Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Muscle atrophy is the volume loss and strength of muscle and happens in various conditions, such as starvation, nerve cutting, cancer cachexia, heart failure, old age, and immobility. Muscle atrophy is increasing every year and is usually associated with a low quality of life. In the time of muscle atrophy, systems of proteolytic are turned on and muscle proteins are degraded, leading to the contraction of muscle fibers. However, the precise mechanisms involved in muscle atrophy, as well as effective treatments, remain to be investigated. The purpose of this article is to give an overview of the effectiveness of supplements, herbs, and herb bioactive compounds on muscle atrophy. The significant beneficial effects of some plants and plant-derived natural products, including curcumin, geranylgeraniol, resveratrol, soy protein, green tea, and coffee, on muscle atrophy are reviewed in this review article. According to clinical investigations, these natural products may positively affect the physical function of muscles, including hand grip strength and knee tension, weight-lifting capacity, muscle fatigue, time and distance traveled before feeling tired, mitochondrial function and average muscle fiber level. However, more clinical trials are necessary to explore the possible value of herbal agents on skeletal muscle atrophy.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838268183231121075627
2024-01-23
2026-01-03
Loading full text...

Full text loading...

References

  1. YinL. LiN. JiaW. WangN. LiangM. YangX. DuG. Skeletal muscle atrophy: From mechanisms to treatments.Pharmacol. Res.202117210580710.1016/j.phrs.2021.10580734389456
    [Google Scholar]
  2. DuttV. GuptaS. DaburR. InjetiE. MittalA. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.Pharmacol. Res.2015998610010.1016/j.phrs.2015.05.01026048279
    [Google Scholar]
  3. OwensD.J. Nutritional support to counteract muscle atrophy.Muscle Atrophy2018483495
    [Google Scholar]
  4. HasselgrenP.O. FischerJ.E. Muscle cachexia: Current concepts of intracellular mechanisms and molecular regulation.Ann. Surg.2001233191710.1097/00000658‑200101000‑0000311141219
    [Google Scholar]
  5. AcharyyaS. GuttridgeD.C. Cancer cachexia signaling pathways continue to emerge yet much still points to the proteasome.Clin. Cancer Res.20071351356136110.1158/1078‑0432.CCR‑06‑230717332276
    [Google Scholar]
  6. LangC.H. FrostR.A. VaryT.C. Regulation of muscle protein synthesis during sepsis and inflammation.Am. J. Physiol. Endocrinol. Metab.20072932E453E45910.1152/ajpendo.00204.200717505052
    [Google Scholar]
  7. LeckerS.H. GoldbergA.L. MitchW.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states.J. Am. Soc. Nephrol.20061771807181910.1681/ASN.200601008316738015
    [Google Scholar]
  8. GomesM.D. LeckerS.H. JagoeR.T. NavonA. GoldbergA.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy.Proc. Natl. Acad. Sci. USA20019825144401444510.1073/pnas.25154119811717410
    [Google Scholar]
  9. BodineS.C. LatresE. BaumhueterS. LaiV.K.M. NunezL. ClarkeB.A. PoueymirouW.T. PanaroF.J. NaE. DharmarajanK. PanZ.Q. ValenzuelaD.M. DeChiaraT.M. StittT.N. YancopoulosG.D. GlassD.J. Identification of ubiquitin ligases required for skeletal muscle atrophy.Science200129455471704170810.1126/science.106587411679633
    [Google Scholar]
  10. WrayC.J. MammenJ.M.V. HershkoD.D. HasselgrenP.O. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle.Int. J. Biochem. Cell Biol.200335569870510.1016/S1357‑2725(02)00341‑212672461
