Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Introduction

Diabetes mellitus is a worldwide concern as its rising prevalence has resulted in severe health problems. Some people employ traditional medicine to manage their diabetes.

Aims

This review aims to identify medicinal plants used in diabetes management and to review their non-clinical data on its efficacy, toxicity studies, and mechanism of action.

Methods

The databases used to search for information were PubMed, Scopus, ScienceDirect, and Google Scholar, reporting from Jan 2018 until Nov 2023. The search terms involved “diabetes”, “hypoglycemic” “medicinal plants”, “chemical compound”, “traditional use”, “extracts”, “reduce blood glucose” and “toxicity”.

Results

A total of twenty plants were identified, showing blood glucose reduction from 14.3% to 80%, and their mechanism of action was thematically categorized under three mechanisms which are 1) insulin secretagogue, 2) insulin sensitizer, and 3) retard intestinal absorption of glucose. The plant extracts showed no sign of acute toxicity between 1.5 to 5 g/kg.

Conclusion

To optimize their effectiveness, further research is required to evaluate chronic toxicity and identify plant extract bioactive compounds.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838239961240815102258
2024-08-26
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838239961.html?itemId=/content/journals/ctm/10.2174/0122150838239961240815102258&mimeType=html&fmt=ahah

References

  1. World Health Organization, Diabetes.2022Available from:https://www.who.int/news-room/fact-sheets/detail/diabetes(accessed on 19-7-2024)
  2. ShakeelP.M. BaskarS. DhulipalaV.R.S. JaberM.M. Cloud based framework for diagnosis of diabetes mellitus using K-means clustering.Health Inf. Sci. Syst.2018611610.1007/s13755‑018‑0054‑030279986
    [Google Scholar]
  3. CampbellJ.E. NewgardC.B. Mechanisms controlling pancreatic islet cell function in insulin secretion.Nat. Rev. Mol. Cell Biol.202122214215810.1038/s41580‑020‑00317‑733398164
    [Google Scholar]
  4. RazaqR.A. MahdiJ.A. JawadR.A. Information about Diabetes Mellitus.Journal of the University of Babylon for Pure and Applied Sciences.2020283243252
    [Google Scholar]
  5. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C. MbanyaJ.C. IDF Diabetes Atlas: Global, regional, and country-level diabetes prevalence estimates for.WORLD20219651053105734879977
    [Google Scholar]
  6. HegdeV. DhurandharN.V. ReddyP.H. Hyperinsulinemia or insulin resistance: what impacts the progression of Alzheimer’s disease?J. Alzheimers Dis.201972s1S71S7910.3233/JAD‑19080831744006
    [Google Scholar]
  7. Swagata Chakraborty Apala Sengupta An epidemiological study on prameha (Diabetes mellitus) in Kolkata.Int. J. Ayurveda Pharma Res.202031212610.47070/ijapr.v8i8.1541
    [Google Scholar]
  8. MagkosF. HjorthM.F. AstrupA. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus.Nat. Rev. Endocrinol.2020161054555510.1038/s41574‑020‑0381‑532690918
    [Google Scholar]
  9. EggletonJ.S. JialalI. Thiazolidinediones.StatPearlsTreasure Island (FL)StatPearls Publishing2022
    [Google Scholar]
  10. ChenH. LuY. An Overview of Hypoglycemic Modern DrugsStructure and Health Effects of Natural Products on Diabetes mellitus.Springer2021173210.1007/978‑981‑15‑8791‑7_2
    [Google Scholar]
  11. PaulT. PathakK. SaikiaR. GogoiU. Jyoti SahariahJ. DasA. The Role of Medicinal Plants in the Treatment and Management of Type 2 Diabetes.Curr. Tradit. Med.2024102e23022321399210.2174/2215083809666230223164613
    [Google Scholar]
  12. Arias-DuránL. Estrada-SotoS. Hernández-MoralesM. Millán-PachecoC. Navarrete-VázquezG. Villalobos-MolinaR. Ibarra-BarajasM. Almanza-PérezJ.C. Antihypertensive and vasorelaxant effect of leucodin and achillin isolated from Achillea millefolium through calcium channel blockade and NO production: In vivo, functional ex vivo and in silico studies.J. Ethnopharmacol.202127311394810.1016/j.jep.2021.11394833610712
    [Google Scholar]
  13. TadićV. ArsićI. ZvezdanovićJ. ZugićA. CvetkovićD. PavkovS. The estimation of the traditionally used yarrow ( Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application.J. Ethnopharmacol.201719913814810.1016/j.jep.2017.02.00228163113
    [Google Scholar]
  14. JiangM. ShengF. ZhangZ. MaX. GaoT. FuC. LiP. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents.J. Ethnopharmacol.202127211395410.1016/j.jep.2021.11395433610706
    [Google Scholar]
