Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Urolithiasis, a prevalent and recurrent disorder, imposes a significant global health burden. Conventional treatments often fail to prevent recurrence, prompting interest in nutraceutical interventions. This review explores the therapeutic potential of herbal extracts, glycomacropeptides (GMP), and probiotics in preventing kidney stone formation. Herbal medicine inhibits calcium oxalate (CaOx) crystallization, modulates urinary biochemistry, and mitigates oxidative stress bioactive phytochemicals. Probiotics, particularly , , and species, regulate oxalate metabolism and enhance gut-kidney axis function, reducing urinary oxalate excretion. GMP, a bioactive milk-derived peptide, offers renoprotective effects by minimizing uremic toxin production, alkalinizing urine, and modulating gut microbiota. Integrating these nutraceuticals into urolithiasis management may reduce stone recurrence, improve renal function, and serve as viable adjuncts to conventional therapies. This review synthesizes recent clinical, , and findings, emphasizing their mechanisms, efficacy, and translational potential in nephrolithiasis prevention.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838378147250818072318
2025-10-10
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838378147.html?itemId=/content/journals/ctm/10.2174/0122150838378147250818072318&mimeType=html&fmt=ahah

References

  1. KassawA.B. BeleteM. AssefaE.M. TarekeA.A. Prevalence and clinical patterns of urolithiasis in sub-saharan Africa: A systematic review and meta-analysis of observational studies.BMC Nephrol.202425133410.1186/s12882‑024‑03780‑y39379862
    [Google Scholar]
  2. AllamE.A.H. Urolithiasis unveiled: Pathophysiology, stone dynamics, types, and inhibitory mechanisms: A review.Afr. J. Urol.20243013410.1186/s12301‑024‑00436‑z
    [Google Scholar]
  3. PerumalK.R. ChuaR.H.B. TehG.C. LeiC.C.M. Prevalence of urolithiasis in Sarawak and associated risk factors: An ultrasonagraphy-based cross-sectional study.BJUI Compass202341748010.1002/bco2.15236569506
    [Google Scholar]
  4. NouriA.I. HassaliM.A. Assessment of kidney stone disease prevalence in a teaching hospital.Afr. J. Urol.201824318018510.1016/j.afju.2018.05.003
    [Google Scholar]
  5. HuenS.C. GoldfarbD.S. Adverse metabolic side effects of thiazides: Implications for patients with calcium nephrolithiasis.J. Urol.200717741238124310.1016/j.juro.2006.11.04017382697
    [Google Scholar]
  6. AllamE.A.H. SabraM.S. Plant-based therapies for urolithiasis: A systematic review of clinical and preclinical studies.Int. Urol. Nephrol.202456123687371810.1007/s11255‑024‑04148‑939042342
    [Google Scholar]
  7. NirumandM. HajialyaniM. RahimiR. FarzaeiM. ZingueS. NabaviS. BishayeeA. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms.Int. J. Mol. Sci.201819376510.3390/ijms1903076529518971
    [Google Scholar]
  8. JiangQ. DongC. HeZ. WangY. JiangR. LiaoW. YangS. Research landscape and pharmacological mechanisms of traditional Chinese medicines in treating and preventing urolithiasis: Unearthing an anti-urolithic treasure trove.J. Ethnopharmacol.202433411850210.1016/j.jep.2024.11850238950794
    [Google Scholar]
  9. AbrattV.R. ReidS.J. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease.Adv. Appl. Microbiol.201072638710.1016/S0065‑2164(10)72003‑720602988
    [Google Scholar]
  10. JungH.D. ChoS. LeeJ.Y. Update on the effect of the urinary microbiome on urolithiasis.Diagnostics202313595110.3390/diagnostics1305095136900094
    [Google Scholar]
