Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Li Qi Huo Xue Di Wan (LQHXDW), a traditional Chinese medicine, is used to treat patients with the symptoms of palpitations, chest tightness, chest pain, and shortness of breath. It is not known, however, whether LQHXDW can reduce high-altitude hypoxia-induced cardiopulmonary injury, what are the specific active ingredients, and what is the exact mechanism behind its cardiopulmonary protection.

Objectives

This study intends to investigate the effect of LQHXDW on hypoxia-induced cardiopulmonary injury and the underlying mechanisms.

Methods

The components of LQHXDW were identified by UPLC-QTOF-MS. The potential targets of LQHXDW against high-altitude hypoxia were screened via network pharmacology. Mice were subjected to an animal hypoxic chamber for 5 days to establish a high-altitude hypoxia animal model. Rat heart-derived H9c2 cells and human pulmonary artery endothelial cells (HPAECs) were cultured in glucose-free medium under hypoxic conditions (O2 /N2 /CO2, 3/92/5) for 72 h to mimic the high-altitude hypoxia .

Results

The study found that LQHXDW can target apoptosis and inflammation pathways under the condition of high-altitude hypoxia. In mice exposed to hypoxia, LQHXDW reduced cardiac and lung injury, decreased inflammatory responses, and improved cardiac function. In vitro, LQHXDW increased cell viability and reduced apoptosis in cardiomyocytes and pulmonary artery endothelial cells. It also inhibited the activities of caspase-8 and caspase-3, preventing cardiopulmonary apoptosis.

Discussion

The study investigates the impact of LQHXDW on hypoxia-induced heart and lung injury using UPLC-QTOF-MS and animal and cell models. Results show that LQHXDW can attenuate injury, prevent apoptosis, and protect the heart and lungs from hypoxia injury. It also demonstrates anti-inflammatory activity, suggesting LQHXDW as a potential candidate for traditional Chinese medicine in high-altitude sickness treatment.

Conclusion

LQHXDW can be used as a potential inhibitor of apoptosis for treating high-altitude hypoxia. This study provided a clue for future studies to identify the exact active components of LQHXDW for targeting the pathways of apoptosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838341550250121114736
2025-02-12
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838341550.html?itemId=/content/journals/ctm/10.2174/0122150838341550250121114736&mimeType=html&fmt=ahah