    [Google Scholar]
  11. MayhewA.J. RainaP. Sarcopenia: New definitions, same limitations.Oxford University Press2019613614
    [Google Scholar]
  12. GaoL JiangJ YangM HaoQ LuoL DongB Prevalence of sarcopenia and associated factors in Chinese community-dwelling elderly: comparison between rural and urban areas.J. Am. Med. Dir. Assoc.201516(11): 1003e1e610.1016/j.jamda.2015.07.020
    [Google Scholar]
  13. MittalA. BhatnagarS. KumarA. Lach-TrifilieffE. WautersS. LiH. MakonchukD.Y. GlassD.J. KumarA. The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice.J. Cell Biol.2010188683384910.1083/jcb.20090911720308426
    [Google Scholar]
  14. LloveraM. CarbóN. López-SorianoJ. García-MartínezC. BusquetsS. AlvarezB. AgellN. CostelliP. López-SorianoF.J. CeladaA. ArgilésJ.M. Different cytokines modulate ubiquitin gene expression in rat skeletal muscle.Cancer Lett.19981331838710.1016/S0304‑3835(98)00216‑X9929164
    [Google Scholar]
  15. FrostR.A. LangC.H. Protein kinase B/Akt: A nexus of growth factor and cytokine signaling in determining muscle mass.J. Appl. Physiol.2007103137838710.1152/japplphysiol.00089.200717332274
    [Google Scholar]
  16. RondanelliM MicconoA PeroniG GuerrieroF MorazzoniP RivaA A systematic review on the effects of botanicals on skeletal muscle health in order to prevent sarcopenia.Evid Based Complement Alternat Med.20162016597036710.1155/2016/5970367
    [Google Scholar]
  17. UtoN.S. AmitaniH. AtobeY. SameshimaY. SakakiM. RokotN. AtakaK. AmitaniM. InuiA. Herbal medicine ninjin’yoeito in the treatment of sarcopenia and frailty.Front. Nutr.2018512610.3389/fnut.2018.0012630619872
    [Google Scholar]
  18. XuD.P. LiY. MengX. ZhouT. ZhouY. ZhengJ. ZhangJ.J. LiH.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources.Int. J. Mol. Sci.20171819610.3390/ijms1801009628067795
    [Google Scholar]
  19. WangQ. KuangH. SuY. SunY. FengJ. GuoR. ChanK. Naturally derived anti-inflammatory compounds from Chinese medicinal plants.J. Ethnopharmacol.2013146193910.1016/j.jep.2012.12.01323274744
    [Google Scholar]
  20. AlidadiM. JamialahmadiT. CiceroA.F.G. BianconiV. PirroM. BanachM. SahebkarA. The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies.Trends Food Sci. Technol.20209942644010.1016/j.tifs.2020.03.026
    [Google Scholar]
  21. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  22. BagherniyaM. NobiliV. BlessoC.N. SahebkarA. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review.Pharmacol. Res.201813021324010.1016/j.phrs.2017.12.02029287685
    [Google Scholar]
  23. BagherniyaM. JohnstonT.P. SahebkarA. Regulation of apolipoprotein B by natural products and nutraceuticals: A comprehensive review.Curr. Med. Chem.20212871363140610.2174/092986732766620042709211432338202
    [Google Scholar]
  24. AlamdariN. O’NealP. HasselgrenP.O. Curcumin and muscle wasting—A new role for an old drug?Nutrition200925212512910.1016/j.nut.2008.09.00219028079
    [Google Scholar]
  25. BagherniyaM. MahdaviA. Shokri-MashhadiN. BanachM. Von HaehlingS. JohnstonT.P. SahebkarA. The beneficial therapeutic effects of plant‐derived natural products for the treatment of sarcopenia.J. Cachexia Sarcopenia Muscle20221362772279010.1002/jcsm.1305735961944
    [Google Scholar]
  26. SinghS. From exotic spice to modern drug?Cell2007130576576810.1016/j.cell.2007.08.02417803897
    [Google Scholar]
  27. ThaloorD. MillerK.J. GephartJ. MitchellP.O. PavlathG.K. Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regeneration after traumatic injury.Am. J. Physiol. Cell Physiol.19992772C320C32910.1152/ajpcell.1999.277.2.C32010444409