  15. AryaD. BhagourK. SharmaM. GuptaR.S. Phytochemical screening and antidiabetic activity of Mangifera indica (Seed kernels) in streptozotocin-induced diabetic rats.J. Pharmacogn. Phytochem.20187425212527
    [Google Scholar]
  16. BioltifY.E. EdwardN.B. TyengT.D. A chemical overview of Azanza garckeana.Nat. Prod. Chem.2020929195
    [Google Scholar]
  17. TaddeseS.M. GurjiT.B. AbdulwuhabM. AragawT.J. Wound healing activities of hydromethanolic crude extract and solvent fractions of Bersama abyssinica Leaves in mice.Evid. Based Complement. Alternat. Med.2021202112010.1155/2021/999114634335856
    [Google Scholar]
  18. JunejoJA RudrapalM ZamanK Antidiabetic activity of Carallia brachiata Lour. leaves hydroalcoholic extract (HAE) with antioxidant potential in diabetic rats.Indian J. Nat. Prod. Res.20201111829
    [Google Scholar]
  19. LiuS. YangL. ZhengS. HouA. ManW. ZhangJ. WangS. WangX. YuH. JiangH. A review: the botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex.RSC Advances20211144274612749710.1039/D1RA04965H35480649
    [Google Scholar]
  20. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  21. BeeraA.M. NoriL.P. SeethamrajuS.M. Nutritional and therapeutic potential of Coccinia grandis (l) vogit: a wonder vegetable.Pharm. Times2022540715551561
    [Google Scholar]
  22. Prashith KekudaT.R. SudharshanS.J. Ethnobotanical uses, phytochemistry and biological activities of Clerodendrum paniculatum L. (Lamiaceae): A comprehensive review.J. Drug Deliv. Ther.201885-s283410.22270/jddt.v8i5‑s.1930
    [Google Scholar]
  23. SisayW. AndargieY. MollaM. Antidiabetic activity of hydromethanolic extract of crude Dorstenia barnimiana root: validation of in vitro and in vivo antidiabetic and antidyslipidemic activity.J. Exp. Pharmacol.202214597210.2147/JEP.S34373535177940
    [Google Scholar]
  24. AliB.A. AlfaA.A. TijaniK.B. IdrisE.T. UnoyizaU.S. JunaiduY. Nutritional health benefits and bioactive compounds of Mangifera indica L (mango) leaves methanolic extracts.Asian Plant Research Journal20206415110.9734/aprj/2020/v6i230126
    [Google Scholar]
  25. JunejoJ.A. ZamanK. RudrapalM. CelikI. AttahE.I. Antidiabetic bioactive compounds from Tetrastigma angustifolia (Roxb.) Deb and Oxalis debilis Kunth.: Validation of ethnomedicinal claim by in vitro and in silico studies.S. Afr. J. Bot.202114316417510.1016/j.sajb.2021.07.023
    [Google Scholar]
  26. BhuyanB. SonowalR. An overview of Pandanus amaryllifolius Roxb. Ex lindl. and its potential impact on health.Curr. Trends Pharmaceut. Res.202181138157
    [Google Scholar]
  27. SarithaP. DeviU.A. Cultural and medicinal properties of Telangana State Tree Jammi Chettu (Shami tree) (Prosopis cineraria Linn.).Plant Arch.2018181991994
    [Google Scholar]
  28. American Botanical CouncilAvailable from:www.herbalgram.org(accessed on 19-7-2024)2021
  29. AyeleA.G. KumarP. EngidaworkE. Antihyperglycemic and hypoglycemic activities of the aqueous leaf extract of Rubus Erlangeri Engl (Rosacea) in mice.Metabolism Open20211110011810.1016/j.metop.2021.10011834466798
    [Google Scholar]
  30. SoniN. SinghV.K. Traditional, nutraceutical, and pharmacological approaches of Tamarindus indica (Imli).Eur. J. Biol. Res.201993141154
    [Google Scholar]
  31. KalimA. ZaheerM. SiddiquiM.U.A. AhmedS. HassanM.M. Nutritional value, Ethnomedicine, Phytochemistry and pharmacology of Vigna radiata (L.) R. Wilczek.J. Pharmacogn. Phytochem.2021102545810.22271/phyto.2021.v10.i2a.13821
    [Google Scholar]
  32. Chávez-SilvaF. Cerón-RomeroL. Arias-DuránL. Navarrete-VázquezG. Almanza-PérezJ. Román-RamosR. Ramírez-ÁvilaG. Perea-ArangoI. Villalobos-MolinaR. Estrada-SotoS. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities.J. Ethnopharmacol.20182121710.1016/j.jep.2017.10.00529031783
    [Google Scholar]
  33. EMA (European Medicines Agency), Committee on Herbal Medicinal Products (HMPC).2019Available from:https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-achillea-millefolium-l-herba-revision-1_en.pdf(accessed on 19-7-2024)
  34. AnyanwuG.O. IqbalJ. KhanS.U. ZaibS. RaufK. OnyenekeC.E. OjoO.O. Nisar-ur-Rahman Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.J. Ethnopharmacol.201922929330210.1016/j.jep.2018.10.02130342966
    [Google Scholar]
  35. LawalB. SaniS. OnikanniA.S. IbrahimY.O. AgboolaA.R. LukmanH.Y. OlawaleF. JigamA.A. BatihaG.E.S. BabalolaS.B. Mostafa-HedeabG. LimaC.M.G. WuA.T.H. HuangH.S. Conte-JuniorC.A. Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents.Biomed. Pharmacother.202215211319610.1016/j.biopha.2022.11319635667233
