Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Plants have always gained importance because of their medicinal attribute leading to the development of a dedicated branch of science. L. is one such plant which has a special mention in medicinal science. This review focuses on the various pharmacological properties of L., particularly its anticancer and anti-inflammatory activities. For the review study, various search engines were used, such as Google Scholar, Science Direct, Pubmed, Academia, Springer, About 129 research articles were reviewed up to 2024 and it was concluded that OE fruits have good numbers of valuable constituents contributing to biological activity like anticancer property where triterpene compounds named hydroxytyrosol, oleuropein, erythrodiol, oleacein and oleocanthal showed significant antiproliferative activity along with apoptosis and angiopreventive activity on cancer cells. Also, Anti-inflammatory and antinociceptive properties has been equally exhibited by the plant; the constituents responsible were maslinic acid, ursolic acid, oleuropein, and hydroxytyrosol mostly present in n-hexane extract of fruits. Hence, it could be concluded that has effective molecules which could be chemically synthesized to get effective therapeutic medicine for cancer treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838342909241115060048
2025-01-03
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838342909.html?itemId=/content/journals/ctm/10.2174/0122150838342909241115060048&mimeType=html&fmt=ahah

References

  1. GrohmannF. Oleaceae. In: E. Nasir & S.I. Ali (Eds)., Flora of West Pakistan198159127
    [Google Scholar]
  2. CronquistA. An Integrated System of Classification of Flowering PlantsColumbia University Press, New York1981248250
    [Google Scholar]
  3. BiancoA. Studies in Natural Products ChemistryAmsterdam, The NetherlandsElsevier Science199032
    [Google Scholar]
  4. USDA, National Genetic Resources Program. Germplasm Resources Information Network—(GRIN).2003
    [Google Scholar]
  5. BartoliniG. PetruccelliR. Classification, Origin, Diffusion and History of the OliveRome, ItalyFood and Agriculture Organization of the United Nations2002
    [Google Scholar]
  6. WallanderE. AlbertV.A. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data.Am. J. Bot.200087121827184110.2307/265683611118421
    [Google Scholar]
  7. PérezJ.A. HernándezJ.M. TrujilloJ.M. LópezH. Iridoids and secoiridoids from Oleaceae.Studies in Natural Products Chemistry20053230336310.1016/S1572‑5995(05)80059‑6
    [Google Scholar]
  8. M’edailF Qu’ezel P BesnardG KhadariB A relictual olive tree in South-west Morocco.Bot. J. Linn. Soc.2001137324926610.1111/j.1095‑8339.2001.tb01121.x
    [Google Scholar]
  9. BracciT. BusconiM. FogherC. SebastianiL. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.Plant Cell Rep.201130444946210.1007/s00299‑010‑0991‑921212959
    [Google Scholar]
  10. KaniewskiD. Van CampoE. BoiyT. TerralJ.F. KhadariB. BesnardG. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East.Biol. Rev. Camb. Philos. Soc.201287488589910.1111/j.1469‑185X.2012.00229.x22512893
    [Google Scholar]
  11. SarwarM. The theatrical usefulness of olive Olea europaea L. (Oleaceae family) nutrition in human health: a review.Sky J Medicinal Plant Res.20132114
    [Google Scholar]
  12. ZoharyD. HopfM. WeissE. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin.Oxford, UKOxford University Press201210.1093/acprof:osobl/9780199549061.001.0001
    [Google Scholar]
