Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Interior-warming medicines () have the effect of warming the interior of the body and dispelling cold, and they are traditionally used for interior cold syndrome. Currently, they are used for treating gastrointestinal disorders, rheumatoid arthritis, tumors, . Transient receptor potential channel M8 (TRPM8) is a non-selective cation channel that can be activated by low temperature and menthol. However, the mechanism of temperature regulation of interior-warming medicines is not clear. This study designed an experiment on the TRPM8 signaling pathway using interior-warming medicines, aiming to investigate the relationship between the hot property of interior-warming medicines and the regulatory effect of TRPM8.

Methods

The breast cancer cell line 7 was cultured at different temperatures as a research model, six kinds of interior-warming medicines were used, and a medicated serum from rats was prepared as a test drug. PCR and western blotting were carried out to investigate their effects on TRPM8 mRNA and protein expression. ELISA and flow cytometry were conducted to detect intracellular cAMP and Ca2+ concentration.

Results

Compared with the blank-containing serum group, interior-warming medicines had no significant effect on the expression of TRPM8 at 37°C, while they could inhibit the expression of TRPM8 at low temperatures (30°C). Moreover, the six herbs could increase intracellular cAMP content and reduce Ca2+ concentration at different temperatures.

Discussion

TRPM8 plays an important role in temperature sensation, pain, inflammation and tumorigenesis, while generates specific calcium ion influx under low-temperature stimulation. This study showed that six interior-warming medicines down-regulated TRPM8 expression, especially at low temperatures, and they regulated intracellular Ca2+ release in addition to Ca2+ influx.

Conclusion

The natural hot property of interior-warming medicines may be associated with the regulation of the TRPM8 signaling pathway, causing Ca2+ influx blocking, which provides a deeper experimental basis for their clinical application and new drug development.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838349351241203105103
2025-01-03
2025-12-21
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838349351.html?itemId=/content/journals/ctm/10.2174/0122150838349351241203105103&mimeType=html&fmt=ahah