    [Google Scholar]
  36. SinghJ. ParasuramanS. KathiresanS. Antioxidant and antidiabetic activities of methanolic extract of Cinnamomum cassia. Pharmacognosy Res.2018103273242
    [Google Scholar]
  37. SinghR. ParasuramanS. KathiresanS. Antioxidant and antidiabetic activities of methanolic extract of bark of Cinnamomum zeylanicum in diabetic rats.Free Radic. Antioxid.2020101162310.5530/fra.2020.1.4
    [Google Scholar]
  38. VargheseS. KannappanP. KanakasabapathiD. MadathilS. PerumalsamyM. Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats.Biocatal. Agric. Biotechnol.20213610209510.1016/j.bcab.2021.102095
    [Google Scholar]
  39. Ramachawolran Gobinath Subramani Parasuraman Subramaniam Sreeramanan ChinniS.V. Suresh V Chinni Antidiabetic and antihyperlipidemic activities of methanolic extract of leaves of Coccinia grandis in diabetic rats.International Journal of Research in Pharmaceutical Sciences202011SPL42324233110.26452/ijrps.v11iSPL4.4460
    [Google Scholar]
  40. SoniL.K. DobhalM.P. AryaD. BhagourK. ParasherP. GuptaR.S. In vitro and in vivo antidiabetic activity of isolated fraction of Prosopis cineraria against streptozotocin-induced experimental diabetes: A mechanistic study.Biomed. Pharmacother.20181081015102110.1016/j.biopha.2018.09.09930372801
    [Google Scholar]
  41. AmareY.E. DiresK. AsfawT. Antidiabetic activity of mung bean or Vigna radiata wilczek seeds in alloxan-induced diabetic mice.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/699026336337582
    [Google Scholar]
  42. HayatiL. HidayatR. The effects of sambiloto leaf extract (Andrographis peniculata) on blood sugar regulation: an in vivo study.Eureka Herba Indonesia2020111810.37275/ehi.v1i1.1
    [Google Scholar]
  43. WorasuttayangkurnL. NakareangritW. KwangjaiJ. SritangosP. PholphanaN. WatcharasitP. RangkadilokN. ThiantanawatA. SatayavivadJ. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract.Toxicol. Rep.2019642643010.1016/j.toxrep.2019.05.00331193040
    [Google Scholar]
  44. KumarM.S. MythiliA. In vivo and in vitro leaf extract of bambusa vulgaris, root extract of pandanus odoratissimus stimulates? Cell regeneration and antidiabetic activity in wister rats.20221169911010
    [Google Scholar]
  45. BhadoriyaS.S. GaneshpurkarA. BhadoriyaR.P.S. SahuS.K. PatelJ.R. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats.J. Basic Clin. Physiol. Pharmacol.2018291374510.1515/jbcpp‑2016‑019328888089
    [Google Scholar]
  46. ZhangX. DuL. ZhangW. YangM. ChenL. HouC. LiJ. Pomegranate peel polyphenols alleviate insulin resistance through the promotion of insulin signaling pathway in skeletal muscle of metabolic syndrome rats.Food Sci. Hum. Wellness20221141076108510.1016/j.fshw.2022.03.034
    [Google Scholar]
  47. KifleZ.D. EnyewE.F. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (Melianthaceae).J. Evid. Based Integr. Med.2020252515690X209358210.1177/2515690X2093582732718177
    [Google Scholar]
  48. SanftR. WalterA. Differential equations: numerical solutions, model calibration, and sensitivity analysis.Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities2020147223
    [Google Scholar]
  49. TranN. PhamB. LeL. Bioactive compounds in antidiabetic plants: From herbal medicine to modern drug discovery.Biology (Basel)20209925210.3390/biology909025232872226
    [Google Scholar]
  50. JamalN. ZainolN.I. ZakariaN.A. JofrryS.M. MohamedR. ManF. ChooC.Y. Safety, efficacy, and mechanism of action of herbs used for obesity management: A thematic review.Obes. Med.20223210041510.1016/j.obmed.2022.100415
    [Google Scholar]
  51. Walczewska-SzewcK. NowakW. Photo-switchable sulfonylureas binding to ATP-sensitive potassium channel reveal the mechanism of light-controlled insulin release.J. Phys. Chem. B202112548131111312110.1021/acs.jpcb.1c0729234825567
    [Google Scholar]
  52. HattingM. TavaresC.D.J. SharabiK. RinesA.K. PuigserverP. Insulin regulation of gluconeogenesis.Ann. N. Y. Acad. Sci.201814111213510.1111/nyas.1343528868790
    [Google Scholar]
  53. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816110.1002/jcp.2760330317615
    [Google Scholar]
  54. RussoB. PicconiF. MalandruccoI. FrontoniS. Flavonoids, and insulin-resistance: From molecular evidence to clinical trials.Int. j.molecul. sci.20192092610.3390/ijms20092061
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838239961240815102258
Loading
/content/journals/ctm/10.2174/0122150838239961240815102258
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test