References

  1. GaoC. QiG.D. WangD. ZhangZ.H. LiuZ.X. GeR.D. YongZ. YanL.E. Incidence and risk factors of severe acute high-altitude illness in healthy adults first entering the northern Tibetan Plateau of over 5,000 m.Front. Public Health202412140023610.3389/fpubh.2024.140023639319295
    [Google Scholar]
  2. GattererH. VillafuerteF.C. UlrichS. BhandariS.S. KeyesL.E. BurtscherM. Altitude illnesses.Nat. Rev. Dis. Primers20241014310.1038/s41572‑024‑00526‑w38902312
    [Google Scholar]
  3. KurtzmanR.A. CarusoJ.L. High-altitude illness death investigation.Acad. Forensic Pathol.201881839710.23907/2018.00631240027
    [Google Scholar]
  4. TangS. ZhouW. ChenL. YanH. ChenL. LuoF. High altitude polycythemia and its maladaptive mechanisms: An updated review.Front. Med.202411144865410.3389/fmed.2024.144865439257892
    [Google Scholar]
  5. WangZ. TenzingN. XuQ. LiuH. YeY. WenY. WurenT. CuiS. Apoptosis is one cause of thrombocytopenia in patients with high-altitude polycythemia.Platelets2023341215738110.1080/09537104.2022.215738136597012
    [Google Scholar]
  6. KumarS. DorstynL. LimY. The role of caspases as executioners of apoptosis.Biochem. Soc. Trans.2022501334510.1042/BST2021075134940803
    [Google Scholar]
  7. GaurP. PrasadS. KumarB. SharmaS.K. VatsP. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches.Int. J. Biometeorol.202165460161510.1007/s00484‑020‑02037‑133156424
    [Google Scholar]
  8. MalletR.T. BurtscherJ. PialouxV. PashaQ. AhmadY. MilletG.P. BurtscherM. Molecular mechanisms of high-altitude acclimatization.Int. J. Mol. Sci.2023242169810.3390/ijms2402169836675214
    [Google Scholar]
  9. TianL. JiaZ. YanY. JiaQ. ShiW. CuiS. ChenH. HanY. ZhaoX. HeK. Low-dose of caffeine alleviates high altitude pulmonary edema via regulating mitochondrial quality control process in AT1 cells.Front. Pharmacol.202314115541410.3389/fphar.2023.115541437081967
    [Google Scholar]
  10. YaofengL. XiangyunC. FangP. ZhuL. JianX. YunzhiC. ZipingT. ShifangX. ChangfuY. YongpingZ. Protective Effect of Liqihuoxue Dripping Pill on Left Ventricular Myocytes Injury in Rats with Myocardial Ischemia and Reperfusion.Pharmacology and Clinics of Chinese Materia Medica20183
    [Google Scholar]
  11. ShiZ. ZhaoC. HuJ. DaiQ. GuanM. ZhongC. TianG. ShangH. The application of traditional chinese medicine injection on patients with acute coronary syndrome during the perioperative period of percutaneous coronary intervention: A systematic review and meta-analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.202020201383412810.1155/2020/383412832508947
    [Google Scholar]
  12. XuT. Effects of liqi huoxue dripping pill on integrin-YAP/TAZ pathway in aorta of ApoE-/-mice model of atherosclerosis.J. Tradit. Chin. Med.20226307671678
    [Google Scholar]
  13. PanC. LouL. HuoY. SinghG. ChenM. ZhangD. WuA. ZhaoM. WangS. LiJ. Salvianolic acid B and Tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways.Ther. Adv. Cardiovasc. Dis.2011529911110.1177/175394471039653821282198
    [Google Scholar]
  14. AwaleM. ReymondJ.L. Polypharmacology browser PPB2: Target prediction combining nearest neighbors with machine learning.J. Chem. Inf. Model.2019591101710.1021/acs.jcim.8b0052430558418
    [Google Scholar]
  15. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  16. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database201020100baq02010.1093/database/baq02020689021
    [Google Scholar]
  17. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  18. RichaletJ.P. HermandE. LhuissierF.J. Cardiovascular physiology and pathophysiology at high altitude.Nat. Rev. Cardiol.2024212758810.1038/s41569‑023‑00924‑937783743
    [Google Scholar]
  19. HouJ. LuK. ChenP. WangP. LiJ. YangJ. LiuQ. XueQ. TangZ. PeiH. Comprehensive viewpoints on heart rate variability at high altitude.Clin. Exp. Hypertens.2023451223892310.1080/10641963.2023.223892337552638
    [Google Scholar]
  20. Dunham-SnaryK.J. WuD. SykesE.A. ThakrarA. ParlowL.R.G. MewburnJ.D. ParlowJ.L. ArcherS.L. Hypoxic pulmonary vasoconstriction.Chest2017151118119210.1016/j.chest.2016.09.00127645688
    [Google Scholar]
  21. SwensonE.R. BärtschP. High-altitude pulmonary edema.Compr. Physiol.2012242753277310.1002/cphy.c10002923720264