  13. RyanD. RobardsK. Critical Review. Phenolic compounds in olives.Analyst (Lond.)1998123531R44R10.1039/a708920a
    [Google Scholar]
  14. KanakisP. TermentziA. MichelT. GikasE. HalabalakiM. SkaltsounisA.L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites.Planta Med.201379161576158710.1055/s‑0033‑135082324072502
    [Google Scholar]
  15. BendiniA. CerretaniL. Carrasco-PancorboA. Gómez-CaravacaA.M. Segura-CarreteroA. Fernández-GutiérrezA. LerckerG. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade.Molecules20071281679171910.3390/1208167917960082
    [Google Scholar]
  16. GhisalbertiE.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids.Phytomedicine19985214716310.1016/S0944‑7113(98)80012‑323195768
    [Google Scholar]
  17. PengZ. HeJ. ChengY. XuJ. ZhangW. Biologically active secoiridoids: A comprehensive update.Med. Res. Rev.20234341201125210.1002/med.2194936899490
    [Google Scholar]
  18. AmiotM.J. FleurietA. MacheixJ.J. Importance and evolution of phenolic compounds in olive during growth and maturation.J. Agric. Food Chem.198634582382610.1021/jf00071a014
    [Google Scholar]
  19. Le TutourB. GuedonD. Antioxidative activities of Olea europaea leaves and related phenolic compounds.Phytochemistry19923141173117810.1016/0031‑9422(92)80255‑D
    [Google Scholar]
  20. Soler-RivasC. EspínJ.C. WichersH.J. Oleuropein and related compounds.J. Sci. Food Agric.200080710131023
    [Google Scholar]
  21. RyanD. RobardsK. PrenzlerP. JardineD. HerltT. AntolovichM. Liquid chromatography with electrospray ionisation mass spectrometric detection of phenolic compounds from Olea europaea. J. Chromatogr. A1999855252953710.1016/S0021‑9673(99)00719‑010519090
    [Google Scholar]
  22. ServiliM. EspostoS. FabianiR. UrbaniS. TaticchiA. MariucciF. SelvagginiR. MontedoroG.F. Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure.Inflammopharmacology2009172768410.1007/s10787‑008‑8014‑y19234678
    [Google Scholar]
  23. PiroddiM. AlbiniA. FabianiR. GiovannelliL. LuceriC. NatellaF. RosignoliP. RossiT. TaticchiA. ServiliM. GalliF. Nutrigenomics of extra-virgin olive oil: A review.Biofactors2017431174110.1002/biof.131827580701
    [Google Scholar]
  24. MenendezJ.A. JovenJ. AragonèsG. Barrajón-CatalánE. Beltrán-DebónR. Borrás-LinaresI. CampsJ. Corominas-FajaB. CufíS. Fernández-ArroyoS. Garcia-HerediaA. Hernández-AguileraA. Herranz-LópezM. Jiménez-SánchezC. López-BonetE. Lozano-SánchezJ. Luciano-MateoF. Martin-CastilloB. Martin-ParederoV. Pérez-SánchezA. Oliveras-FerrarosC. Riera-BorrullM. Rodríguez-GallegoE. Quirantes-PinéR. RullA. Tomás-MenorL. Vazquez-MartinA. Alonso-VillaverdeC. MicolV. Segura-CarreteroA. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil.Cell Cycle201312455557810.4161/cc.2375623370395
    [Google Scholar]
  25. RomaniA. MulasS. HeimlerD. Polyphenols and secoiridoids in raw material (Olea europaea L. leaves) and commercial food supplements.Eur. Food Res. Technol.2017243342943510.1007/s00217‑016‑2756‑3
    [Google Scholar]
  26. BrenesM. GarciaP. DuranM.C. GarridoA. Concentration of Phenolic Compounds Change in Storage Brines of Ripe Olives.J. Food Sci.199358234735010.1111/j.1365‑2621.1993.tb04272.x
    [Google Scholar]
  27. BiancoA. ScalzoR.L. ScarpatiM.L. Isolation of cornoside from Olea europaea and its transformation into halleridone.Phytochemistry199332245545710.1016/S0031‑9422(00)95015‑5
    [Google Scholar]
  28. EstiM. CinquantaL. La NotteE. Phenolic compounds in different olive varieties.J. Agric. Food Chem.1998461323510.1021/jf970391+10554192