    [Google Scholar]
  28. Chainani-WuN. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa).J. Altern. Complement. Med.20039116116810.1089/10755530332122303512676044
    [Google Scholar]
  29. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  30. LaoC.D. RuffinM.T.IV NormolleD. HeathD.D. MurrayS.I. BaileyJ.M. BoggsM.E. CrowellJ. RockC.L. BrennerD.E. Dose escalation of a curcuminoid formulation.BMC Complement. Altern. Med.2006611010.1186/1472‑6882‑6‑1016545122
    [Google Scholar]
  31. DunsmoreK.E. ChenP.G. WongH.R. Curcumin, a medicinal herbal compound capable of inducing the heat shock response.Crit. Care Med.200129112199220410.1097/00003246‑200111000‑0002411700423
    [Google Scholar]
  32. JinB. LiY.P. Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss.J. Cell. Biochem.2007100496096910.1002/jcb.2106017131360
    [Google Scholar]
  33. CarterY. LiuG. YangJ. FierA. MendezC. Sublethal hemorrhage induces tolerance in animals exposed to cecal ligation and puncture by altering p38, p44/42, and SAPK/JNK MAP kinase activation.Surg. Infect.200341172710.1089/10962960376465524512744763
    [Google Scholar]
  34. ChattopadhyayI. BandyopadhyayU. BiswasK. MaityP. BanerjeeR.K. Indomethacin inactivates gastric peroxidase to induce reactive-oxygen-mediated gastric mucosal injury and curcumin protects it by preventing peroxidase inactivation and scavenging reactive oxygen.Free Radic. Biol. Med.20064081397140810.1016/j.freeradbiomed.2005.12.01616631530
    [Google Scholar]
  35. JobinC. BradhamC.A. RussoM.P. JumaB. NarulaA.S. BrennerD.A. SartorR.B. Curcumin blocks cytokine-mediated NF-κ B activation and proinflammatory gene expression by inhibiting inhibitory factor I-κ B kinase activity.J. Immunol.199916363474348310.4049/jimmunol.163.6.347410477620
    [Google Scholar]
  36. BarzegarA. Moosavi-MovahediA.A. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.PLoS One2011610e2601210.1371/journal.pone.002601222016801
    [Google Scholar]
  37. SafdarA. deBeerJ. TarnopolskyM.A. Dysfunctional Nrf2–Keap1 redox signaling in skeletal muscle of the sedentary old.Free Radic. Biol. Med.201049101487149310.1016/j.freeradbiomed.2010.08.01020708680
    [Google Scholar]
  38. ShenG. XuC. HuR. JainM.R. GopalkrishnanA. NairS. HuangM.T. ChanJ.Y. KongA.N.T. Modulation of nuclear factor E2-related factor 2–mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin.Mol. Cancer Ther.200651395110.1158/1535‑7163.MCT‑05‑029316432161
    [Google Scholar]
  39. JuturuV. SahinK. PalaR. TuzcuM. OzdemirO. OrhanC. SahinN. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: An in vivo model.J. Inflamm. Res.2016914715410.2147/JIR.S11087327621662
    [Google Scholar]
  40. ChenY.M. ChiuW.C. ChiuY.S. LiT. SungH.C. HsiaoC.Y. Supplementation of nano-bubble curcumin extract improves gut microbiota composition and exercise performance in mice.Food Funct.20201143574358410.1039/C9FO02487E32271330
    [Google Scholar]
  41. HamidieR. Masuda K,Eds. Curcumin potentially to increase athlete performance through regulated mitochondrial biogenesis. iop conference series: Materials science and engineering. IOP Conference Series Materials Science and Engineering 180(1):01220210.1088/1757‑899X/180/1/012202
    [Google Scholar]
  42. Mañas-GarcíaL. BargallóN. GeaJ. BarreiroE. Muscle phenotype, proteolysis, and atrophy signaling during reloading in mice: Effects of curcumin on the gastrocnemius.Nutrients202012238810.3390/nu1202038832024036
    [Google Scholar]