References

  1. MoranM.M. TRP channels as potential drug targets.Annu. Rev. Pharmacol. Toxicol.201858130933010.1146/annurev‑pharmtox‑010617‑05283228945977
    [Google Scholar]
  2. TsavalerL. ShaperoM.H. MorkowskiS. LausR. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins.Cancer Res.20016193760376911325849
    [Google Scholar]
  3. AierkenA. XieY.K. DongW. ApaerA. LinJ.J. ZhaoZ. YangS. XuZ.Z. YangF. Rational design of a modality-specific inhibitor of TRPM8 channel against oxaliplatin-induced cold allodynia.Adv. Sci. (Weinh.)2021822210171710.1002/advs.20210171734658162
    [Google Scholar]
  4. RiveraB. CamposM. OrioP. MadridR. PertusaM. Negative modulation of TRPM8 channel function by protein kinase C in trigeminal cold thermoreceptor neurons.Int. J. Mol. Sci.20202112442010.3390/ijms2112442032580281
    [Google Scholar]
  5. De CaroC. CristianoC. AvaglianoC. BertaminoA. OstacoloC. CampigliaP. Gomez-MonterreyI. La RanaG. GualilloO. CalignanoA. RussoR. Characterization of new TRPM8 modulators in pain perception.Int. J. Mol. Sci.20192022554410.3390/ijms2022554431703254
    [Google Scholar]
  6. WatanabeS. FujimoriY. MatsuzawaA. KobayashiJ. HirasawaH. MutaiY. TanadaF. KPR-5714, a selective transient receptor potential melastatin 8 antagonist, improves voiding dysfunction in rats with bladder overactivity but does not affect voiding behavior in normal rats.Neurourol. Urodyn.20224161336134310.1002/nau.2495135537073
    [Google Scholar]
  7. DevalE. GasullX. NoëlJ. SalinasM. BaronA. DiochotS. LinguegliaE. Acid-sensing ion channels (ASICs): Pharmacology and implication in pain.Pharmacol. Ther.2010128354955810.1016/j.pharmthera.2010.08.00620807551
    [Google Scholar]
  8. MolliverD.C. ImmkeD.C. FierroL. ParéM. RiceF.L. McCleskeyE.W. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons.Mol. Pain200511744-8069-1-3510.1186/1744‑8069‑1‑3516305749
    [Google Scholar]
  9. XingH. LingJ. ChenM. GuJ.G. Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons.J. Neurophysiol.20069521221123010.1152/jn.01035.200516424459
    [Google Scholar]
  10. WeyerA. LehtoS. Development of TRPM8 antagonists to treat chronic pain and migraine.Pharmaceuticals (Basel)20171023710.3390/ph1002003728358322
    [Google Scholar]
  11. ZhaoC. XieY. XuL. YeF. XuX. YangW. YangF. GuoJ. Structures of a mammalian TRPM8 in closed state.Nat. Commun.2022131311310.1038/s41467‑022‑30919‑y35662242
    [Google Scholar]
  12. HuangS.S. SuH.H. ChienS.Y. ChungH.Y. LuoS.T. ChuY.T. WangY.H. MacDonaldI.J. LeeH.H. ChenY.H. Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol.J. Neuroinflammation202219119210.1186/s12974‑022‑02553‑435897101
    [Google Scholar]
  13. LiuY. MikraniR. HeY. Faran Ashraf BaigM.M. AbbasM. NaveedM. TangM. ZhangQ. LiC. ZhouX. TRPM8 channels: A review of distribution and clinical role.Eur. J. Pharmacol.202088217331210.1016/j.ejphar.2020.17331232610057
    [Google Scholar]
  14. IzquierdoC. Martín-MartínezM. Gómez-MonterreyI. González-MuñizR. TRPM8 channels: Advances in structural studies and pharmacological modulation.Int. J. Mol. Sci.20212216850210.3390/ijms2216850234445208
    [Google Scholar]
  15. González-MuñizR. BonacheM.A. Martín-EscuraC. Gómez-MonterreyI. Recent progress in TRPM8 modulation: An update.Int. J. Mol. Sci.20192011261810.3390/ijms2011261831141957
    [Google Scholar]
  16. HeJ. ZhangY. YangC. LiK. YuanX. ZhangZ. GuC. ChenY. Effects of Alpinia officinarum and Euodia rutaecarpa on the expression of TRPA1 and TRPM8 in rats with irritable bowel syndrome.J. Holistic Integr. Pharm.20234111310.1016/S2707‑3688(23)00091‑2
    [Google Scholar]
  17. KongX. WanH. SuX. ZhangC. YangY. LiX. YaoL. LinN. Rheum palmatum L. and Coptis chinensis Franch., exert antipyretic effect on yeast-induced pyrexia rats involving regulation of TRPV1 and TRPM8 expression.J. Ethnopharmacol.2014153116016810.1016/j.jep.2014.02.00724530855
    [Google Scholar]
  18. ChodonD. GuilbertA. Dhennin-DuthilleI. GautierM. TelliezM.S. SevestreH. Ouadid-AhidouchH. Estrogen regulation of TRPM8 expression in breast cancer cells.BMC Cancer201010121210.1186/1471‑2407‑10‑21220482834
    [Google Scholar]
