Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Medicinal plants can be beneficial for boosting immunity against viral infections by inducing immune functions, antiviral activity, and immunomodulatory effects, and serving as potential alternative therapies. These benefits make them an important resource for managing viral diseases, including COVID-19. Millions of people in more than 200 countries are faced with health emergencies because of this viral disease. However, some allopathic medicines are being used to moderate the negative health impacts of coronavirus on human beings. Although many therapeutic drug candidates have reached phase 3 trials, due to a lack of sufficient clinical data and large randomized trials, none has been approved yet.

Methods

We have employed databases, like Google Scholar, Research Gate, Scopus, PubMed, Web of Science, ., for the literature review using keywords, like medicinal plants, antiviral activity, COVID-19, . Medicinal properties of some plants have been considered in the present study, especially those possessing anti-viral properties. Also, the antiviral potential of some phytoconstituents against COVID-19 has also been discussed.

Results

In the present article, therapeutic properties of numerous plants [., L. (), L. (), s L. (), .] have been thoroughly discussed against viral infections, including COVID-19. Several medicinal plants have been reported to exert immunomodulatory effects, which can help regulate the immune system and improve its response to viral infections. They can be used as a primary preventive measure during home quarantine to improve immunity and provide protection against viral infections. A strong immune system can help protect against infections, provide faster recovery from infections, prevent chronic diseases, and improve overall health and well-being.

Conclusion

This review article might be valuable for conducting future research for developing medicines against infectious diseases, like COVID-19. Medicinal plants could be useful for the pharmaceutical industries to minimize the impact of various viral infections, such as COVID-19.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838266498231130014802
2024-01-23
2026-01-03
Loading full text...

Full text loading...

References

  1. MohammedR.N. TamjidifarR. RahmanH.S. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19).Cell Commun. Signal.202220111034980146
    [Google Scholar]
  2. LiQ. WangY. SunQ. Immune response in COVID-19: What is next?Cell Death Differ.20222961107112210.1038/s41418‑022‑01015‑x35581387
    [Google Scholar]
  3. ZhouX. YeQ. Cellular immune response to COVID-19 and potential immune modulators.Front. Immunol.20211264633310.3389/fimmu.2021.64633333995364
    [Google Scholar]
  4. SapirT. AverchZ. LermanB. BodzinA. FishmanY. MaitraR. COVID-19 and the immune response: A multi-phasic approach to the treatment of COVID-19.Int. J. Mol. Sci.20222315860610.3390/ijms2315860635955740
    [Google Scholar]
  5. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.10243332113704
    [Google Scholar]
  6. Asadi-PooyaA.A. SimaniL. Central nervous system manifestations of COVID-19: A systematic review.J. Neurol. Sci.202041311683210.1016/j.jns.2020.11683232299017
    [Google Scholar]