    [Google Scholar]
  29. BiancoA. UccellaN. Biophenolic components of olives.Food Res. Int.200033647548510.1016/S0963‑9969(00)00072‑7
    [Google Scholar]
  30. OwenR.W. HaubnerR. MierW. GiacosaA. HullW.E. SpiegelhalderB. BartschH. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes.Food Chem. Toxicol.200341570371710.1016/S0278‑6915(03)00011‑512659724
    [Google Scholar]
  31. Peralbo-MolinaÁ. Priego-CapoteF. Luque de CastroM.D. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole-quadrupole-time-of-flight mass detector.J. Agric. Food Chem.20126046115421155010.1021/jf302896m23106267
    [Google Scholar]
  32. JermanT. TrebšeP. Mozetič VodopivecB. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds.Food Chem.2010123117518210.1016/j.foodchem.2010.04.006
    [Google Scholar]
  33. SavareseM. DemarcoE. SacchiR. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry.Food Chem.2007105276177010.1016/j.foodchem.2007.01.037
    [Google Scholar]
  34. BiancoA. ChiacchioM.A. GrassiG. IannazzoD. PipernoA. RomeoR. Phenolic components of Olea europea: Isolation of new tyrosol and hydroxytyrosol derivatives.Food Chem.200695456256510.1016/j.foodchem.2004.12.033
    [Google Scholar]
  35. BiancoA. MelchioniC. RamunnoA. RomeoG. UccellaN. Phenolic components of Olea Europaea – isolation of tyrosol derivatives.Nat. Prod. Res.2004181293210.1080/147864103100011157014974614
    [Google Scholar]
  36. MaestroduranR. LeoncabelloR. RuizgutierrezV. FiestasP. VazquezronceroA. Bitter phenolic glucosides from seeds of olive (Olea europaea).Grasas Aceites1994455332335
    [Google Scholar]
  37. MousaviS. StanzioneV. MariottiR. MastioV. AzariadisA. PasseriV. ValeriM.C. BaldoniL. BufacchiM. Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype.Antioxidants202211467210.3390/antiox1104067235453357
    [Google Scholar]
  38. BastoniL. BiancoA. PiccioniF. UccellaN. Biophenolic profile in olives by nuclear magnetic resonance.Food Chem.200173214515110.1016/S0308‑8146(00)00250‑8
    [Google Scholar]
  39. BiancoA. BuiarelliF. CartoniG. CoccioliF. JasionowskaR. MargheritaP. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I.J. Sep. Sci.200326540941610.1002/jssc.200390053
    [Google Scholar]
  40. BiancoA. BuiarelliF. CartoniG. CoccioliF. JasionowskaR. MargheritaP. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in virgin olive oil, Part II.J. Sep. Sci.200326541742410.1002/jssc.200390054
    [Google Scholar]
  41. BianchiG. PozziN. 3,4-dihydroxyphenylglycol, a major C6-C2 phenolic in Olea europaea fruits.Phytochemistry19943551335133710.1016/S0031‑9422(00)94849‑0
    [Google Scholar]
  42. RodríguezG. LamaA. JaramilloS. Fuentes-AlventosaJ.M. GuillénR. Jiménez-AraujoA. Rodríguez-ArcosR. Fernández-BolañosJ. 3,4-dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives.J. Agric. Food Chem.200957146298630410.1021/jf803512r19545148
    [Google Scholar]
  43. Rodriguez-PérezM.D. Santiago-CorralL. Ortega-HombradosL. VerdugoC. ArrebolaM.M. Martin-AuriolesE. Fernandez-PriorM.Á. Bermúdez-OriaA. De La CruzJ.P. Gonzalez-CorreaJ.A. The Effect of the Extra Virgin Olive Oil Minor Phenolic Compound 3′,4′-Dihydroxyphenylglycol in Experimental Diabetic Kidney Disease.Nutrients202315237710.3390/nu1502037736678248
    [Google Scholar]
  44. KabachI. BouchmaaN. Ben MridR. ZouaouiZ. MaadoudiM.E. KounnounA. AsraouiF. El MansouriF. ZyadA. CacciolaF. Oulad El MajdoubY. MondelloL. NhiriM. Olea europaea var. Oleaster a promising nutritional food with in vitro antioxidant, antiglycation, antidiabetic and antiproliferative effects.J. Food Meas. Charact.202317188289410.1007/s11694‑022‑01655‑0