  43. VitadelloM. GerminarioE. RavaraB. LiberaL.D. Danieli-BettoD. GorzaL. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma.J. Physiol.2014592122637265210.1113/jphysiol.2013.26867224710058
    [Google Scholar]
  44. ZhangJ ZhengJ ChenH LiX YeC ZhangF Curcumin Targeting NF-κB/Ubiquitin-Proteasome-System Axis Ameliorates Muscle Atrophy in Triple-Negative Breast Cancer Cachexia Mice.Mediators of inflammation.2022256715010.1155/2022/2567150eCollection
    [Google Scholar]
  45. Gil da CostaR.M. AragãoS. MoutinhoM. AlvaradoA. CarmoD. CasacaF. SilvaS. RibeiroJ. SousaH. FerreiraR. Nogueira-FerreiraR. PiresM.J. ColaçoB. MedeirosR. VenâncioC. OliveiraM.M. BastosM.M.S.M. LopesC. OliveiraP.A. HPV16 induces a wasting syndrome in transgenic mice: Amelioration by dietary polyphenols via NF-κB inhibition.Life Sci.2017169111910.1016/j.lfs.2016.10.03127888116
    [Google Scholar]
  46. VarmaK. AmalrajA. DivyaC. GopiS. The efficacy of the novel bioavailable curcumin (cureit) in the management of sarcopenia in healthy elderly subjects: A randomized, placebo-controlled, double-blind clinical study.J. Med. Food2021241404910.1089/jmf.2020.477833290142
    [Google Scholar]
  47. JacksonJ.R. RyanM.J. HaoY. AlwayS.E. Mediation of endogenous antioxidant enzymes and apoptotic signaling by resveratrol following muscle disuse in the gastrocnemius muscles of young and old rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.20102996R1572R158110.1152/ajpregu.00489.201020861279
    [Google Scholar]
  48. SinT.K. YungB.Y. SiuP.M. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance.Cell. Physiol. Biochem.201535254155210.1159/00036971825612477
    [Google Scholar]
  49. AlamdariN. AversaZ. CastilleroE. GuravA. PetkovaV. TizioS. HasselgrenP.O. Resveratrol prevents dexamethasone-induced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism.Biochem. Biophys. Res. Commun.2012417152853310.1016/j.bbrc.2011.11.15422166204
    [Google Scholar]
  50. WangD.T. YinY. YangY.J. LvP.J. ShiY. LuL. WeiL.B. Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes.Int. Immunopharmacol.201419220621310.1016/j.intimp.2014.02.00224534773
    [Google Scholar]
  51. BusquetsS. FusterG. AmetllerE. OlivanM. FiguerasM. CostelliP. CarbóN. ArgilésJ.M. López-SorianoF.J. Resveratrol does not ameliorate muscle wasting in different types of cancer cachexia models.Clin. Nutr.200726223924410.1016/j.clnu.2006.12.00117261345
    [Google Scholar]
  52. WilliamsL.D. BurdockG.A. EdwardsJ.A. BeckM. BauschJ. Safety studies conducted on high-purity trans-resveratrol in experimental animals.Food Chem. Toxicol.20094792170218210.1016/j.fct.2009.06.00219505523
    [Google Scholar]
  53. ChenK.H. ChengM.L. JingY.H. ChiuD.T.Y. ShiaoM.S. ChenJ.K. Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats.Am. J. Physiol. Endocrinol. Metab.20113015E853E86310.1152/ajpendo.00048.201121791624
    [Google Scholar]
  54. MomkenI. StevensL. BergouignanA. DesplanchesD. RudwillF. CheryI. ZaharievA. ZahnS. SteinT.P. SebedioJ.L. Pujos-GuillotE. FalempinM. SimonC. CoxamV. AndrianjafinionyT. Gauquelin-KochG. PicquetF. BlancS. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat.FASEB J.201125103646366010.1096/fj.10‑17729521715682
    [Google Scholar]
  55. LjubicicV. BurtM. LundeJ.A. JasminB.J. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis.Am. J. Physiol. Cell Physiol.20143071C66C8210.1152/ajpcell.00357.201324760981
    [Google Scholar]
  56. MontesanoA. LuziL. SenesiP. MazzocchiN. TerruzziI. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts.J. Transl. Med.201311131010.1186/1479‑5876‑11‑31024330398
    [Google Scholar]
