Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Introduction

Traditional Thai medicine significantly contributes to the treatment of the coronavirus disease 2019 (COVID-19) pandemic. This research aimed to assess the clinical efficacy of traditional Thai herbal steam bath on the residual symptoms of COVID-19 recovered patients.

Methods

The single-arm pre-post design research was performed on thirty-three post-COVID-19 patients. All patients received herbal steam bath therapy for twenty minutes twice a week for two consecutive weeks. The outcome measurements on dyspnea intensity, nasal symptom intensity, muscle pain intensity, and quality of life were assessed at baseline and after two weeks of treatment by the modified medical research council (mMRC) dyspnea scale, the total nasal symptom score (TNSS), Numerical Rating Scale (NRS), and COPD assessment test questionnaire, respectively.

Results

The results indicated a significant decrease in mMRC, TNSS, NRS, and CAT scores two weeks post-treatment ( < 0.05). The percentage of patients presenting no or mild symptoms improved to 86.36% in CAT, 80.00% in TNSS, 60.71% in mMRC, and 13.79% in NRS, respectively. In the TNSS test, the highest percentage of patients with no symptoms, reaching 73.91%, was attributable to congestion. In addition, the CAT test revealed that the highest number of patients exhibiting mild symptoms, at 72.22%, correlated with confidence in leaving home.

Discussion

The herbal formulation may function as an antiviral agent, accelerate therapy, and alleviate side effects related to COVID-19 due to the synergistic antiviral, anti-inflammatory, and immune-enhancing properties of its constituents.

Conclusion

The findings demonstrated that Thai herbal steam bath significantly improved the dyspnea intensity, nasal symptom intensity, muscle pain intensity, and quality of life in patients with post COVID-19 syndrome.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838392708250822133729
2026-01-01
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838392708.html?itemId=/content/journals/ctm/10.2174/0122150838392708250822133729&mimeType=html&fmt=ahah