    [Google Scholar]
  45. VlahovG. SchiavoneC. SimoneN. Triacylglycerols of the olive fruit (Olea europaea L.): characterization of mesocarp and seed triacylglycerols in different cultivars by liquid chromatography and 13C NMR spectroscopy.Eur. J. Lipid Sci. Technol.19991014146150
    [Google Scholar]
  46. BiancoA. MazzeiR.A. MelchioniC. ScarpatiM.L. RomeoG. UccellaN. Microcomponents of olive oil. Part II: Digalactosyldiacylglycerols from Olea europaea.Food Chem.199862334334610.1016/S0308‑8146(97)00192‑1
    [Google Scholar]
  47. SakouhiF. AbsalonC. KallelH. BoukhchinaS. Comparative analysis of triacylglycerols from Olea europaea L. fruits using HPLC and MALDI-TOFMS.Eur. J. Lipid Sci. Technol.2010112557457910.1002/ejlt.200900079
    [Google Scholar]
  48. MarraC. Eloisa GiordanoM. A new diacylglycerol from fresh Olive pulp.Nat. Prod. Res.2005191818410.1080/1478641041000168638215700650
    [Google Scholar]
  49. ProcopioA. AlcaroS. NardiM. OliverioM. OrtusoF. SacchettaP. PieragostinoD. SindonaG. Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors.J. Agric. Food Chem.20095723111611116710.1021/jf903330519908866
    [Google Scholar]
  50. NenadisN. TsimidouM.Z. Oleuropein and related secoiridoids. Antioxidant activity and sources other than Olea europaea L. (olive tree).Recent Progress in Medicinal Plants, Chemistry and Medicinal Value.Houston, Tex, USAStudium Press LLC20095374
    [Google Scholar]
  51. HalouiE. MarzoukB. MarzoukZ. BouraouiA. FeninaN. Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities.J. Food Agric. Environ.201193-4128133
    [Google Scholar]
  52. CardosoS.M. FalcãoS.I. PeresA.M. DominguesM.R.M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters.Food Chem.2011129229129610.1016/j.foodchem.2011.04.04930634229
    [Google Scholar]
  53. AouidiF. DupuyN. ArtaudJ. RoussosS. MsallemM. Perraud GaimeI. HamdiM. Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses.Ind. Crops Prod.201237129229710.1016/j.indcrop.2011.12.024
    [Google Scholar]
  54. Lo ScalzoR. ScarpatiM.L. A new secoiridoid from olive wastewaters.J. Nat. Prod.199356462162310.1021/np50094a026
    [Google Scholar]
  55. ServiliM. BaldioliM. SelvagginiR. MacchioniA. MontedoroG. Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of Nüzhenide and its distribution in the constitutive parts of fruit.J. Agric. Food Chem.1999471121810.1021/jf980621010563841
    [Google Scholar]
  56. GentileL. UccellaN.A. Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS.Food Res. Int.20145512813610.1016/j.foodres.2013.10.046
    [Google Scholar]
  57. Paiva-MartinsF. PintoM. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves.J. Agric. Food Chem.200856145582558810.1021/jf800698y18582082
    [Google Scholar]
  58. Paiva-MartinsF. RodriguesV. CalheirosR. MarquesM.P.M. Characterization of antioxidant olive oil biophenols by spectroscopic methods.J. Sci. Food Agric.201191230931410.1002/jsfa.418620949551
    [Google Scholar]
  59. BouazizM. GrayerR.J. SimmondsM.S.J. DamakM. SayadiS. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia.J. Agric. Food Chem.200553223624110.1021/jf048859d15656655
    [Google Scholar]
  60. MeirinhosJ. SilvaB.M. ValentÃoP. SeabraR.M. PereiraJ.A. DiasA. AndradeP.B. FerreresF. Analysis and quantification of flavonoidic compounds from Portuguese olive ( Olea Europaea L.) leaf cultivars.Nat. Prod. Res.200519218919510.1080/1478641041000170488615715265
    [Google Scholar]