  57. WykeS.M. RussellS.T. TisdaleM.J. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation.Br. J. Cancer20049191742175010.1038/sj.bjc.660216515477867
    [Google Scholar]
  58. BennettB.T. MohamedJ.S. AlwayS.E. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats.PLoS One2013812e8351810.1371/journal.pone.008351824349525
    [Google Scholar]
  59. AlwayS.E. McCroryJ.L. KearcherK. VickersA. FrearB. GillelandD.L. BonnerD.E. ThomasJ.M. DonleyD.A. LivelyM.W. MohamedJ.S. Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women.J. Gerontol. A Biol. Sci. Med. Sci.201772121595160610.1093/gerona/glx08928505227
    [Google Scholar]
  60. MortreuxM. RiverosD. BouxseinM.L. RutkoveS.B. A moderate daily dose of resveratrol mitigates muscle deconditioning in a martian gravity analog.Front. Physiol.20191089910.3389/fphys.2019.0089931379604
    [Google Scholar]
  61. GohK.P. LeeH.Y. LauD.P. SupaatW. ChanY.H. KohA.F.Y. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure.Int. J. Sport Nutr. Exerc. Metab.201424121310.1123/ijsnem.2013‑004523918588
    [Google Scholar]
  62. AsamiY. AizawaM. KinoshitaM. IshikawaJ. SakumaK. Resveratrol attenuates denervation-induced muscle atrophy due to the blockade of atrogin-1 and p62 accumulation.Int. J. Med. Sci.201815662863710.7150/ijms.2272329725254
    [Google Scholar]
  63. WangD. SunH. SongG. YangY. ZouX. HanP. LiS. Resveratrol improves muscle atrophy by modulating mitochondrial quality control in STZ‐induced diabetic mice.Mol. Nutr. Food Res.2018629170094110.1002/mnfr.20170094129578301
    [Google Scholar]
  64. Mañas-GarcíaL. DenhardC. MateuJ. DuranX. GeaJ. BarreiroE. Beneficial effects of resveratrol in mouse gastrocnemius: a hint to muscle phenotype and proteolysis.Cells2021109243610.3390/cells1009243634572085
    [Google Scholar]
  65. HarperS.A. BasslerJ.R. PeramsettyS. YangY. RobertsL.M. DrummerD. MankowskiR.T. LeeuwenburghC. RicartK. PatelR.P. BammanM.M. AntonS.D. JaegerB.C. BufordT.W. Resveratrol and exercise combined to treat functional limitations in late life: A pilot randomized controlled trial.Exp. Gerontol.202114311111110.1016/j.exger.2020.11111133068691
    [Google Scholar]
  66. MuraguchiT. OkamotoK. MitakeM. OgawaH. ShidojiY. Polished rice as natural sources of cancer-preventing geranylgeranoic acid.J. Clin. Biochem. Nutr.201149181510.3164/jcbn.10‑11021765600
    [Google Scholar]
  67. FrenkelJ. RijkersG.T. MandeyS.H.L. BuurmanS.W.M. HoutenS.M. WandersR.J.A. WaterhamH.R. KuisW. Lack of isoprenoid products raises ex vivo interleukin‐1β secretion in hyperimmunoglobulinemia D and periodic fever syndrome.Arthritis Rheum.200246102794280310.1002/art.1055012384940
    [Google Scholar]
  68. MatsubaraT UrataM NakajimaT Geranylgeraniol-induced myogenic differentiation of C2C12 cells. in vivo.201832614271431
    [Google Scholar]
  69. BodineS.C. BaehrL.M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1.Am. J. Physiol. Endocrinol. Metab.20143076E469E48410.1152/ajpendo.00204.201425096180
    [Google Scholar]
  70. ShirakawaT. MiyawakiA. KawamotoT. KokabuS. Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy.Int. J. Mol. Sci.20212215831010.3390/ijms2215831034361076
    [Google Scholar]
  71. WuC.L. KandarianS.C. JackmanR.W. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3.PLoS One201161e1617110.1371/journal.pone.001617121249144
    [Google Scholar]
  72. GiriwonoP.E. ShirakawaH. OhsakiY. SatoS. AoyamaY. HoH.J. GotoT. KomaiM. Geranylgeraniol suppresses the expression of IRAK1 and TRAF6 to inhibit NFκB activation in lipopolysaccharide-induced inflammatory responses in human macrophage-like cells.Int. J. Mol. Sci.2019209232010.3390/ijms2009232031083375
