J. MohammedH.S. ColombaniT. BencherifS.A. Antimicrobial hydrogels: Key considerations and engineering strategies for biomedical applications.Racing for the SurfaceSpringer2020
    [Google Scholar]
  65. ZhuY. LiS. LiJ. FalconeN. CuiQ. ShahS. HartelM.C. YuN. YoungP. de BarrosN.R. WuZ. HaghniazR. ErmisM. WangC. KangH. LeeJ. KaramikamkarS. AhadianS. JucaudV. DokmeciM.R. KimH.J. KhademhosseiniA. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics.Adv. Mater.20223424210838910.1002/adma.20210838935130584
    [Google Scholar]
  66. ZhuY. HaghniazR. HartelM.C. MouL. TianX. GarridoP.R. WuZ. HaoT. GuanS. AhadianS. KimH.J. JucaudV. DokmeciM.R. KhademhosseiniA. Recent advances in bioinspired hydrogels: materials, devices, and biosignal computing.ACS Biomater. Sci. Eng.2023952048206910.1021/acsbiomaterials.1c0074134784170
    [Google Scholar]
  67. KarayilanM. ClamenL. BeckerM.L. Polymeric materials for eye surface and intraocular applications.Biomacromolecules202122222326110.1021/acs.biomac.0c0152533405900
    [Google Scholar]
  68. RenX. ZhouY. LuF. ZhaiL. WuH. ChenZ. WangC. ZhuX. XieY. CaiP. XuJ. TangX. LiJ. YaoJ. JiangQ. HuB. Contact Lens Sensor with Anti-jamming Capability and High Sensitivity for Intraocular Pressure Monitoring.ACS Sens.2023872691270110.1021/acssensors.3c0054237262351
    [Google Scholar]
  69. ShakerL.M. Al-AmieryA. IsahakW.N.R.W. Al-AzzawiW.K. Vinyl polymers as key materials in contact lens design: A review of progress and future directions.Stärke2024767-8230021310.1002/star.202300213
    [Google Scholar]
  70. SheanR. YuN. GuntipallyS. NguyenV. HeX. DuanS. GokoffskiK. ZhuY. XuB. Advances and Challenges in Wearable Glaucoma Diagnostics and Therapeutics.Bioengineering (Basel)202411213810.3390/bioengineering1102013838391624
    [Google Scholar]
  71. AscasoF.J. HuervaV. Noninvasive continuous monitoring of tear glucose using glucose-sensing contact lenses.Optom. Vis. Sci.201693442643410.1097/OPX.000000000000069826390345
    [Google Scholar]
  72. MannA. TigheB. Contact lens interactions with the tear film.Exp. Eye Res.2013117889810.1016/j.exer.2013.07.01323886658
    [Google Scholar]
  73. FarandosN.M. YetisenA.K. MonteiroM.J. LoweC.R. YunS.H. Contact lens sensors in ocular diagnostics.Adv. Healthc. Mater.20154679281010.1002/adhm.20140050425400274
    [Google Scholar]
  74. WenF. HeT. LiuH. ChenH.Y. ZhangT. LeeC. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era.Nano Energy20207810515510.1016/j.nanoen.2020.105155
    [Google Scholar]
  75. BorandehS. AlimardaniV. AbolmaaliS.S. SeppäläJ. Graphene family nanomaterials in ocular applications: physicochemical properties and toxicity.Chem. Res. Toxicol.20213461386140210.1021/acs.chemrestox.0c0034034041903
    [Google Scholar]
  76. KimS. BaekS. SluyterR. KonstantinovK. KimJ.H. KimS. KimY.H. Wearable and implantable bioelectronics as eco-friendly and patient-friendly integrated nanoarchitectonics for next-generation smart healthcare technology.EcoMat202358e1235610.1002/eom2.12356
    [Google Scholar]
  77. ErdemA. EksinE. SenturkH. YildizE. MaralM. Recent developments in wearable biosensors for healthcare and biomedical applications.Trends Analyt. Chem.20232023117510
    [Google Scholar]