  61. SakouhiF. AbsalonC. SebeiK. FouquetE. BoukhchinaS. KallelH. Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits.Food Chem.2009116134535010.1016/j.foodchem.2009.01.094
    [Google Scholar]
  62. GuindaÁ. RadaM. DelgadoT. Gutiérrez-AdánezP. CastellanoJ.M. Pentacyclic triterpenoids from olive fruit and leaf.J. Agric. Food Chem.201058179685969110.1021/jf102039t20712364
    [Google Scholar]
  63. GilM. HaïdourA. RamosJ.L. Two glutaric acid derivatives from olives.Phytochemistry19984951311131510.1016/S0031‑9422(97)01066‑2
    [Google Scholar]
  64. BianchiG. MurelliC. VlahovG. Surface waxes from olive fruits.Phytochemistry199231103503350610.1016/0031‑9422(92)83716‑C
    [Google Scholar]
  65. VlahovG. RinaldiG. Del ReP. GiulianiA.A. 13C nuclear magnetic resonance spectroscopy for determining the different components of epicuticular waxes of olive fruit (Olea europaea) Dritta cultivar.Anal. Chim. Acta2008624218419410.1016/j.aca.2008.06.04918706324
    [Google Scholar]
  66. WangX.F. LiC. ShiY.P. DiD.L. Two new secoiridoid glycosides from the leaves of Olea europaea L.J. Asian Nat. Prod. Res.2009111194094410.1080/1028602090331097920183257
    [Google Scholar]
  67. LafiO. EssidR. LachaudL. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali.3 Biotech2023131239510.1007/s13205‑023‑03825‑3
    [Google Scholar]
  68. GolubevV.N. GusarZ.D. MamedovE.S. Tocopherols ofOlea europaea. Chem. Nat. Compd.198723111912010.1007/BF00602478
    [Google Scholar]
  69. Gómez-GonzálezS. Ruiz-JiménezJ. Priego-CapoteF. Luque de CastroM.D. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching.J. Agric. Food Chem.20105823122921229910.1021/jf102350s21058721
    [Google Scholar]
  70. Pérez-BonillaM. SalidoS. van BeekT.A. Linares-PalominoP.J. AltarejosJ. NoguerasM. SánchezA. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood.J. Chromatogr. A200611121-231131810.1016/j.chroma.2005.12.05516426626
    [Google Scholar]
  71. SavourninC. BaghdikianB. EliasR. Dargouth-KesraouiF. BoukefK. BalansardG. Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves.J. Agric. Food Chem.200149261862110.1021/jf000596+11262001
    [Google Scholar]
  72. CharoenprasertS. MitchellA. Factors influencing phenolic compounds in table olives (Olea europaea).J. Agric. Food Chem.201260297081709510.1021/jf301769922720792
    [Google Scholar]
  73. KuwajimaH. UemuraT. TakaishiK. InoueK. InouyetH. A secoiridoid glucoside from Olea europaea. Phytochemistry19882761757175910.1016/0031‑9422(88)80438‑2
    [Google Scholar]
  74. KariotiA. ChatzopoulouA. BiliaA.R. LiakopoulosG. StavrianakouS. SkaltsaH. Novel secoiridoid glucosides in Olea europaea leaves suffering from boron deficiency.Biosci. Biotechnol. Biochem.20067081898190310.1271/bbb.6005916926502
    [Google Scholar]
  75. GariboldiP. JommiG. VerottaL. Secoiridoids from Olea europaea. Phytochemistry198625486586910.1016/0031‑9422(86)80018‑8
    [Google Scholar]
  76. HansenK. AdsersenA. ChristensenS.B. JensenS.R. NymanU. SmittU.W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine19962431932510.1016/S0944‑7113(96)80076‑623194770
    [Google Scholar]
  77. MussiniP. OrsiniF. PelizzoniF. Triterpenes in leaves of Olea europaea. Phytochemistry1975144113510.1016/0031‑9422(75)85210‑1
    [Google Scholar]
  78. MovsumovI.S. AlievA.M. Oleanolic and maslinic acids of the fruit ofOlea europaea. Chem. Nat. Compd.198521112512610.1007/BF00574276
    [Google Scholar]
  79. SultanaN. AtaA. Oleanolic acid and related derivatives as medicinally important compounds.J. Enzyme Inhib. Med. Chem.200823673975610.1080/1475636070163318718618318