  11. BarbaC. BenoitB. BresE. ChanonS. Vieille-MarchisetA. PinteurC. PesentiS. GlorieuxG. PicardC. FouqueD. SoulageC.O. KoppeL. A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease.Sci. Rep.20211111918410.1038/s41598‑021‑98718‑x34584168
    [Google Scholar]
  12. Reyes-PavónD. Cervantes-GarcíaD. Bermúdez-HumaránL.G. Córdova-DávalosL.E. Quintanar-StephanoA. JiménezM. SalinasE. Protective Effect of glycomacropeptide on food allergy with gastrointestinal manifestations in a rat model through down-regulation of type 2 immune response.Nutrients20201210294210.3390/nu1210294232992996
    [Google Scholar]
  13. GaribottoG. SofiaA. SaffiotiS. BonanniA. MannucciI. VerzolaD. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease.Clin. Nutr.201029442443310.1016/j.clnu.2010.02.00520207454
    [Google Scholar]
  14. LiX. ZhengS. WuG. Amino acid metabolism in the kidneys: Nutritional and physiological significance.Adv Exp Med Biol20201265719510.1007/978‑3‑030‑45328‑2_532761571
    [Google Scholar]
  15. van CalcarS.C. MacLeodE.L. GleasonS.T. EtzelM.R. ClaytonM.K. WolffJ.A. NeyD.M. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids.Am. J. Clin. Nutr.20098941068107710.3945/ajcn.2008.2728019244369
    [Google Scholar]
  16. NtemiriA. ChonchúirF.N. O’CallaghanT.F. StantonC. RossR.P. O’TooleP.W. Glycomacropeptide sustains microbiota diversity and promotes specific taxa in an artificial colon model of elderly gut microbiota.J. Agric. Food Chem.20176581836184610.1021/acs.jafc.6b0543428176523
    [Google Scholar]
  17. SawinE.A. De WolfeT.J. AktasB. StroupB.M. MuraliS.G. SteeleJ.L. NeyD.M. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice.Am. J. Physiol. Gastrointest. Liver Physiol.20153097G590G60110.1152/ajpgi.00211.201526251473
    [Google Scholar]
  18. RackerbyB. LeH.N.M. HaymowiczA. DallasD.C. ParkS.H. RackerbyB. Potential prebiotic properties of whey protein and glycomacropeptide in gut microbiome.Food Sci. Anim. Resour.202444229930810.5851/kosfa.2024.e1238764509
    [Google Scholar]
  19. KhanS.R. GlentonP.A. ByerK.J. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: Experimental induction of hyperoxaluria by hydroxy-L-proline.Kidney Int.200670591492310.1038/sj.ki.500169916850024
    [Google Scholar]
  20. KhanS.R. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection.Urol. Res.200533534935710.1007/s00240‑005‑0492‑416292585
    [Google Scholar]
  21. Sansores-EspañaD. Pech-AguilarA.G. Cua-PechK.G. Medina-VeraI. Guevara-CruzM. Gutiérrez-SolisA.L. Reyes-GarcíaJ.G. Avila-NavaA. Plants used in mexican traditional medicine for the management of urolithiasis: A review of preclinical evidence, bioactive compounds, and molecular mechanisms.Molecules2022276200810.3390/molecules2706200835335370
    [Google Scholar]
  22. KhanA. BashirS. KhanS.R. Antiurolithic effects of medicinal plants: Results of in vivo studies in rat models of calcium oxalate nephrolithiasis—A systematic review.Urolithiasis20214929512210.1007/s00240‑020‑01236‑033484322
    [Google Scholar]
  23. MansoorM. JamilM. LatifN. MuhammadS. GullJ. ShoabM. KhanA. Review importance of herbal plants in the management of urolithiasis.Pak. J. Sci. Ind. Res. Ser. B Biol. Sci.2019621616610.52763/PJSIR.BIOL.SCI.62.1.2019.61.66
    [Google Scholar]
  24. TamborinoF. CicchettiR. MascittiM. LitterioG. OrsiniA. FerrettiS. BasconiM. De PalmaA. FerroM. MarchioniM. SchipsL. Pathophysiology and main molecular mechanisms of urinary stone formation and recurrence.Int. J. Mol. Sci.2024255307510.3390/ijms2505307538474319
    [Google Scholar]
  25. DhawanS. Phyllanthus niruri (stone breaker) herbal therapy for kidney stones; A systematic review and meta-analysis of clinical efficacy, and google trends analysis of public.Can. J. Urol.2020272101621016632333735