References

  1. CucinottaD. VanelliM. WHO declares COVID-19 a pandemic.Acta Biomed.20209111571603219167510.23750/abm.v91i1.9397
    [Google Scholar]
  2. JindahraP. WongboonsinK. WongboonsinP. Demographic and initial outbreak patterns of COVID-19 in thailand.J. Popul. Res.202239456758810.1007/s12546‑021‑09276‑y34776786
    [Google Scholar]
  3. WHO Coronavirus (COVID-19) Dashboard, Global Situation.2023Available From: https://covid19.who.int/region/searo/country/th
  4. de BritoF.A.M. LaranjeiraC. MoroskoskiM. SalciM.A. RossoniS.L. BacconW.C. de OliveiraR.R. MarquesP.G. de Freitas GóesH.L. MelloF.F. da Cruz BlaszczakF.R.B. VissociJ.R.N. Puente AlcarazJ. FacchiniL.A. CarreiraL. Self-reported post-COVID symptoms at 18 months after infection among adults in southern brazil: A cross-sectional study.Healthcare.202513322810.3390/healthcare1303022839942417
    [Google Scholar]
  5. BejanI. PopescuC.P. RutaS.M. Insights into the risk factors and outcomes of post-COVID-19 syndrome-results from a retrospective, cross-sectional study in romania.Life.20241411151910.3390/life1411151939598316
    [Google Scholar]
  6. DemekeC.A. WoldeyohaninsA.E. KifleZ.D. Herbal medicine use for the management of COVID-19: A review article.Metab. Open.20211210014110.1016/j.metop.2021.10014134693242
    [Google Scholar]
  7. TanwettiyanontJ. PiriyachananusornN. SangsoiL. BoonsongB. SunpapoaC. TanamatayaratP. Na-EkN. KanchanasurakitS. Use of andrographis paniculata (burm.f.) wall. ex nees and risk of pneumonia in hospitalised patients with mild coronavirus disease 2019: A retrospective cohort study.Front. Med.2022994737310.3389/fmed.2022.94737336035418
    [Google Scholar]
  8. SongvutP. SuriyoT. PanomvanaD. RangkadilokN. SatayavivadJ. A comprehensive review on disposition kinetics and dosage of oral administration of andrographis paniculata, an alternative herbal medicine, in co-treatment of coronavirus disease.Front. Pharmacol.20221395266010.3389/fphar.2022.95266036059950
    [Google Scholar]
  9. KanjanasiriratP. SuksatuA. ManopwisedjaroenS. MunyooB. TuchindaP. JearawuttanakulK. SeemakhanS. CharoensutthivarakulS. WongtrakoongateP. RangkaseneeN. PitipornS. WaranuchN. ChabangN. KhemawootP. Sa-ngiamsuntornK. PewkliangY. ThongsriP. ChutipongtanateS. HongengS. BorwornpinyoS. ThitithanyanontA. High-content screening of thai medicinal plants reveals boesenbergia rotunda extract and its component panduratin a as anti-SARS-CoV-2 agents.Sci. Rep.20201011996310.1038/s41598‑020‑77003‑333203926
    [Google Scholar]
  10. PhumthumM. NguanchooV. BalslevH. Medicinal plants used for treating mild covid-19 symptoms among thai karen and hmong.Front. Pharmacol.20211269989710.3389/fphar.2021.69989734354592
    [Google Scholar]
  11. SeetahaS. KhamplongP. WanaragthaiP. AiebchunT. RatanabunyongS. KrobthongS. YingchutrakulY. RattanasrisompornJ. ChoowongkomonK. KERRA, mixed medicinal plant extracts, inhibits SARS-CoV-2 targets enzymes and feline coronavirus.COVID20222562163210.3390/covid2050046
    [Google Scholar]
  12. TungsukruthaiP. NootimP. WorakunphanichW. TabtongN. Efficacy and safety of herbal steam bath in allergic rhinitis: A randomized controlled trial.J. Integr. Med.2018161394410.1016/j.joim.2017.12.01029397091
    [Google Scholar]
  13. GowrishankarS. MuthumanickamS. KamaladeviA. KarthikaC. JothiR. BoomiP. ManiazhaguD. PandianS.K. Promising phytochemicals of traditional indian herbal steam inhalation therapy to combat COVID-19 – An in silico study.Food Chem. Toxicol.202114811196610.1016/j.fct.2020.11196633412235
    [Google Scholar]
  14. DubeyD. VermaS.K. ChaurasiaA. DubeyD. Data on steam inhalation in combating CoVid-19.Bioinformation202218982583010.6026/9732063001882537426512
    [Google Scholar]
  15. ChowdhuryM.N.R. AlifY.A. AlamS. EmonN.U. RichiF.T. ZihadS.M.N.K. TakiM.T.I. RashidM.A. Theoretical effectiveness of steam inhalation against SARS-CoV-2 infection: Updates on clinical trials, mechanism of actions, and traditional approaches.Heliyon202281e0881610.1016/j.heliyon.2022.e0881635097233
    [Google Scholar]
  16. SunjayaA. PoulosL. ReddelH. JenkinsC. Qualitative validation of the modified medical research council (mMRC) dyspnoea scale as a patient-reported measure of breathlessness severity.Respir. Med.202220310698410.1016/j.rmed.2022.10698436179385
    [Google Scholar]
  17. TamasauskieneL. GasiunieneE. SitkauskieneB. Translation, adaption and validation of the total nasal symptom score (TNSS) for lithuanian population.Health Qual. Life Outcomes20211915410.1186/s12955‑020‑01659‑833573646
    [Google Scholar]
  18. RuskinD. LallooC. AmariaK. StinsonJ.N. KewleyE. CampbellF. BrownS.C. JeavonsM. McGrathP.A. Assessing pain intensity in children with chronic pain: Convergent and discriminant validity of the 0 to 10 numerical rating scale in clinical practice.Pain Res. Manag.201419314114810.1155/2014/85651324712019
    [Google Scholar]
  19. RaghavanN. LamY.M. WebbK.A. GuenetteJ.A. AmornputtisathapornN. RaghavanR. TanW.C. BourbeauJ. O’DonnellD.E. Components of the COPD assessment Test (CAT) associated with a diagnosis of COPD in a random population sample.COPD20129217518310.3109/15412555.2011.65080222409441