    [Google Scholar]
  22. DeindlE. KolářF. NeubauerE. VogelS. SchaperW. OšťádalB. Effect of intermittent high altitude hypoxia on gene expression in rat heart and lung.Physiol. Res.200352214715710.33549/physiolres.93029512678657
    [Google Scholar]
  23. ShaoX. DongX. CaiJ. TangC. XieK. YanZ. LuoE. JingD. Oxygen enrichment ameliorates cardiorespiratory alterations induced by chronic high-altitude hypoxia in rats.Front. Physiol.20211161614510.3389/fphys.2020.61614533488404
    [Google Scholar]
  24. PrestonI.R. Clinical perspective of hypoxia-mediated pulmonary hypertension.Antioxid. Redox Signal.20079671172110.1089/ars.2007.158717511586
    [Google Scholar]
  25. SydykovA. MamazhakypovA. MaripovA. KosanovicD. WeissmannN. GhofraniH.A. SarybaevA.S. SchermulyR.T. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders.Int. J. Environ. Res. Public Health2021184169210.3390/ijerph1804169233578749
    [Google Scholar]
  26. PanZ. HuY. HuangZ. HanN. LiY. ZhuangX. YinJ. PengH. GaoQ. ZhangW. HuangY. CuiY. BiY. XuZ.Z. YangR. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge.Sci. China Life Sci.202265102093211310.1007/s11427‑021‑2056‑135301705
    [Google Scholar]
  27. SunG. Death and survival from executioner caspase activation.Semin. Cell Dev. Biol.2024156667310.1016/j.semcdb.2023.07.00537468421
    [Google Scholar]
  28. WolfB.B. SchulerM. EcheverriF. GreenD.R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation.J. Biol. Chem.199927443306513065610.1074/jbc.274.43.3065110521451
    [Google Scholar]
  29. ElHadyA.K. El-GamilD.S. Abdel-HalimM. AbadiA.H. Advancements in phosphodiesterase 5 inhibitors: Unveiling present and future perspectives.Pharmaceuticals2023169126610.3390/ph1609126637765073
    [Google Scholar]
  30. AimaierS. TaoY. LeiF. YupengZ. WenhuiS. AikemuA. MaimaitiyimingD. Protective effects of the Terminalia bellirica tannin-induced Nrf2/HO-1 signaling pathway in rats with high-altitude pulmonary hypertension.BMC Complement. Med. Ther.202323115010.1186/s12906‑023‑03981‑237149589
    [Google Scholar]
  31. LiuH. HuY. ZhengS. ChenT. ZengZ. WuD. ZhaoS. ZengB. LiuZ. ShaoY. TedaICH Cardiovascular Discovery Group Effect of perfusate oxygenation on inflammatory response in congenital heart disease children from low versus high altitude.J. Thorac. Cardiovasc. Surg.202116162180219010.1016/j.jtcvs.2020.05.10832739164
    [Google Scholar]
  32. LiL. LinL. WenB. ZhaoP. LiuD. PangG. WangZ. TanY. LuC. Promising natural medicines for the treatment of high-altitude illness.High Alt. Med. Biol.202324317518510.1089/ham.2022.013937504973
    [Google Scholar]
  33. JiaN. ShenZ. ZhaoS. WangY. PeiC. HuangD. WangX. WuY. ShiS. HeY. WangZ. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway.Int. Immunopharmacol.202312111042310.1016/j.intimp.2023.11042337331291
    [Google Scholar]
  34. TaslidereE. VardiN. YildizA. AtesB. EsrefogluM. The effects of pentoxifylline and caffeic acid phenethyl ester on TNF-α and lung histopathology in D-galactosamine-induced pulmonary injury in rats.Tissue Cell20238210208510.1016/j.tice.2023.10208537018928
    [Google Scholar]
  35. LopezJ. Al-NakkashL. BroderickT.L. CastroM. TobinB. PlochockiJ.H. Genistein suppresses IL-6 and MMP-13 to attenuate osteoarthritis in obese diabetic mice.Metabolites2023139101410.3390/metabo1309101437755294
    [Google Scholar]
  36. LeeY.L. HsiaoC.J. LinF.L. JanJ.S. ChouY.C. LinY.Y. ChenC.K. LamK.K. HsiaoG. Haloperidol abrogates matrix metalloproteinase-9 expression by inhibition of NF- κ B activation in stimulated human monocytic cells.Mediators Inflamm.201812954145910.1155/2018/954145929849502
    [Google Scholar]
  37. KimN.Y. JungY.Y. YangM.H. UmJ.Y. SethiG. AhnK.S. Isoimperatorin down-regulates epithelial mesenchymal transition through modulating NF-κB signaling and CXCR4 expression in colorectal and hepatocellular carcinoma cells.Cell. Signal.20229911043310.1016/j.cellsig.2022.11043335934221
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838341550250121114736
Loading
/content/journals/ctm/10.2174/0122150838341550250121114736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test