    [Google Scholar]
  80. KomakiE. YamaguchiS. MaruI. KinoshitaM. KakehiK. OhtaY. TsukadaY. Identification of anti-α-amylase components from olive leaf extracts.Food Sci. Technol. Res.200391353910.3136/fstr.9.35
    [Google Scholar]
  81. DuquesnoyE. CastolaV. CasanovaJ. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13 C-NMR spectroscopy.Phytochem. Anal.200718434735310.1002/pca.98917623370
    [Google Scholar]
  82. RomeroC. GarcíaA. MedinaE. Ruíz-MéndezM.V. CastroA. BrenesM. Triterpenic acids in table olives.Food Chem.2010118367067410.1016/j.foodchem.2009.05.037
    [Google Scholar]
  83. MovsumovI.S. Components of the leaves of Olea verrucosa.Chem. Nat. Compd.199430562610.1007/BF00629879
    [Google Scholar]
  84. BianchiG. PozziN. VlahovG. Pentacyclic triterpene acids in olives.Phytochemistry199437120520710.1016/0031‑9422(94)85026‑7
    [Google Scholar]
  85. SchumacherB. ScholleS. HölzlJ. KhudeirN. HessS. MüllerC.E. Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A(1) adenosine receptors.J. Nat. Prod.200265101479148510.1021/np010464q12398547
    [Google Scholar]
  86. CampeolE. FlaminiG. CioniP.L. MorelliI. D’AndreaF. CremoniniR. 1,5-Anhydroxylitol from leaves of Olea europaea. Carbohydr. Res.2004339162731273210.1016/j.carres.2004.09.00115519332
    [Google Scholar]
  87. Paiva-MartinsF. GordonM.H. Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves.J. Agric. Food Chem.20014994214421910.1021/jf010373z11559113
    [Google Scholar]
  88. GuindaÁ. LanzónA. RiosJ.J. AlbiT. The isolation and quantification of the components from olive leaf: hexane extract.Grasas Aceites200253441942210.3989/gya.2002.v53.i4.340
    [Google Scholar]
  89. BorjanD. LeitgebM. KnezŽ. HrnčičM.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract.Molecules20202524594610.3390/molecules2524594633334001
    [Google Scholar]
  90. CiceraleS. LucasL. KeastR. Biological activities of phenolic compounds present in virgin olive oil.Int. J. Mol. Sci.201011245847910.3390/ijms1102045820386648
    [Google Scholar]
  91. ChristophoridouS. DaisP. TsengL.H. SpraulM. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with postcolumn solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR).J. Agric. Food Chem.200553124667467910.1021/jf040466r15941298
    [Google Scholar]
  92. Pérez-TrujilloM. Gómez-CaravacaA.M. Segura-CarreteroA. Fernández-GutiérrezA. ParellaT. Separation and identification of phenolic compounds of extra virgin olive oil from Olea europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone.J. Agric. Food Chem.201058169129913610.1021/jf101847e23654238
    [Google Scholar]
  93. RodríguezG. LamaA. TrujilloM. EsparteroJ.L. Fernández-BolañosJ. Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4-Dihydroxyphenylglycol.Lebensm. Wiss. Technol.200942248349010.1016/j.lwt.2008.08.015
    [Google Scholar]
  94. MontedoroG. ServiliM. BaldioliM. SelvagginiR. MiniatiE. MacchioniA. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives.J. Agric. Food Chem.199341112228223410.1021/jf00035a076
    [Google Scholar]
  95. BrenesM. HidalgoF.J. GarcíaA. RiosJ.J. GarcíaP. ZamoraR. GarridoA. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil.J. Am. Oil Chem. Soc.200077771572010.1007/s11746‑000‑0115‑4
    [Google Scholar]
  96. BiancoA. CoccioliF. GuisoM. MarraC. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans.Food Chem.200277440541110.1016/S0308‑8146(01)00366‑1
    [Google Scholar]