    [Google Scholar]
  73. HoH.J. ShirakawaH. YoshidaR. ItoA. MaedaM. GotoT. KomaiM. Geranylgeraniol enhances testosterone production via the cAMP/protein kinase A pathway in testis-derived I-10 tumor cells.Biosci. Biotechnol. Biochem.201680479179710.1080/09168451.2015.112361226757775
    [Google Scholar]
  74. CarsonJ.A. ManolagasS.C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease.Bone201580677810.1016/j.bone.2015.04.01526453497
    [Google Scholar]
  75. Pires-OliveiraM. MaragnoA.L.G.C. Parreiras-e-SilvaL.T. ChiavegattiT. GomesM.D. GodinhoR.O. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo.J. Appl. Physiol.2010108226627310.1152/japplphysiol.00490.200919926828
    [Google Scholar]
  76. SathasivamS. Statin induced myotoxicity.Eur. J. Intern. Med.201223431732410.1016/j.ejim.2012.01.00422560377
    [Google Scholar]
  77. BhardwajS. SelvarajahS. SchneiderE.B. Muscular effects of statins in the elderly female: A review.Clin. Interv. Aging20138475923355775
    [Google Scholar]
  78. BabaT.T. NemotoT.K. MiyazakiT. OidaS. Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway.J. Muscle Res. Cell Motil.2008292-512713410.1007/s10974‑008‑9146‑918792797
    [Google Scholar]
  79. CaoP. HanaiJ. TanksaleP. ImamuraS. SukhatmeV.P. LeckerS.H. Statin‐induced muscle damage and atrogin‐1 induction is the result of a geranylgeranylation defect.FASEB J.20092392844285410.1096/fj.08‑12884319406843
    [Google Scholar]
  80. JiwanNC AppellCR WangR ShenC-L LukH-Y Geranylgeraniol Supplementation Mitigates Soleus Muscle Atrophy via Changes in Mitochondrial Quality in Diabetic Rats. in vivo.202236626382649
    [Google Scholar]
  81. MiyawakiA RojasawasthienT HitomiS Oral Administration of Geranylgeraniol Rescues Denervation-induced Muscle Atrophy via Suppression of Atrogin-1. in vivo.202034523452351
    [Google Scholar]
  82. JiaH. AwW. EgashiraK. TakahashiS. AoyamaS. SaitoK. KishimotoY. KatoH. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice.Genes Nutr.20149338910.1007/s12263‑014‑0389‑324599575
    [Google Scholar]
  83. MartiniD. Del Bo’C. TassottiM. RisoP. Del RioD. BrighentiF. PorriniM. Coffee consumption and oxidative stress: a review of human intervention studies.Molecules201621897910.3390/molecules2108097927483219
    [Google Scholar]
  84. WuL. SunD. HeY. Coffee intake and the incident risk of cognitive disorders: A dose–response meta-analysis of nine prospective cohort studies.Clin. Nutr.201736373073610.1016/j.clnu.2016.05.01527288328
    [Google Scholar]
  85. HernánM.A. TakkoucheB. Caamaño-IsornaF. Gestal-OteroJ.J. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease.Ann. Neurol.200252327628410.1002/ana.1027712205639
    [Google Scholar]
  86. WijarnpreechaK. ThongprayoonC. UngprasertP. Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis.Eur. J. Gastroenterol. Hepatol.2017292e8e1210.1097/MEG.000000000000077627824642
    [Google Scholar]
  87. GrossoG. MicekA. GodosJ. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis.Springer201611911205
    [Google Scholar]
  88. LudwigI.A. CliffordM.N. LeanM.E.J. AshiharaH. CrozierA. Coffee: Biochemistry and potential impact on health.Food Funct.2014581695171710.1039/C4FO00042K24671262
    [Google Scholar]
  89. WeiF. FurihataK. KodaM. HuF. MiyakawaT. TanokuraM. Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition.J. Agric. Food Chem.20126041005101210.1021/jf205315r22224944
    [Google Scholar]
  90. OngK.W. HsuA. TanB.K.H. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes.PLoS One201273e3271810.1371/journal.pone.003271822412912