  7. WHO Coronavirus (COVID-19) Dashboard.2023Available from:https://covid19.who.int/(Accessed on: dated 12-09-2023).
  8. SaccoG. BrièreO. AsfarM. GuérinO. BerrutG. AnnweilerC. Symptoms of COVID-19 among older adults: A systematic review of biomedical literature.Psychol. Neuropsychiatr. Vieil.202018213513910.1684/pnv.2020.089033048052
    [Google Scholar]
  9. AnnweilerC. CaoZ. SabatierJ.M. Point of view: Should COVID-19 patients be supplemented with vitamin D?Maturitas2020140242610.1016/j.maturitas.2020.06.00332972631
    [Google Scholar]
  10. The cardiotoxicity of antimalarials. 2020. Available from: https://www.who.int/malaria/mpac/mpac-mar2017-erg-cardiotoxicity-report-session2.pdf
  11. YuenK.S. YeZ.W. FungS.Y. ChanC.P. JinD.Y. SARS-CoV-2 and COVID-19: The most important research questions.Cell Biosci.20201014010.1186/s13578‑020‑00404‑432190290
    [Google Scholar]
  12. MirzaieA. HalajiM. DehkordiF.S. RanjbarR. NoorbazarganH. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19).Complement. Ther. Clin. Pract.20204010121410.1016/j.ctcp.2020.10121432891290
    [Google Scholar]
  13. PaitalB. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context.Sci. Total Environ.202072913908810.1016/j.scitotenv.2020.13908832388136
    [Google Scholar]
  14. LiR. PeiS. ChenB. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).Science2020368649048949310.1126/science.abb322132179701
    [Google Scholar]
  15. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  16. VellingiriB. JayaramayyaK. IyerM. COVID-19: A promising cure for the global panic.Sci. Total Environ.202072513827710.1016/j.scitotenv.2020.13827732278175
    [Google Scholar]
  17. DesforgesM. Le CoupanecA. DubeauP. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system?Viruses20191211410.3390/v1201001431861926
    [Google Scholar]
  18. AshourH.M. ElkhatibW.F. RahmanM.M. ElshabrawyH.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks.Pathogens20209318610.3390/pathogens903018632143502
    [Google Scholar]
  19. GautretP. LagierJ.C. ParolaP. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.10594932205204
    [Google Scholar]
  20. DasK. PaitalB. The synergy between philosophy and science, need of the contemporary society.Int J Human Soc Sci Res2020614551
    [Google Scholar]
  21. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  22. FerreiraL.L.G. AndricopuloA.D. ADMET modeling approaches in drug discovery.Drug Discov. Today20192451157116510.1016/j.drudis.2019.03.01530890362
    [Google Scholar]
  23. JinZ. LiuJ.Y. FengR. JiL. JinZ.L. LiH.B. Drug treatment of coronavirus disease 2019 (COVID-19) in China.Eur. J. Pharmacol.202088317332610.1016/j.ejphar.2020.17332632598953
    [Google Scholar]
  24. KhannaK. KohliS.K. KaurR. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle.Phytomedicine20218515336110.1016/j.phymed.2020.15336133485605
    [Google Scholar]
  25. RastogiS. PandeyD.N. SinghR.H. COVID-19 pandemic: A pragmatic plan for ayurveda intervention.J. Ayurveda Integr. Med.202213110031210.1016/j.jaim.2020.04.00232382220
    [Google Scholar]
  26. Viral infections. Immune System.1999Available from:https://medlineplus.gov/viralinfections.html
  27. Le CalvezH. YuM. FangF. Biochemical prevention and treatment of viral infections - a new paradigm in medicine for infectious diseases.Virol. J.2004111210.1186/1743‑422X‑1‑1215560846
    [Google Scholar]
  28. BeressaT.B. DeynoS. MtewaA.G. Potential benefits of antiviral African medicinal plants in the management of viral infections: Systematic review.Front. Pharmacol.20211268279410.3389/fphar.2021.68279435002686
    [Google Scholar]
  29. HuangK.J. SuI.J. TheronM. An interferon-?-related cytokine storm in SARS patients.J. Med. Virol.200575218519410.1002/jmv.2025515602737