  97. Pérez-BonillaM. SalidoS. van BeekT.A. WaardP. Linares-PalominoP.J. SánchezA. AltarejosJ. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC–DAD–radical scavenging detection.Food Chem.20111241364110.1016/j.foodchem.2010.05.099
    [Google Scholar]
  98. KhlifI. HamdenK. DamakM. AlloucheN. A new triterpene from olea europea stem with antidiabetic activity.Chem. Nat. Compd.201248579980210.1007/s10600‑012‑0386‑y
    [Google Scholar]
  99. TsukamotoH. HisadaS. NishibeS. Lignans from bark of the Olea plants. I.Chem. Pharm. Bull. (Tokyo)19843272730273510.1248/cpb.32.27306094026
    [Google Scholar]
  100. TsukamotoH. HisadaS. NishibeS. Coumarin and secoiridoid glucosides from bark of Olea africana and Olea capensis. Chem. Pharm. Bull. (Tokyo)198533139639910.1248/cpb.33.396
    [Google Scholar]
  101. TsukamotoH. HisadaS. NishibeS. RouxD.G. Phenolic glucosides from Olea europaea subs. africana.Phytochemistry198423122839284110.1016/0031‑9422(84)83025‑3
    [Google Scholar]
  102. TsukamotoH. HisadaS. NishibeS. RouxD.G. RourkeJ.P. Coumarins from Olea africana and Olea capensis. Phytochemistry198423369970010.1016/S0031‑9422(00)80417‑3
    [Google Scholar]
  103. ChibaM. OkabeK. HisadaS. ShimaK. TakemotoT. NishibeS. Elucidation of the structure of a new lignan glucoside from Olea europaea by carbon-13 nuclear magnetic resonance spectroscopy.Chem. Pharm. Bull. (Tokyo)197927112868287310.1248/cpb.27.2868
    [Google Scholar]
  104. CasaburiI. PuociF. ChimentoA. SirianniR. RuggieroC. AvenaP. PezziV. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies.Mol. Nutr. Food Res.2013571718310.1002/mnfr.20120050323193056
    [Google Scholar]
  105. JuanM.E. WenzelU. DanielH. PlanasJ.M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells.Mol. Nutr. Food Res.200852559559910.1002/mnfr.20070030018384095
    [Google Scholar]
  106. GoulasV. ExarchouV. TroganisA.N. PsomiadouE. FotsisT. BriasoulisE. GerothanassisI.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells.Mol. Nutr. Food Res.200953560060810.1002/mnfr.20080020419194970
    [Google Scholar]
  107. MarreroA.D. QuesadaA.R. Martínez-PovedaB. MedinaM.Á. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil.Nutrients2024169128310.3390/nu1609128338732529
    [Google Scholar]
  108. AlloucheY. WarletaF. CamposM. Sánchez-QuesadaC. UcedaM. BeltránG. GaforioJ.J. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage.J. Agric. Food Chem.201159112113010.1021/jf102319y21142067
    [Google Scholar]
  109. FaresR. BazziS. BaydounS.E. Abdel-MassihR.M. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract.Plant Foods Hum. Nutr.2011661586310.1007/s11130‑011‑0213‑921318304
    [Google Scholar]
  110. WangX. BaiH. ZhangX. LiuJ. CaoP. LiaoN. ZhangW. WangZ. HaiC. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK–p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis.Carcinogenesis20133461323133010.1093/carcin/bgt05823404993
    [Google Scholar]
  111. BurattiniS. SalucciS. BaldassarriV. AccorsiA. PiattiE. MadronaA. EsparteroJ.L. CandiracciM. ZappiaG. FalcieriE. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate.Food Chem. Toxicol.20135524825610.1016/j.fct.2012.12.04923313337
    [Google Scholar]
  112. MilanizadehS. BigdeliM.R. RasoulianB. AmaniD. The effects of olive leaf extract on antioxidant enzymes activity and tumor growth in breast cancer.Thrita201431e1291410.5812/thrita.12914
    [Google Scholar]
  113. Reyes-ZuritaF.J. Rufino-PalomaresE.E. LupiáñezJ.A. CascanteM. Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway.Cancer Lett.20092731445410.1016/j.canlet.2008.07.03318790561