    [Google Scholar]
  26. GueffaiA. Gonzalez-SerranoD.J. ChristodoulouM.C. Orellana-PalaciosJ.C. OrtegaM.L.S. OuldmoumnaA. KiariF.Z. IoannouG.D. Kapnissi-ChristodoulouC.P. MorenoA. HadidiM. Phenolics from defatted black cumin seeds (Nigella sativa L.): Ultrasound-assisted extraction optimization, comparison, and antioxidant activity.Biomolecules2022129131110.3390/biom1209131136139150
    [Google Scholar]
  27. Abdel-AalE.A. YassinA.M.K. El-ShahatM.F. Effect of crystallization parameters and presence of aqueous extract of Nigella Sativa on growth inhibition of calcium oxalate monohydrate particles.Particul. Sci. Technol.201836222623410.1080/02726351.2016.1241847
    [Google Scholar]
  28. Ardakani MovaghatiM.R. YousefiM. SaghebiS.A. Sadeghi VazinM. IrajiA. MosavatS.H. Efficacy of black seed ( Nigella sativa L.) on kidney stone dissolution: A randomized, double-blind, placebo-controlled, clinical trial.Phytother. Res.20193351404141210.1002/ptr.633130873671
    [Google Scholar]
  29. BarrosM.E. SchorN. BoimM.A. Effects of an aqueous extract from Phyllantus niruri on calcium oxalate crystallization in vitro.Urol. Res.200330637437910.1007/s00240‑002‑0285‑y12599017
    [Google Scholar]
  30. BarrosM.E. LimaR. MercuriL.P. MatosJ.R. SchorN. BoimM.A. Effect of extract of Phyllanthus niruri on crystal deposition in experimental urolithiasis.Urol. Res.200634635135710.1007/s00240‑006‑0065‑116896689
    [Google Scholar]
  31. KhanS.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: Evidence from clinical and experimental investigations.J. Urol.2013189380381110.1016/j.juro.2012.05.07823022011
    [Google Scholar]
  32. Saenz-MedinaJ. MuñozM. RodriguezC. ContrerasC. SánchezA. CoronadoM.J. RamilE. SantosM. CarballidoJ. PrietoD. Hyperoxaluria induces endothelial dysfunction in preglomerular arteries: Involvement of oxidative stress.Cells20221115230610.3390/cells1115230635954150
    [Google Scholar]
  33. SridharanB. MichaelS.T. AryaR. Mohana RoopanS. GaneshR.N. ViswanathanP. RoopanS.M. Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats.Pharm. Biol.201654575976910.3109/13880209.2015.107972426452728
    [Google Scholar]
  34. KhanA. IkramM. HahmJ.R. KimM.O. Antioxidant and anti-inflammatory effects of Citrus flavonoid hesperetin: Special focus on neurological disorders.Antioxidants20209760910.3390/antiox907060932664395
    [Google Scholar]
  35. MoeO.W. XuL.H.R. Hyperuricosuric calcium urolithiasis.J. Nephrol.201831218919610.1007/s40620‑018‑0469‑329368300
    [Google Scholar]
  36. ButterweckV. KhanS. Herbal medicines in the management of urolithiasis: Alternative or complementary?Planta Med.200975101095110310.1055/s‑0029‑118571919444769
    [Google Scholar]
  37. CupistiA. GianneseD. D’AlessandroC. BenedettiA. PanichiV. AlfieriC. CastellanoG. MessaP. Kidney stone prevention: Is there a role for complementary and alternative medicine?Nutrients202315487710.3390/nu1504087736839235
    [Google Scholar]
  38. KoffS.G. PaquetteE.L. CullenJ. GancarczykK.K. TucciaroneP.R. SchenkmanN.S. Comparison between lemonade and potassium citrate and impact on urine pH and 24-hour urine parameters in patients with kidney stone formation.Urology20076961013101610.1016/j.urology.2007.02.00817572176
    [Google Scholar]
  39. DoiziS. PoindexterJ.R. PearleM.S. BlancoF. MoeO.W. SakhaeeK. MaaloufN.M. Impact of potassium citrate vs citric acid on urinary stone risk in calcium phosphate stone formers.J. Urol.201820061278128410.1016/j.juro.2018.07.03930036516
    [Google Scholar]