    [Google Scholar]
  30. SinghA.K. SinghA. ShaikhA. SinghR. MisraA. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries.Diabetes Metab. Syndr.202014324124610.1016/j.dsx.2020.03.01132247211
    [Google Scholar]
  31. LiuJ. CaoR. XuM. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.Cell Discov.2020611610.1038/s41421‑020‑0156‑032194981
    [Google Scholar]
  32. TranD.H. SugamataR. HiroseT. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process.J. Antibiot. 2019721075976810.1038/s41429‑019‑0204‑x31300721
    [Google Scholar]
  33. AndreaniJ. Le BideauM. DuflotI. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect.Microb. Pathog.202014510422810.1016/j.micpath.2020.10422832344177
    [Google Scholar]
  34. ArshadS. KilgoreP. ChaudhryZ.S. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19.Int. J. Infect. Dis.20209739640310.1016/j.ijid.2020.06.09932623082
    [Google Scholar]
  35. MahajanP. KaushalJ. Epidemic trend of COVID-19 transmission in India during lockdown-1 phase.J. Community Health20204561291130010.1007/s10900‑020‑00863‑332578006
    [Google Scholar]
  36. KaushalJ. MahajanP. Asia’s largest urban slum-Dharavi: A global model for management of COVID-19.Cities202111110309710.1016/j.cities.2020.10309733519012
    [Google Scholar]
  37. LaiC.C. LiuY.H. WangC.Y. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths.J. Microbiol. Immunol. Infect.202053340441210.1016/j.jmii.2020.02.01232173241
    [Google Scholar]
  38. LuH. Drug treatment options for the 2019-new coronavirus (2019-nCoV).Biosci. Trends2020141697110.5582/bst.2020.0102031996494
    [Google Scholar]
  39. MitraS. PaulS. RoyS. Exploring the immune-boosting functions of vitamins and minerals as nutritional food bioactive compounds: a comprehensive review.Molecules202227255510.3390/molecules2702055535056870
    [Google Scholar]
  40. AshaoluT.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics.Biomed. Pharmacother.202013011062511062510.1016/j.biopha.2020.11062532795926
    [Google Scholar]
  41. AlagawanyM. AttiaY.A. FaragM.R. The strategy of boosting the immune system under the COVID-19 pandemic.Front. Vet. Sci.2021757074810.3389/fvets.2020.570748
    [Google Scholar]
  42. GrantW. LahoreH. McDonnellS. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths.Nutrients202012498810.3390/nu1204098832252338
    [Google Scholar]
  43. World Health OrganizationWHO Establishes the Global Centre for Traditional Medicine in India.2022Available fromhttps://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india
    [Google Scholar]
  44. SoleymaniA. ShahrajabianM.H. Response of different cultivars of fennel (Foeniculum vulgare) to irrigation and planting dates in Isfahan. Iran.Res. Crops2012132656660
    [Google Scholar]
  45. LinL.T. HsuW.C. LinC.C. Antiviral natural products and herbal medicines.J. Tradit. Complement. Med.201441243510.4103/2225‑4110.12433524872930
    [Google Scholar]
  46. PundarikakshuduK. KanakiN.S. Analysis and regulation of traditional Indian medicines (TIM).J. AOAC Int.2019102497797810.5740/jaoacint.18‑037630558694
    [Google Scholar]
  47. AkramM. TahirI.M. ShahS.M.A. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.Phytother. Res.201832581182210.1002/ptr.602429356205
    [Google Scholar]
  48. MoghadamtousiS. NikzadS. KadirH. AbubakarS. ZandiK. Potential antiviral agents from marine fungi: An overview.Mar. Drugs20151374520453810.3390/md1307452026204947
    [Google Scholar]
  49. WanjarkhedkarP. SaradeG. PurandareB. KelkarD. A prospective clinical study of an Ayurveda regimen in COVID 19 patients.J. Ayurveda Integr. Med.202213110036510.1016/j.jaim.2020.10.00833100779
    [Google Scholar]