    [Google Scholar]
  114. Rufino-PalomaresE.E. Reyes-ZuritaF.J. García-SalgueroL. MokhtariK. MedinaP.P. LupiáñezJ.A. PeragónJ. Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human colon-cancer cells.J. Proteomics201383152510.1016/j.jprot.2013.02.03123499989
    [Google Scholar]
  115. ReyesF.J. CentellesJ.J. LupiáñezJ.A. CascanteM. (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cellsFEBS Lett.2006580276302631010.1016/j.febslet.2006.10.03817083937
    [Google Scholar]
  116. CárdenoA. Sánchez-HidalgoM. RosilloM.A. de la LastraC.A. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α.Nutr. Cancer201365114715610.1080/01635581.2013.74175823368925
    [Google Scholar]
  117. RandonA.M. AttardE. The in vitro immunomodulatory activity of oleuropein, a secoiridoid glycoside from Olea europaea L.Nat. Prod. Commun.2007251934578X070020050110.1177/1934578X0700200501
    [Google Scholar]
  118. BeauchampG.K. KeastR.S.J. MorelD. LinJ. PikaJ. HanQ. LeeC.H. SmithA.B. BreslinP.A.S. Ibuprofen-like activity in extra-virgin olive oil.Nature20054377055454610.1038/437045a16136122
    [Google Scholar]
  119. Esmaeili-MahaniS. Rezaeezadeh-RoukerdM. EsmaeilpourK. AbbasnejadM. RasoulianB. SheibaniV. KaeidiA. HajializadehZ. Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats.J. Ethnopharmacol.2010132120020510.1016/j.jep.2010.08.01320713147
    [Google Scholar]
  120. HalouiE. MarzoukZ. MarzoukB. BouftiraB. BouraouiA. FeninaN. Pharmacological activities and chemical composition of the Olea europaea L. leaf essential oils from Tunisia.J. Food Agric. Environ.201082204208
    [Google Scholar]
  121. Süntarİ.P. AkkolE.K. BaykalT. Assessment of anti-inflammatory and antinociceptive activities of Olea europaea L.J. Med. Food201013235235610.1089/jmf.2009.006720132039
    [Google Scholar]
  122. EidiA. Moghadam-kiaS. MoghadamJ.Z. EidiM. RezazadehS. Antinociceptive and anti-inflammatory effects of olive oil ( Olea europeae L.) in mice.Pharm. Biol.201250333233710.3109/13880209.2011.60031822085252
    [Google Scholar]
  123. NietoF.R. CobosE.J. EntrenaJ.M. ParraA. García-GranadosA. BaeyensJ.M. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea.J. Nat. Prod.201376473774010.1021/np300783a23540838
    [Google Scholar]
  124. IkedaY. MurakamiA. OhigashiH. Ursolic acid: An anti- and pro-inflammatory triterpenoid.Mol. Nutr. Food Res.2008521264210.1002/mnfr.20070038918203131
    [Google Scholar]
  125. SahranavardS. KamalinejadM. FaiziM. Evaluation of anti-inflammatory and anti-nociceptive effects of defatted fruit extract of Olea europaea. Iran. J. Pharm. Res.201413Suppl.11912324711837
    [Google Scholar]
  126. HashmiM.A. KhanA. HanifM. FarooqU. PerveenS. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive).Evid. Based Complement. Alternat. Med.2015201512910.1155/2015/54159125802541
    [Google Scholar]
  127. NedianiC. RuzzoliniJ. RomaniA. CaloriniL. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases.Antioxidants201981257810.3390/antiox812057831766676
    [Google Scholar]
  128. LositoI. AbbattistaR. De CeglieC. CastellanetaA. CalvanoC.D. CataldiT.R.I. Bioactive secoiridoids in italian extra-virgin olive oils: Impact of olive plant cultivars, cultivation regions and processing.Molecules202126374310.3390/molecules2603074333572633
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838342909241115060048
Loading
/content/journals/ctm/10.2174/0122150838342909241115060048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test