  40. ArasB. KalfazadeN. TuğcuV. KemahlıE. ÖzbayB. PolatH. TaşçıA.İ. Can lemon juice be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia? A prospective randomized study.Urol. Res.200836631331710.1007/s00240‑008‑0152‑618946667
    [Google Scholar]
  41. GopalaS.K. JoeJ. ChandranJ. Effects of lemon–tomato juice consumption on crystal formation in the urine of patients with calcium oxalate stones: A randomized crossover clinical trial.Curr. Urol.2023171252910.1097/CU9.000000000000017837692132
    [Google Scholar]
  42. RahmanA.U. AbdullahA. FaisalS. MansourB. YahyaG. Unlocking the therapeutic potential of Nigella sativa extract: Phytochemical analysis and revealing antimicrobial and antioxidant marvels.BMC Complement. Med. Ther.202424126610.1186/s12906‑024‑04470‑w38997638
    [Google Scholar]
  43. OuldmoumnaA. KiariF.Z. BouregbaN. GueffaiA. Study of the effect of extracts from the seeds trigonella foenum-gracecum, nigella sativa” on oxalo-calcium crystallization.Asian J. Plant Sci.2023141312
    [Google Scholar]
  44. Di MauroE. SalduttoP. La RoccaR. SangiorgiG. PatelliG. BaroneB. VerrattiV. CastellucciR. NapolitanoL. IaconoF. AltieriV.M. Efficacy and safety of boldine combined with Phyllanthus niruri and Ononis spinosa in medical expulsive therapy for distal ureteral stones with renal colic: A single-center, retrospective cohort study.Medicina2024609145510.3390/medicina6009145539336496
    [Google Scholar]
  45. BoimM.A. HeilbergI.P. SchorN. Phyllanthus niruri as a promising alternative treatment for nephrolithiasis.Int. Braz J Urol201036665766410.1590/S1677‑5538201000060000221176271
    [Google Scholar]
  46. PucciN.D. MarchiniG.S. MazzucchiE. ReisS.T. SrougiM. EvazianD. NahasW.C. Effect of phyllanthus niruri on metabolic parameters of patients with kidney stone: A perspective for disease prevention.Int. Braz J Urol201844475876410.1590/s1677‑5538.ibju.2017.052129617079
    [Google Scholar]
  47. MicaliS. SighinolfiM.C. CeliaA. De StefaniS. GrandeM. CiceroA.F. BianchiG. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study.J. Urol.200617631020102210.1016/j.juro.2006.04.01016890682
    [Google Scholar]
  48. Lopes CampêloL.M. Moura GonçalvesF.C. FeitosaC.M. de FreitasR.M. Antioxidant activity of Citrus limon essential oil in mouse hippocampus.Pharm. Biol.201149770971510.3109/13880209.2010.54192421639684
    [Google Scholar]
  49. YadavM. GulkariV. WanjariM. Bryophyllum pinnatum leaf extracts prevent formation of renal calculi in lithiatic rats.Anc. Sci. Life2016362909710.4103/asl.ASL_90_1628446830
    [Google Scholar]
  50. PandhareR.B. ShendeR.R. AvhadM.S. DeshmukhV.K. MohiteP.B. SangameswaranB. DaudeR.B. Anti-urolithiatic activity of Bryophyllum pinnatum Lam. hydroalcoholic extract in sodium oxalate-induced urolithiasis in rats.J. Tradit. Complement. Med.202111654555110.1016/j.jtcme.2021.06.00234765518
    [Google Scholar]
  51. DighadeR. IngoleR. IngleP. GadeA. HajareS. IngawaleM. Nephroprotective effect of Bryophyllum pinnatum- mediated silver nanoparticles in ethylene glycol-induced urolithiasis in rat.IET Nanobiotechnol.202115326627610.1049/nbt2.1201134694671
    [Google Scholar]
  52. Al-YousofyF. GumaihH. IbrahimH. AlasbahyA. Parsley! Mechanism as antiurolithiasis remedy.Am. J. Clin. Exp. Urol.201753556229181438
    [Google Scholar]
  53. MoatamedA. The Effect of Ethanolic Extract of Halfa-Bar (Cymbopogon Proximus) and Parsley (Petroselinum Sativum) as an Anti-Urolithiasis.Al-Azhar Journal of Agricultural Research.2023483427440
    [Google Scholar]
  54. Saeidi Jafar LotfiM. BozorgiH. MehrzadJ. The antiurolithiasic and hepatocurative activities of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats.Sci. Res. Essays20127151577158310.5897/SRE11.2130