    [Google Scholar]
  20. KalkalA. AllawadhiP. PradhanR. KhuranaA. BharaniK.K. PackirisamyG. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis.Sens. Int.2021210010210.1016/j.sintl.2021.10010234766058
    [Google Scholar]
  21. CorrêaA.N.R. WeimerP. RossiR.C. HoffmannJ.F. KoesterL.S. SuyenagaE.S. FerreiraC.D. Lime and orange essential oils and d-limonene as a potential COVID-19 inhibitor: Computational, in chemico, and cytotoxicity analysis.Food Biosci.20235110234810.1016/j.fbio.2022.10234836597499
    [Google Scholar]
  22. SitiH.N. MohamedS. KamisahY. Potential therapeutic effects of citrus hystrix DC and its bioactive compounds on metabolic disorders.Pharmaceuticals.202215216710.3390/ph1502016735215280
    [Google Scholar]
  23. WatugulyT. BareY. Ratih TirtD. KustariniI. In silico study phytosterol cymbopogon citratus and curcuma longa as inhibitor agent 3C-like protease SARS-CoV-2.Pak. J. Biol. Sci.202225986787410.3923/pjbs.2022.867.87436098090
    [Google Scholar]
  24. Santos Serafim MachadoM. Ferreira SilvaH.B. RiosR. Pires de OliveiraA. Vilany Queiroz CarneiroN. Santos CostaR. Santos AlvesW. Meneses SouzaF.L. da Silva VelozoE. Alves de SouzaS. Sarmento SilvaT.M. SilvaM.L. Pontes-de-CarvalhoL.C. Alcântara-NevesN.M. FigueiredoC.A. The anti-allergic activity of cymbopogon citratus is mediated via inhibition of nuclear factor kappa B (Nf-Κb) activation.BMC Complement. Altern. Med.201515116810.1186/s12906‑015‑0702‑826048391
    [Google Scholar]
  25. SheikhH.I. ZakariaN.H. Abdul MajidF.A. ZamzuriF. FadhlinaA. HairaniM.A.S. Promising roles of zingiber officinale roscoe, curcuma longa l., and momordica charantia l. as immunity modulators against COVID-19: A bibliometric analysis.J. Agric. Food Res20231410068010.1016/j.jafr.2023.10068037346755
    [Google Scholar]
  26. ChangJ.S. WangK.C. YehC.F. ShiehD.E. ChiangL.C. Fresh ginger (zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines.J. Ethnopharmacol.2013145114615110.1016/j.jep.2012.10.04323123794
    [Google Scholar]
  27. KukhetpitakwongR. HahnvajanawongC. HomchampaP. LeelavatcharamasV. SatraJ. KhunkittiW. Immunological adjuvant activities of saponin extracts from the pods of acacia concinna. Int. Immunopharmacol.20066111729173510.1016/j.intimp.2006.08.00416979128
    [Google Scholar]
  28. GanogpichayagraiA. SuksaardC. Evaluation of proximate composition and biological activities of sompoi (acacia concinna) leaves in thailand.J. Adv. Pharm. Technol. Res.202213431732110.4103/japtr.japtr_443_2236568046
    [Google Scholar]
  29. SharmaD. JoshiM. ApparsundaramS. GoyalR.K. PatelB. DhobiM. Solanum nigrum L. in COVID-19 and post-COVID complications: A propitious candidate.Mol. Cell. Biochem.2023478102221224010.1007/s11010‑022‑04654‑336689040
    [Google Scholar]
  30. ChenX. DaiX. LiuY. YangY. YuanL. HeX. GongG. Solanum nigrum Linn.: An insight into current research on traditional uses, phytochemistry, and pharmacology.Front. Pharmacol.20221391807110.3389/fphar.2022.91807136052142
    [Google Scholar]
  31. BelhassanA. ZakiH. ChtitaS. AlaqarbehM. AlsakhenN. BenlyasM. LakhlifiT. BouachrineM. Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: Computational approach.Comput. Biol. Med.202113610475810.1016/j.compbiomed.2021.10475834411900
    [Google Scholar]
  32. FazmiyaM.J.A. SultanaA. RahmanK. HeyatM.B.B. Sumbul AkhtarF. KhanS. AppiahS.C.Y. Current insights on bioactive molecules, antioxidant, anti-inflammatory, and other pharmacological activities of cinnamomum camphora linn.Oxid. Med. Cell. Longev.2022202212310.1155/2022/935455536246399
    [Google Scholar]
  33. ZrieqR. AhmadI. SnoussiM. NoumiE. IritiM. AlgahtaniF.D. PatelH. SaeedM. TasleemM. SulaimanS. AouadiK. KadriA. Tomatidine and patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations.Int. J. Mol. Sci.202122191069310.3390/ijms22191069334639036
    [Google Scholar]
  34. LeeH.S. LeeJ. SmolenskyD. LeeS.H. Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review.Int. Immunopharmacol.202089Pt A10705610.1016/j.intimp.2020.10705633039955
    [Google Scholar]
  35. SuryawanshiR.K. KogantiR. AgelidisA. PatilC.D. ShuklaD. Dysregulation of cell signaling by SARS-CoV-2.Trends Microbiol.202129322423710.1016/j.tim.2020.12.00733451855
    [Google Scholar]
  36. KhorshiddoustR.R. KhorshiddoustS.R. HosseinabadiT. MottaghitalabF. MokhtariF. AzadiniaF. MozdaraniH. ShabaniM. Emadi-KouchakH. TaheriB. Khani-JuyabadF. KashaniM.A. SadoughiA. ZamanizadehS. MaddahH. AminzadehM. KhanakiM. SaremiS. RadA.P. FatehiA. RadM.G. HaftbaradaranM. KhosroshahiM. SadeghiM. AminnayeriM. JafariS. GhiasvandF. SeifiA. GhaderkhaniS. ManshadiS.A.D. SalehiM. AbbasianL. HasannezhadM. MeidaniM. HajiabdolbaghiM. AhmadinejadZ. ParashM. SedighiZ. MohammadianA. Efficacy of a multiple-indication antiviral herbal drug (saliravira®) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study.Biomed. Pharmacother.202214911272910.1016/j.biopha.2022.11272935276467
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838392708250822133729
Loading
/content/journals/ctm/10.2174/0122150838392708250822133729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test