  78. VelazquezJ. LozanoR.E. CamarenaJ.C. GarciaR.A. Contact lens-associated infectious keratitis: Update on diagnosis and therapy.Infectious Eye Diseases-Recent Advances in Diagnosis and TreatmentIntechOpen2021
    [Google Scholar]
  79. SteeleK.R. WagnerH. LaiN. ZimmermanA.B. Gas-permeable contact lenses and water exposure: Practices and perceptions.Optom. Vis. Sci.202198325826510.1097/OPX.000000000000166033771955
    [Google Scholar]
  80. SpernovasilisN. MarakiS. KokorakisE. KofteridisD. TsilimbarisM. SiganosC. SamonisG. Antimicrobial susceptibility of isolated pathogens from patients with contact lens-related bacterial keratitis in Crete, Greece: A ten-year analysis.Cont. Lens Anterior Eye202144410135510.1016/j.clae.2020.07.00632778366
    [Google Scholar]
  81. MaulviF.A. DesaiD.T. ShettyK.H. ShahD.O. WillcoxM.D.P. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery.Int. J. Pharm.202160812109010.1016/j.ijpharm.2021.12109034530102
    [Google Scholar]
  82. Szczotka-FlynnL.B. ImamuraY. ChandraJ. YuC. MukherjeeP.K. PearlmanE. GhannoumM.A. Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions.Cornea200928891892610.1097/ICO.0b013e3181a8183519654521
    [Google Scholar]
  83. MordmuangA. UdomwechL. KarnjanaK. Influence of contact lens materials and cleaning procedures on bacterial adhesion and biofilm formation.Clin. Ophthalmol.2021152391240210.2147/OPTH.S31086234135567
    [Google Scholar]
  84. VisserE.S. WisseR.P.L. SoetersN. ImhofS.M. Van der LelijA. Objective and subjective evaluation of the performance of medical contact lenses fitted using a contact lens selection algorithm.Cont. Lens Anterior Eye201639429830610.1016/j.clae.2016.02.00626917334
    [Google Scholar]
  85. BreedM. DowningC. AllyH. Factors influencing motivation of nurse leaders in a private hospital group in Gauteng, South Africa: A quantitative study.Curationis2020431e1e910.4102/curationis.v43i1.201132129642
    [Google Scholar]
  86. Mingo-BotínD. ZamoraJ. Arnalich-MontielF. Muñoz-NegreteF.J. Characteristics, behaviors, and awareness of contact lens wearers purchasing lenses over the internet.Eye Contact Lens202046420821310.1097/ICL.000000000000070232443017
    [Google Scholar]
  87. SeoH. ChungW.G. KwonY.W. KimS. HongY.M. ParkW. KimE. LeeJ. LeeS. KimM. LimK. JeongI. SongH. ParkJ.U. Smart contact lenses as wearable ophthalmic devices for disease monitoring and health management.Chem. Rev.202312319114881155810.1021/acs.chemrev.3c0029037748126
    [Google Scholar]
  88. ZhangX. CaoX. QiP. Therapeutic contact lenses for ophthalmic drug delivery: major challenges.J. Biomater. Sci. Polym. Ed.202031454956010.1080/09205063.2020.171217531902299
    [Google Scholar]
  89. MirzajaniH. MirlouF. IstifE. SinghR. BekerL. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges.Biosens. Bioelectron.202219711376110.1016/j.bios.2021.11376134800926
    [Google Scholar]
  90. LanierO.L. ChristopherK.G. MacoonR.M. YuY. SekarP. ChauhanA. Commercialization challenges for drug eluting contact lenses.Expert Opin. Drug Deliv.20201781133114910.1080/17425247.2020.178798332602822
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838319123241015153736
Loading
/content/journals/ctm/10.2174/0122150838319123241015153736
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adhesion; biofilm; Contact lenses; microbial colonization; optics; pathogens
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test