    [Google Scholar]
  55. ZhangY. ZhangZ. YangY. ZuX. GuanD. WangY. Diuretic activity of Rubus idaeus L (Rosaceae) in rats.Trop. J. Pharm. Res.201110324324810.4314/tjpr.v10i3.15
    [Google Scholar]
  56. GhalayiniI.F. Al-GhazoM.A. HarfeilM.N.A. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice.Int. Braz J Urol201137225926710.1590/S1677‑5538201100020001321557843
    [Google Scholar]
  57. HadjzadehM-A-R. MohammadianN. RahmaniZ. RassouliF.B. Effect of thymoquinone on ethylene glycol-induced kidney calculi in rats.Urol. J.20085314915518825620
    [Google Scholar]
  58. FreitasA.M. SchorN. BoimM.A. The effect of Phyllanthus niruri on urinary inhibitors of calcium oxalate crystallization and other factors associated with renal stone formation.BJU Int.200289982983410.1046/j.1464‑410X.2002.02794.x12010223
    [Google Scholar]
  59. EbrahimiA. AndishmandH. HuoC. AmjadiS. KhezriS. HamishehkarH. MahmoudzadehM. KimK.H. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies.Compr. Rev. Food Sci. Food Saf.20242331337010.1111/1541‑4337.1337038783570
    [Google Scholar]
  60. SauvéM.F. FeldmanF. SanéA.T. KoudoufioM. PateyN. SpahisS. ButcherJ. DuanH. FigeysD. MarcilV. StintziA. LevyE. Glycomacropeptide as an efficient agent to fight pathophysiological mechanisms of metabolic syndrome.Nutrients202416687110.3390/nu1606087138542783
    [Google Scholar]
  61. MajidiniaL. Kalbasi-AshtariA. MirsaeedghaziH. Effects of pH, stirring rate, reaction time and sequential ultrafiltration of whey protein solution on recovery and purification of glycomacropeptides.J. Dairy Res.202289332733410.1017/S002202992200063236177856
    [Google Scholar]
  62. MohamedD.A. MabrokH.B. RamadanA.A. ElbakryH.F. The potential role of alkaline diets in prevention of calcium oxalate kidney stone formation.Food Funct.20241524120331204610.1039/D4FO03567D39563640
    [Google Scholar]
  63. StroupB.M. SawinE.A. MuraliS.G. BinkleyN. HansenK.E. NeyD.M. Amino acid medical foods provide a high dietary acid load and increase urinary excretion of renal net acid, calcium, and magnesium compared with glycomacropeptide medical foods in phenylketonuria.J. Nutr. Metab.20172017111210.1155/2017/190910128546877
    [Google Scholar]
  64. FerraroP.M. MandelE.I. CurhanG.C. GambaroG. TaylorE.N. Dietary protein and potassium, diet–dependent net acid load, and risk of incident kidney stones.Clin. J. Am. Soc. Nephrol.201611101834184410.2215/CJN.0152021627445166
    [Google Scholar]
  65. DalbethN. PalmanoK. Effects of dairy intake on hyperuricemia and gout.Curr. Rheumatol. Rep.201113213213710.1007/s11926‑010‑0160‑821188562
    [Google Scholar]
  66. ZhangY. ChenS. YuanM. XuY. XuH. Gout and diet: A comprehensive review of mechanisms and management.Nutrients20221417352510.3390/nu1417352536079783
    [Google Scholar]
  67. BreslauN.A. BrinkleyL. HillK.D. PakC.C. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism.J. Clin. Endocrinol. Metab.198866114014610.1210/jcem‑66‑1‑1402826524
    [Google Scholar]
  68. MasseyL.K. Kynast-GalesS.A. Diets with either beef or plant proteins reduce risk of calcium oxalate precipitation in patients with a history of calcium kidney stones.J. Am. Diet. Assoc.2001101332633110.1016/S0002‑8223(01)00085‑211269613
    [Google Scholar]
  69. van CalcarS.C. NeyD.M. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria.J. Acad. Nutr. Diet.201211281201121010.1016/j.jand.2012.05.00422818728
    [Google Scholar]