  19. YanS. HuangY. XiaoQ. SuZ. XiaL. XieJ. ZhangF. DuZ. HouX. DengJ. HaoE. Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients.Front. Pharmacol.202213103941210.3389/fphar.2022.103941236313301
    [Google Scholar]
  20. LiuX-L. LvC. ZhangW-S. Advance in studies on TRPV1 and analgesic effect of traditional Chinese medicines.Zhongguo Zhongyao Zazhi201439101757176025282877
    [Google Scholar]
  21. ZhanY-R. XiongC-C. ChenY-F. WuZ-J. YangC-Y. Re-evaluation of literature on the effects of Wenli medicine on the digestive system.Guangdong Yaoxueyuan Xuebao201834339840210.16809/j.cnki.2096‑3653.2018030604
    [Google Scholar]
  22. MingL. TangC-P. ChenY-F. YinY-Q. HanB. YangQ. YangC-Y. ChenJ-X. Evaluation of the pain relieving effect of warm inner medicine by principal component analysis.Lishizhen Med. Mater. Med. Res.201526410081010
    [Google Scholar]
  23. ShangG. NiuX. TongQ. ZhaoY. YinJ. ZhouX. XuJ. CaoY. ChengF. BaoB. LiZ. YaoW. Integrated metabolomic and lipidomic analysis revealed the protective mechanisms of Erzhi Wan on senescent NRK cells through BRL cells.J. Ethnopharmacol.202432011748210.1016/j.jep.2023.11748238000520
    [Google Scholar]
  24. BaiX. ZhengE. TongL. LiuY. LiX. YangH. JiangJ. ChangZ. YangH. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway.J. Ethnopharmacol.202432111743810.1016/j.jep.2023.11743837984544
    [Google Scholar]
  25. HeW-X. ZhangC-L. XiangD. YangJ-Y. XuY-J. RenX-H. LiuD. Mechanism of Calculus Bovis Sativus in inhibiting hepatocyte lipid deposition based on serum pharmacology.Zhongguo Zhongyao Zazhi201944173780378510.19540/j.cnki.cjcmm.20190416.40231602953
    [Google Scholar]
  26. YipingY. HuaqiangZ. TianZ. ZhaojuanG. LitingK. XiaoyuJ. Ning-ningW. YingD. GuoxiuL. YanpingW. Effects of Mahuang (Herba Ephedra Sinica) and Wuweizi (Fructus Schisandrae Chinensis) medicated serum on chemotactic migration of alveolar macrophages and inters regions macrophages in rats.J. Tradit. Chin. Med.201737560761510.1016/S0254‑6272(17)30313‑832188220
    [Google Scholar]
  27. OrdásP. Hernández-OrtegoP. VaraH. Fernández-PeñaC. ReimúndezA. Morenilla-PalaoC. Guadaño-FerrazA. GomisA. HoonM. VianaF. SeñarísR. Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits.J. Comp. Neurol.2021529123425610.1002/cne.2469430942489
    [Google Scholar]
  28. TokudaM. TatsuyamaS. FujisawaM. Morimoto-YamashitaY. KawakamiY. ShibukawaY. ToriiM. Dentin and pulp sense cold stimulus.Med. Hypotheses201584544244410.1016/j.mehy.2015.01.03925665859
    [Google Scholar]
  29. YinY. LeS.C. HsuA.L. BorgniaM.J. YangH. LeeS.Y. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel.Science20193636430eaav933410.1126/science.aav933430733385
    [Google Scholar]
  30. De CaroC. RussoR. AvaglianoC. CristianoC. CalignanoA. AraminiA. BianchiniG. AllegrettiM. BrandoliniL. Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat.Br. J. Pharmacol.2018175101691170610.1111/bph.1417729485712
    [Google Scholar]
  31. RenL. DhakaA. CaoY.Q. Function and postnatal changes of dural afferent fibers expressing TRPM8 channels.Mol. Pain201511s12990-015-0043-010.1186/s12990‑015‑0043‑026111800
    [Google Scholar]
  32. WangJ. YangG. LiM. ZhouX. Transient receptor potential melastatin 8 (TRPM8)-based mechanisms underlie both the cold temperature-induced inflammatory reactions and the synergistic effect of cigarette smoke in human bronchial epithelial (16HBE) cells.Front. Physiol.20191028510.3389/fphys.2019.0028531001124
    [Google Scholar]
  33. LiuJ.J. LiL.Z. XuP. Upregulation of TRPM8 can promote the colon cancer liver metastasis through mediating Akt/GSK-3 signal pathway.Biotechnol. Appl. Biochem.202269123023910.1002/bab.210233432591
    [Google Scholar]
  34. BochuW. LiancaiZ. QiC. Primary study on the application of serum pharmacology in Chinese traditional medicine.Colloids Surf. B Biointerfaces2005433-419419710.1016/j.colsurfb.2005.04.01315964749
    [Google Scholar]
  35. WangL-D. SunM-Y. ZhangF. LiP-P. ShiW. XuL. Research progress of the traditional Chinese medicine intervention technique of the in vitro cell experiment.Zhonghua Zhongyiyao Zazhi201833414481451
    [Google Scholar]