    [Google Scholar]
  91. TsudaS. EgawaT. MaX. OshimaR. KurogiE. HayashiT. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.J. Nutr. Biochem.201223111403140910.1016/j.jnutbio.2011.09.00122227267
    [Google Scholar]
  92. KobayashiM. MatsudaY. IwaiH. HiramitsuM. InoueT. KatagiriT. YamashitaY. AshidaH. MuraiA. HorioF. Coffee improves insulin-stimulated Akt phosphorylation in liver and skeletal muscle in diabetic KK-A(y) mice.J. Nutr. Sci. Vitaminol.201258640841410.3177/jnsv.58.40823419399
    [Google Scholar]
  93. MathewT.S. FerrisR.K. DownsR.M. KinseyS.T. BaumgarnerB.L. Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase.Biochem. Biophys. Res. Commun.2014453341141810.1016/j.bbrc.2014.09.09425268764
    [Google Scholar]
  94. PietrocolaF. MalikS.A. MariñoG. VacchelliE. SenovillaL. chaba Niso-SantanoM. MaiuriM.C. MadeoF. KroemerG. Coffee induces autophagy in vivo.Cell Cycle201413121987199410.4161/cc.2892924769862
    [Google Scholar]
  95. PallaufK. RimbachG. Autophagy, polyphenols and healthy ageing.Ageing Res. Rev.201312123725210.1016/j.arr.2012.03.00822504405
    [Google Scholar]
  96. Dirks-NaylorA.J. The benefits of coffee on skeletal muscle.Life Sci.201514318218610.1016/j.lfs.2015.11.00526546720
    [Google Scholar]
  97. OhS. ShinH.K. LeeJ.W. LeeD.C. Association between coffee consumption and sarcopenia in older adults: A Cross Sectional analysis of the Korea national health and nutrition examination survey 2008-2011.Korean J. Fam. Pract.20166659860310.21215/kjfp.2016.6.6.598
    [Google Scholar]
  98. KimJ.H. ParkY.S. Light coffee consumption is protective against sarcopenia, but frequent coffee consumption is associated with obesity in Korean adults.Nutr. Res.2017419710210.1016/j.nutres.2017.04.00428464999
    [Google Scholar]
  99. GuoY. NiuK. OkazakiT. WuH. YoshikawaT. OhruiT. FurukawaK. IchinoseM. YanaiK. AraiH. HuangG. NagatomiR. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro.Exp. Gerontol.2014501810.1016/j.exger.2013.11.00524269808
    [Google Scholar]
  100. KimJ.H. KimJ.H. JangJ.P. JangJ.H. JinD.H. KimY.S. JinH.J. Identification of molecules from coffee silverskin that suppresses myostatin activity and improves muscle mass and strength in mice.Molecules2021269267610.3390/molecules2609267634063650
    [Google Scholar]
  101. BagheriR. RashidlamirA. Ashtary-LarkyD. WongA. AlipourM. MotevalliM.S. ChebbiA. LaherI. ZouhalH. Does green tea extract enhance the anti‐inflammatory effects of exercise on fat loss?Br. J. Clin. Pharmacol.202086475376210.1111/bcp.1417631747468
    [Google Scholar]
  102. OnishiS. IshinoM. KitazawaH. YotoA. ShimbaY. MochizukiY. UnnoK. MeguroS. TokimitsuI. MiuraS. Green tea extracts ameliorate high-fat diet–induced muscle atrophy in senescence-accelerated mouse prone-8 mice.PLoS One2018134e019575310.1371/journal.pone.019575329630667
    [Google Scholar]
  103. LiuH.W. ChanY.C. WangM.F. WeiC.C. ChangS.J. Dietary (−)-Epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse.J. Agric. Food Chem.201563388407841710.1021/acs.jafc.5b0250126152236
    [Google Scholar]
  104. EvansN.P. CallJ.A. Bassaganya-RieraJ. RobertsonJ.L. GrangeR.W. Green tea extract decreases muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx mice.Clin. Nutr.201029339139810.1016/j.clnu.2009.10.00119897286
    [Google Scholar]
  105. HuangL.H. LiuC.Y. WangL.Y. HuangC.J. HsuC.H. Effects of green tea extract on overweight and obese women with high levels of low density-lipoprotein-cholesterol (LDL-C): a randomised, double-blind, and cross-over placebo-controlled clinical trial.BMC Complement. Altern. Med.201818129410.1186/s12906‑018‑2355‑x30400924