  70. de HartN.M.M.P. PetrocelliJ.J. NicholsonR.J. YeeE.M. van OnselenL. LangM.J. BourrantP.E. FerraraP.J. BastianE.D. WardL.S. PetersenB.L. DrummondM.J. Dietary delivery of glycomacropeptide within the whey protein matrix is not effective in mitigating tissue ceramide deposition and obesity in mice fed a high-fat diet.J. Dairy Sci.2024107266968210.3168/jds.2023‑2391437709040
    [Google Scholar]
  71. SauvéM.F. FeldmanF. KoudoufioM. Ould-ChikhN.E.H. AhmaraniL. SaneA. N’TimbaneT. El-JalboutR. PateyN. SpahisS. StintziA. DelvinE. LevyE. Glycomacropeptide for management of insulin resistance and liver metabolic perturbations.Biomedicines202199114010.3390/biomedicines909114034572325
    [Google Scholar]
  72. MetwallyM.M.E. Abdel-FattA. El-BeltagiH.S. AmeenM.A. Hepatoprotective effect of casein glycomacropeptide as compared to pterostilbene and curcumin.Int. J. Dairy Sci.2019151102110.3923/ijds.2020.10.21
    [Google Scholar]
  73. LiT. ChenB. DuM. SongJ. ChengX. WangX. MaoX. Casein glycomacropeptide hydrolysates exert cytoprotective effect against cellular oxidative stress by up-regulating HO-1 expression in HepG2 cells.Nutrients2017913110.3390/nu901003128098837
    [Google Scholar]
  74. Abdel-DaimM.M. KhalilS.R. AwadA. Abu ZeidE.H. El-AzizR.A. El-SerehyH.A. Ethanolic extract of Moringa oleifera leaves influences NF-κB signaling pathway to restore kidney tissue from cobalt-mediated oxidative injury and inflammation in rats.Nutrients2020124103110.3390/nu1204103132283757
    [Google Scholar]
  75. Foisy SauvéM. SpahisS. DelvinE. LevyE. Glycomacropeptide: A bioactive milk derivative to alleviate metabolic syndrome outcomes.Antioxid. Redox Signal.202134320122210.1089/ars.2019.799432338040
    [Google Scholar]
  76. IbrahimY.F. MoussaR.A. BayoumiA.M.A. AhmedA.S.F. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: A possible role of P-glycoprotein.Inflammopharmacology202028121523010.1007/s10787‑019‑00628‑y31440860
    [Google Scholar]
  77. HabibR. Multifaceted roles of Toll-like receptors in acute kidney injury.Heliyon2021730644110.1016/j.heliyon.2021.e0644133732942
    [Google Scholar]
  78. Córdova-DávalosL. E. JiménezM. SalinasE. Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways.Nutrients201911359810.3390/nu1103059830870995
    [Google Scholar]
  79. TianQ. WangT.T. TangX. HanM.Z. LengX.J. MaoX.Y. Developing a potential prebiotic of yogurt: Growth of Bifidobacterium and yogurt cultures with addition of glycomacropeptide hydrolysate.Int. J. Food Sci. Technol.201550112012710.1111/ijfs.12611
    [Google Scholar]
  80. FeeneyS. RyanJ. KilcoyneM. JoshiL. HickeyR. Glycomacropeptide reduces intestinal epithelial cell barrier dysfunction and adhesion of entero-hemorrhagic and entero-pathogenic Escherichia coli in vitro.Foods20176119310.3390/foods611009329077065
    [Google Scholar]
  81. JiangJ. KnightJ. EasterL.H. NeibergR. HolmesR.P. AssimosD.G. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion.J. Urol.2011186113513910.1016/j.juro.2011.03.00621575973
    [Google Scholar]
  82. Córdova-DávalosL.E. Cervantes-GarcíaD. Ballona-AlbaM.F. Santos-LópezA. Esquivel-BasaldúaA.S. Gallegos-AlcaláP. JiménezM. SalinasE. Fernanda Ballona-AlbaM. Santos-LópezA. Saraí Esquivel-BasaldúaA. Gallegos-AlcaláP. JiménezM. SalinasE. Protective effect of glycomacropeptide on the inflammatory response of U937 macrophages.Foods2023127152810.3390/foods1207152837048349
    [Google Scholar]
  83. LammiC. BollatiC. FioriL. LiJ. FanzagaM. d’AdduzioL. TosiM. BurlinaA. ZuccottiG. VerduciE. Glycomacropeptide (GMP) rescued the oxidative and inflammatory activity of free L-AAs in human Caco-2 cells: New insights that support GMP as a valid and health-promoting product for the dietary management of phenylketonuria (PKU) patients.Food Res. Int.2023173Pt 111325810.1016/j.foodres.2023.11325837803570