  50. MikailiP. MaadiradS. MoloudizargariM. AghajanshakeriS. SarahroodiS. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds.Iran. J. Basic Med. Sci.201316101031104824379960
    [Google Scholar]
  51. ShangA. CaoS.Y. XuX.Y. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods807024631284512
    [Google Scholar]
  52. El-Saber BatihaG Magdy BeshbishyA ,G Wasef L, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review.Nutrients2020123872[a]10.3390/nu1203087232213941
    [Google Scholar]
  53. LiuY.T. ChenH.W. LiiC.K. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high-cholesterol diet.Nutrients202012252310.3390/nu1202052332085637
    [Google Scholar]
  54. LiuZ. XiaoX. WeiX. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2.J. Med. Virol.2020926595601[b]10.1002/jmv.2572632100877
    [Google Scholar]
  55. YarnellE. Herbs for viral respiratory infections.Altern. Complement. Ther.2018241354310.1089/act.2017.29150.eya
    [Google Scholar]
  56. AroraR. ChawlaR. MarwahR. Potential of complementary and alternative medicine in preventive management of novel H1N1 flu (Swine flu) pandemic: thwarting potential disasters in the bud.Evid. Based Complement. Alternat. Med.2011201111610.1155/2011/58650620976081
    [Google Scholar]
  57. CoonJ.T. ErnstE. Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy.Planta Med.200470429329810.1055/s‑2004‑81893815095142
    [Google Scholar]
  58. HossainM.S. UrbiZ. SuleA. RahmanK.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology.ScientificWorldJournal2014201412810.1155/2014/27490525950015
    [Google Scholar]
  59. HaqF.U. RomanM. AhmadK. ARTEMISIA ANNUA: Trials are needed for COVID ‐19.Phytother. Res.202034102423242410.1002/ptr.673332424845
    [Google Scholar]
  60. Septembre-MalaterreA. Lalarizo RakotoM. MarodonC. Artemisia annua, a traditional plant brought to light.Int. J. Mol. Sci.20202114498610.3390/ijms2114498632679734
    [Google Scholar]
  61. OlivieriF. PrasadV. ValbonesiP. A systemic antiviral resistance‐inducing protein isolated from Clerodendrum inerme Gaertn. is a polynucleotide: Adenosine glycosidase (ribosome‐inactivating protein).FEBS Lett.19963962-313213410.1016/0014‑5793(96)01089‑78914973
    [Google Scholar]
  62. Al-SnafiA.E. Chemical constituents and pharmacological effects of Clerodendrum inerme- a review.SMU Med J201631129153
    [Google Scholar]
  63. SiripuramM. MondiS.R. GottumukkulaK.M. GowriM. A review on Clerodendrum inerme (L).Gaertn Int J Pharm Biol Sci20188410771081
    [Google Scholar]
  64. AkamatsuH. KomuraJ. AsadaY. NiwaY. Mechanism of anti-inflammatory action of glycyrrhizin: effect on neutrophil functions including reactive oxygen species generation.Planta Med.199157211912110.1055/s‑2006‑9600451891493
    [Google Scholar]
  65. Sampangi-RamaiahM.H. VishwakarmaR. Uma ShaankerR. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease.Curr. Sci.202011871087109210.18520/cs/v118/i7/1087‑1092
    [Google Scholar]
  66. CinatlJ. MorgensternB. BauerG. ChandraP. RabenauH. DoerrH.W. Treatment of SARS with human interferons.Lancet2003362938029329410.1016/S0140‑6736(03)13973‑612892961
    [Google Scholar]
  67. FioreC. EisenhutM. KrausseR. Antiviral effects ofGlycyrrhiza species.Phytother. Res.200822214114810.1002/ptr.229517886224
    [Google Scholar]
  68. PompeiR. FloreO. MarccialisM.A. PaniA. LoddoB. Glycyrrhizic acid inhibits virus growth and inactivates virus particles.Nature1979281573368969010.1038/281689a0233133
    [Google Scholar]
  69. KaurR. KaurH. DhindsaA.S. Glycyrrhiza glabra: A phytopharmacological review.Int. J. Pharm. Sci. Res.2013472470247710.13040/IJPSR.0975‑8232.4(7).2470‑77
    [Google Scholar]
  70. SharmaV. KatiyarA. AgrawalR.C. Glycyrrhiza glabra: Chemistry and Pharmacological Activity. In: Mérillon JM, Ramawat K, Eds.Sweeteners Reference Series in Phytochemistry. MérillonJ.M. RamawatK. ChamSpringer20188710010.1007/978‑3‑319‑27027‑2_21