  36. PanW.-S. LiuM.-F. ShiY. XingD.-M. DuL.-J. HeX.-H. ZhangH.-Y. Plasma pharmacology and plasma chemistry and pharmacokinetics of traditional Chinese Medicines.World Sci. Technol.- Modern. Trad. Chin. Med. Materia Medica200235356
    [Google Scholar]
  37. AntoniF.A. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells.Cell Calcium2012513-426026610.1016/j.ceca.2011.12.01322385836
    [Google Scholar]
  38. BidauxG. GordienkoD. ShapovalovG. FarfarielloV. BorowiecA. IamshanovaO. LemonnierL. GueguinouM. GuibonR. FromontG. PaillardM. GouriouY. ChouabeC. DewaillyE. GkikaD. López-AlvaradoP. Carlos MenéndezJ. HéliotL. SlomiannyC. PrevarskayaN. 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca2+ transfer.Biochim. Biophys. Acta Mol. Cell Res.20181865798199410.1016/j.bbamcr.2018.04.00729678654
    [Google Scholar]
  39. LaunayP. FleigA. PerraudA.L. ScharenbergA.M. PennerR. KinetJ.P. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization.Cell2002109339740710.1016/S0092‑8674(02)00719‑512015988
    [Google Scholar]
  40. McHughD. FlemmingR. XuS.Z. PerraudA.L. BeechD.J. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation.J. Biol. Chem.200327813110021100610.1074/jbc.M21081020012529379
    [Google Scholar]
  41. NoncovichA. PriestC. UngJ. PatronA.P. ServantG. BrustP. ServantN. FaberN. LiuH. GonsalvesN.S. DitschunT.L. Discovery and development of a novel class of phenoxyacetyl amides as highly potent TRPM8 agonists for use as cooling agents.Bioorg. Med. Chem. Lett.201727163931393810.1016/j.bmcl.2017.04.00328662813
    [Google Scholar]
  42. YangJ.M. LiF. LiuQ. RüediM. WeiE.T. LentsmanM. LeeH.S. ChoiW. KimS.J. YoonK.C. A novel TRPM8 agonist relieves dry eye discomfort.BMC Ophthalmol.201717110110.1186/s12886‑017‑0495‑228651550
    [Google Scholar]
  43. BianchiniG. TomassettiM. LilliniS. SiricoA. BovolentaS. ZaL. LiberatiC. NovelliR. AraminiA. Discovery of novel TRPM8 blockers suitable for the treatment of somatic and ocular painful conditions: A journey through pK a and LogD modulation.J. Med. Chem.20216422168201683710.1021/acs.jmedchem.1c0164734762442
    [Google Scholar]
  44. LiM-Q. HuangJ. ZhouG-F. LiK-P. FengY-F. MingL. GaoZ-H. ChenY-F. Effect of Alpinia officinarum medicated serum and its main components on TRPA1 signaling pathway.Chin. Pharmacol. Bull.2021371014431449
    [Google Scholar]
  45. KongY.-D. QiY. CuiN. ZhangZ.-H. SunY.-P. ZengY.-N. WangC.-F. KuangH.-X. WangQ.-H. Research progress on modern chemical constituents and pharmacological effects of Evodia rutaecarpa.Info. Tradit. Chin. Med.2023405798310.19656/j.cnki.1002‑2406.20230513
    [Google Scholar]
  46. YinJ. YuZ. HouC. PengY. XiaoJ. JiangJ. Protective effect of Zuojin Fang on lung injury induced by sepsis through downregulating the JAK1/STAT3 signaling pathway.BioMed Res. Int.2021202111210.1155/2021/141963133506010
    [Google Scholar]
  47. ChaeH.K. KimW. KimS.K. Phytochemicals of cinnamomi cortex: Cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats.Nutrients201911243210.3390/nu1102043230791474
    [Google Scholar]
  48. FanH. TianY. WeiX-Z. WangQ-H. FuY-Q. SunK-F. Detection of paeoniflorin, paeonol, cinnamic acid in guizhifulingpill and medicated serum by HPLC.Asia-Pac. Trad. Med.20128121214
    [Google Scholar]
  49. LiJ. ZhangY. LiuS. LiW. SunY. CaoH. WangS. MengJ. A network pharmacology integrated pharmacokinetics strategy to investigate the pharmacological mechanism of absorbed components from crude and processed Zingiberis Rhizoma on deficiency-cold and hemorrhagic syndrome.J. Ethnopharmacol.202330111575410.1016/j.jep.2022.11575436195301
    [Google Scholar]
  50. LiuY. SuQ. ChenS-Y. ChenJ-Z. FanG-R. Research progress of citral’s biological activity.South Forests20131434610.16259/j.cnki.36‑1342/s.2013.01.008
    [Google Scholar]
  51. ZhangM-M. WangD. WeiD-N. YeX. HeL. PangW-Q. PengW. WuC-J. Study on quality markers of Zanthoxyli Pericarpium on warming middleenergizer to alleviate pain based on serum medicinal chemistry.Chin. Tradit. Herbal Drugs202253927312739
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838349351241203105103
Loading
/content/journals/ctm/10.2174/0122150838349351241203105103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test