    [Google Scholar]
  84. VanachayangkulP. ChowN. KhanS.R. ButterweckV. Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats.Urol. Res.201139318919510.1007/s00240‑010‑0333‑y21069311
    [Google Scholar]
  85. XuM. QinY. XiaY. WangG. XiongZ. SongX. AiL. Screening of oxalate-degrading probiotics and preventive effect of Lactiplantibacillus plantarum AR1089 on kidney stones.Food Funct.20241519101631017810.1039/D4FO03133D39300803
    [Google Scholar]
  86. VittoriM. BoveP. SignorettiM. CiprianiC. GasparoliC. AntonucciM. CarilliM. MaiorinoF. IacovelliV. PettaF. TravagliaS. PaneiM. RussoP. BertoloR. Oral supplementation with probiotics, potassium citrate, and magnesium in reducing crystalluria in stone formers: A phase II study.Urologia202491468168610.1177/0391560324127214639206631
    [Google Scholar]
  87. ŠipailienėA. PetraitytėS. Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms.Probiotics Antimicrob. Proteins201810111010.1007/s12602‑017‑9347‑x29124564
    [Google Scholar]
  88. ManiR.R. RanganathanV. PanneerselvamJ. BegamS. ChinnappanS. AnbalaganM. Therapeutic applications of oxalate-degrading bacteria in kidney stone prevention.Nat. Prod. J.20251510.2174/0122103155352643241205175402
    [Google Scholar]
  89. TaheriH. FeizabadiM.M. KeikhaR. AfkariR. Therapeutic effects of probiotics and herbal medications on oxalate nephrolithiasis: A mini systematic review.Iran. J. Microbiol.202416141810.18502/ijm.v16i1.1486638682062
    [Google Scholar]
  90. GeB. ZhangZ. ZuoZ. Updates on the clinical evidenced herb-warfarin interactions.Evid. Based Complement. Alternat. Med.20142014195736210.1155/2014/95736224790635
    [Google Scholar]
  91. HessH.M. MillerR.K. Herbs during pregnancy.Drugs During Pregnancy and Lactation.Academic Press201551152510.1016/B978‑0‑12‑408078‑2.00020‑2
    [Google Scholar]
  92. LaelagoT. Herbal medicine use during pregnancy: Benefits and untoward effects.Herbal medicineIntechopen201810.5772/intechopen.76896
    [Google Scholar]
  93. MaG. YanH. TyeK.D. TangX. LuoH. LiZ. XiaoX. Effect of probiotic administration during pregnancy on the functional diversity of the gut microbiota in healthy pregnant women.Microbiol. Spectr.2024126e00413-2410.1128/spectrum.00413‑2438687069
    [Google Scholar]
  94. ChenL. CaoH. HuangQ. XiaoJ. TengH. Absorption, metabolism and bioavailability of flavonoids: A review.Crit. Rev. Food Sci. Nutr.202262287730774210.1080/10408398.2021.191750834078189
    [Google Scholar]
  95. RudrapalM. RakshitG. SinghR.P. GarseS. KhanJ. ChakrabortyS. Dietary polyphenols: Review on chemistry/sources, bioavailability/metabolism, antioxidant effects, and their role in disease management.Antioxidants202413442910.3390/antiox1304042938671877
    [Google Scholar]
  96. ChewY.L. Ling ChanE.W. TanP.L. LimY.Y. StanslasJ. GohJ.K. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia.BMC Complement. Altern. Med.20111111210.1186/1472‑6882‑11‑1221306653
    [Google Scholar]
  97. UdumanM.S. RathinamP. KaruruY. ObiliG. ChakkaG. JanakiramanA.K. GC-MS analysis of ethyl acetate extract of whole plant of Rostellularia diffusa.Pharmacogn. J.201791707210.5530/pj.2017.1.13
    [Google Scholar]
  98. ChinnappanS. Wei IngL. MinT. Yung ShanL. Ker NiC. Jia XuanS. Ram ManiR. PanneerselvamJ. RanganathanV. Molecular mechanism of phytochemicals for the treatment of urolithiasis.Curr. Trends Biotechnol. Pharm.2023174ASuppl.14115010.5530/ctbp.2023.4s.102
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838378147250818072318
Loading
/content/journals/ctm/10.2174/0122150838378147250818072318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test