    [Google Scholar]
  71. El-Saber BatihaG. Magdy BeshbishyA. El-MleehA. Abdel-DaimM.M. Prasad DevkotaH. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae).Biomolecules202010335210.3390/biom1003035232106571
    [Google Scholar]
  72. TsaiY.C. LeeC.L. YenH.R. Antiviral action of tryptanthrin isolated from Strobilanthescusia leaf against human coronavirus NL63.Biomolecules202010336610.3390/biom1003036632120929
    [Google Scholar]
  73. QinM.Z. LiuY. WuW. OberhänsliT. MüllerQ.W. The chemical components and pharmacological function of Strobilanthes cusia (Nees) Kuntze.Herb Med202061310.36648/2472‑0151.6.1.100047
    [Google Scholar]
  74. PattanayakP. BeheraP. DasD. PandaS. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview.Pharmacogn. Rev.2010479510510.4103/0973‑7847.6532322228948
    [Google Scholar]
  75. RegeA. ChowdharyA.S. Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors.Int. J. Pharm. Sci. Rev. Res.201425315318
    [Google Scholar]
  76. VermaS. Chemical constituents and pharmacological action of Ocimum sanctum (Indian holy basil-Tulsi).J. Pharmacol.20165520520710.31254/phyto.2016.5507
    [Google Scholar]
  77. MousaviL. SallehR.M. MurugaiyahV. Phytochemical and bioactive compounds identification of Ocimum tenuiflorum leaves of methanol extract and its fraction with an anti-diabetic potential.Int. J. Food Prop.20182112390239910.1080/10942912.2018.1508161
    [Google Scholar]
  78. MeenaA.K. NiranjanU.S. RaoM.M. PadhiM.M. BabuR. A review of the important chemical constituents and medicinal uses of Vitex genus.Asian J. Tradit. Med.2011625460
    [Google Scholar]
  79. BanNK ThoaNTK LinhTM Chemical constituents of Vitex trifolia leaves.Nat Prod Commun20181321934578X180130010.1177/1934578X1801300205
    [Google Scholar]
  80. M S, Cheriyan BV. Vitex trifolia: An ethnobotanical and pharmacological review.Asian J. Pharm. Clin. Res.20181116121410.22159/ajpcr.2018.v11s4.31689
    [Google Scholar]
  81. WeeH.N. NeoS.Y. SinghD. Effects of Vitex trifolia L. leaf extracts and phytoconstituents on cytokine production in human U937 macrophages.BMC Complementary. Medicine and Therapies20202019110.1186/s12906‑020‑02884‑w32188443
    [Google Scholar]
  82. Caballero-OrtegaH. Pereda-MirandaR. Riverón-NegreteL. Chemical composition of saffron (Crocus sativus L.) from four countries.Acta Hortic.200465032132610.17660/ActaHortic.2004.650.39
    [Google Scholar]
  83. HosseinzadehH. ModagheghM.H. SaffariZ. Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle.Evid. Based Complement. Alternat. Med.20096334335010.1093/ecam/nem12518955256
    [Google Scholar]
  84. SoleymaniS. ZabihollahiR. ShahbaziS. BolhassaniA. Antiviral effects of saffron and its major ingredients.Curr. Drug Deliv.201815569870410.2174/156720181466617112921065429189153
    [Google Scholar]
  85. GhoshS. SahaS. Tinospora cordifolia: One plant, many roles.Anc. Sci. Life201231415115910.4103/0257‑7941.10734423661861
    [Google Scholar]
  86. ReddyN.M. ReddyR.N. Tinospora cordifolia chemical constituents and medicinal properties: a review.Sch Acad J Pharm201548364369
    [Google Scholar]
  87. SinghD ChaudhuriPK Chemistry and pharmacology of Tinospora cordifolia.Nat Prod Commun20171221934578X170120010.1177/1934578X170120024030428235
    [Google Scholar]
  88. AanouzI. BelhassanA. El-KhatabiK. LakhlifiT. El-ldrissiM. BouachrineM. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations.J. Biomol. Struct. Dyn.20213982971297910.1080/07391102.2020.175879032306860
    [Google Scholar]
  89. ZhouF YuT DuR FanG LiuY LiuZ. Clinical course and riskfactors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054e62.10.1016/S0140‑6736(20)30566‑3