    [Google Scholar]
  106. KimH.M. KimJ. The effects of green tea on obesity and type 2 diabetes.Diabetes Metab. J.201337317317510.4093/dmj.2013.37.3.17323807919
    [Google Scholar]
  107. DullooA.G. DuretC. RohrerD. GirardierL. MensiN. FathiM. ChantreP. VandermanderJ. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans.Am. J. Clin. Nutr.19997061040104510.1093/ajcn/70.6.104010584049
    [Google Scholar]
  108. LegeayS. RodierM. FillonL. FaureS. ClereN. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome.Nutrients2015775443546810.3390/nu707523026198245
    [Google Scholar]
  109. LeeS.J. LeemY.E. GoG.Y. ChoiY. SongY.J. KimI. KimD.Y. KimY.K. SeoD.W. KangJ.S. BaeG.U. Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts.PLoS One2017124e017527110.1371/journal.pone.017527128384253
    [Google Scholar]
  110. MeadorB.M. MirzaK.A. TianM. SkeldingM.B. ReavesL.A. EdensN.K. TisdaleM.J. PereiraS.L. The green tea polyphenol epigallocatechin-3-gallate (EGCg) attenuates skeletal muscle atrophy in a rat model of sarcopenia.J. Frailty Aging20154420921527031020
    [Google Scholar]
  111. OtaN. SogaS. HaramizuS. YokoiY. HaseT. MuraseT. Tea catechins prevent contractile dysfunction in unloaded murine soleus muscle: A pilot study.Nutrition201127995595910.1016/j.nut.2010.10.00821641774
    [Google Scholar]
  112. MafiF. BiglariS. Ghardashi AfousiA. GaeiniA.A. Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults.J. Aging Phys. Act.201927338439110.1123/japa.2017‑038930299198
    [Google Scholar]
  113. TanakaM. HayashiN. IidaT. KuzawaK. NaitoM. Effects of chocolate containing d-Allulose on postprandial lipid and carbohydrate metabolism in young japanese women.Food Sci. Technol. Res.202026562363210.3136/fstr.26.623
    [Google Scholar]
  114. MasudaK MaebuchiM SamotoM Ushijima Y, Uchida Y, Kohno M. Effect of soy-peptide intake on exercise-induced muscle damage. j. Japan. Soc. Clin. Spor. Med.2007152228235
    [Google Scholar]
  115. AnthonyT.G. McDanielB.J. KnollP. BunpoP. PaulG.L. McNurlanM.A. Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats.J. Nutr.2007137235736210.1093/jn/137.2.35717237311
    [Google Scholar]
  116. NikawaT. IkemotoM. SakaiT. KanoM. KitanoT. KawaharaT. TeshimaS. RokutanK. KishiK. Effects of a soy protein diet on exercise-induced muscle protein catabolism in rats.Nutrition200218649049510.1016/S0899‑9007(02)00744‑X12044822
    [Google Scholar]
  117. HashimotoR SakaiA MurayamaM Effects of dietary soy protein on skeletal muscle volume and strength in humans with various physical activities. J. Med. Invest.201562(3,4)17718310.2152/jmi.62.177
    [Google Scholar]
  118. AthreyaK. XavierM.F. Antioxidants in the treatment of cancer.Nutr. Cancer20176981099110410.1080/01635581.2017.136244529043851
    [Google Scholar]
  119. AbeT KohnoS YamaT Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b.Int. J. Endocrinol.2013201310.1155/2013/907565
    [Google Scholar]
  120. KohnoM. UllaA. TaniguchiR. OhishiA. HirayamaK. TakemuraY. TakaoS. KanazawaY. MatsumotoY. HaradaM. FukawaT. KanayamaH. UchidaT. SuzukiT. NikawaT. Daily dietary supplementation with steamed soybean improves muscle volume and strength in healthy people lacking exercise.J. Nutr. Sci. Vitaminol.202268652152610.3177/jnsv.68.52136596550
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838268183231121075627
Loading
/content/journals/ctm/10.2174/0122150838268183231121075627
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test