    [Google Scholar]
  90. SalzbergerB. GlückT. EhrensteinB. Successful containment of COVID-19: The WHO-Report on the COVID-19 outbreak in China.Infection202048215115310.1007/s15010‑020‑01409‑432185635
    [Google Scholar]
  91. RenJ. ZhangA.H. WangX.J. Traditional Chinese medicine for COVID-19 treatment.Pharmacol. Res.202015510474310.1016/j.phrs.2020.10474332145402
    [Google Scholar]
  92. CuiH. LiY. GuoL. Traditional Chinese medicine for treatment of coronavirus disease 2019: A review.Traditional Medicine Research202052657310.53388/TMR20200222165
    [Google Scholar]
  93. NHCPRC. National Health Commission of the People's Republicof China (NHCPRC). Guideline on diagnosis and treatment of COVID-19 (trial 6th edition).2020Available from:http://www.Nhc.Gov
    [Google Scholar]
  94. Publicity Department of the People’s Republic of China (PDPRC) Publicity Department of the People's Republic of China (PDPRC).In: Press conference of the joint prevention and control mechanism of state council on.Feb 17.2020Available from:http://www.Nhc.Gov
    [Google Scholar]
  95. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study.2020Preprints202003022610.20944/preprints202003.0226.v1
    [Google Scholar]
  96. GanjhuR.K. MudgalP.P. MaityH. Herbal plants and plant preparations as remedial approach for viral diseases.Virusdisease201526422523610.1007/s13337‑015‑0276‑626645032
    [Google Scholar]
  97. PillaiyarT. MeenakshisundaramS. ManickamM. Recent discovery and development of inhibitors targeting coronaviruses.Drug Discov. Today202025466868810.1016/j.drudis.2020.01.01532006468
    [Google Scholar]
  98. DasA. PanditaD. JainG.K. Role of phytoconstituents in the management of COVID-19.Chem. Biol. Interact.202134110944910.1016/j.cbi.2021.10944933798507
    [Google Scholar]
  99. Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.J. Pharm. Anal.202010431331910.1016/j.jpha.2020.03.00932296570
    [Google Scholar]
  100. ParidaP.K. PaulD. ChakravortyD. Nature to nurture-identifying phytochemicals from Indian medicinal plants as prophylactic medicine by rational screening to be potent against multiple drug targets of SARS-CoV-2.ChemRxiv202010.26434/chemrxiv.12355937.v1
    [Google Scholar]
  101. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach.Life Sci.202025511783110.1016/j.lfs.2020.11783132450166
    [Google Scholar]
  102. AntonioA.S. WiedemannL.S.M. Veiga-JuniorV.F. Natural products’ role against COVID-19.RSC Advances20201039233792339310.1039/D0RA03774E35693131
    [Google Scholar]
  103. SrivastavaA.K. KumarA. MisraN. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation.arXiv:2004034112020
    [Google Scholar]
  104. ManiJ.S. JohnsonJ.B. SteelJ.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.19798932360300
    [Google Scholar]
  105. ElfikyA.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell.J. Biomol. Struct. Dyn.202039911010.1080/07391102.2020.176188132340551
    [Google Scholar]
  106. JoshiR.S. JagdaleS.S. BansodeS.B. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease.J. Biomol. Struct. Dyn.202039911610.1080/07391102.2020.176013732329408
    [Google Scholar]
  107. KhanalP. PatilB.M. ChandJ. NaazY. Anthraquinone derivatives as an immune booster and their therapeutic option against COVID-19.Nat. Prod. Bioprospect.202010532533510.1007/s13659‑020‑00260‑232772313
    [Google Scholar]
  108. PanditM. LathaN. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection.Res Square202010.21203/rs.3.rs‑22687/v1
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838266498231130014802
Loading
/content/journals/ctm/10.2174/0122150838266498231130014802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test