Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Further investigation is required to deeply understand the role of traditional medicines in menopause and their safe and effective usage.

Objective

To determine the effects of roscoe (ZO) and (CL) supplementation on 17-β estradiol (ES) levels, quality of life, and body composition indices in postmenopausal women.

Methods

In this four-month randomized controlled trial, women were recruited from the Tabriz health centers between 2018 and 2019 and randomly allocated to one of four groups: ZO tablet 1000 mg and CL placebo, CL tablet 1000 mg and ZO placebo, ZO tablet 1000 mg and CL tablet 1000 mg, and ZO placebo and CL placebo.

Results

One hundred and fifteen women completed this study. ZO (mean change (MC) = 3.18 (95% CI: 0.55 to 5.81)) resulted in a greater increase in serum ES than placebo. ZO (MC= -1.26 (95% CI: -2.78 to -0.72)), CL (MC=-1.21 (95% CI: -2.79 to -0.53)) and ZO + CL (MC=-1.69 (95% CI: -2.48 to -0.85)) resulted in greater improvements in total quality of life score compared to placebo (MC=-0.51(95% CI: -0.04 to 1.32)). A significant group difference favoring the ZO group compared to the placebo was detected for the vasomotor symptoms (MC= -1.03 (95% CI: -2.57 to -0.97)). No significant adverse events were noted.

Discussion

Findings suggest ginger and turmeric alleviate menopausal symptoms and improve QoL, potentially via estrogenic, anti-inflammatory, and antioxidant actions. Inconsistent body composition results may be due to low bioavailability.

Conclusion

Ginger, turmeric, and their combination improved menopausal QoL, with ginger benefiting vasomotor symptoms.

Clinical Trial Registration No.

Registered in the Iranian clinical trial registry (IRCT20161022030424N3) on 2018-04-29.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838341012241006094648
2026-01-01
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838341012.html?itemId=/content/journals/ctm/10.2174/0122150838341012241006094648&mimeType=html&fmt=ahah

References

  1. SantoroN. EppersonC.N. MathewsS.B. Menopausal symptoms and their management.Endocrinol. Metab. Clin. North Am.201544349751510.1016/j.ecl.2015.05.00126316239
    [Google Scholar]
  2. MonteleoneP. MascagniG. GianniniA. GenazzaniA.R. SimonciniT. Symptoms of menopause — global prevalence, physiology and implications.Nat. Rev. Endocrinol.201814419921510.1038/nrendo.2017.18029393299
    [Google Scholar]
  3. FentonA. Weight, shape, and body composition changes at menopause.J Midlife Health202112318719210.4103/jmh.jmh_123_2134759699
    [Google Scholar]
  4. Al-SafiZ.A. PolotskyA.J. Obesity and Menopause.Best Pract. Res. Clin. Obstet. Gynaecol.201529454855310.1016/j.bpobgyn.2014.12.00225579233
    [Google Scholar]
  5. AzeezT.B. LungharJ. Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale).Inflammation and Natural ProductsCambridge, MassachusettsAcademic Press20218310210.1016/B978‑0‑12‑819218‑4.00011‑0
    [Google Scholar]
  6. OzkurM. BenlierN. TakanI. VasileiouC. GeorgakilasA.G. PavlopoulouA. CetinZ. SaygiliE.I. Ginger for healthy ageing: A systematic review on current evidence of its antioxidant, anti-inflammatory, and anticancer properties.Oxid. Med. Cell. Longev.20222022111610.1155/2022/474844735585878
    [Google Scholar]
  7. Ebrahimzadeh AttariV. MahlujiS. Asghari JafarabadiM. OstadrahimiA. Effects of supplementation with ginger (Zingiber officinale Roscoe) on serum glucose, lipid profile and oxidative stress in obese women: A randomized, placebo-controlled clinical trial.Pharm. Sci.201521418419110.15171/PS.2015.35
    [Google Scholar]
  8. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  9. KiyamaR. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways.J. Nutr. Biochem.20208610848610.1016/j.jnutbio.2020.10848632827666
    [Google Scholar]
  10. ZhangZ. ChenY. XiangL. WangZ. XiaoG. HuJ. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats.Nutrients2017910114610.3390/nu910114629048369
    [Google Scholar]
  11. VafaeipourZ. RazaviB.M. HosseinzadehH. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review.J. Integr. Med.202220319320310.1016/j.joim.2022.02.00835292209
    [Google Scholar]
  12. HassanF. RehmanM.S. KhanM.S. AliM.A. JavedA. NawazA. YangC. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects.Front. Genet.20191051410.3389/fgene.2019.0051431214247
    [Google Scholar]
  13. ZhaoY ChenB ShenJ WanL ZhuY YiT XiaoZ The beneficial effects of quercetin, curcumin, and resveratrol in obesity.Oxid Med Cell Longev.201704145949710.1155/2017/1459497
    [Google Scholar]
  14. AghamohammadiD. DolatkhahN. ShakouriS.K. HermannP. EslamianF. Ginger (Zingiber officinale) and turmeric (Curcuma longa L.) supplementation effects on quality of life, body composition, bone mineral density and osteoporosis related biomarkers and micro-RNAs in women with postmenopausal osteoporosis: A study protocol for a randomized controlled clinical trial.J. Complement. Integr. Med.202118113113710.1515/jcim‑2020‑001732568732
    [Google Scholar]
  15. SalekzamaniY. ShakouriS.K. DolatkhahN. SalehP. HashemianM. The effect of ginger and curcumin co-supplementation in postmenopausal women with osteoporosis: A randomised, triple-blind, placebo-controlled clinical trial.J. Herb. Med.20234210074610.1016/j.hermed.2023.100746
    [Google Scholar]
  16. HilditchJ.R. LewisJ. PeterA. van MarisB. RossA. FranssenE. GuyattG.H. NortonP.G. DunnE. A menopause-specific quality of life questionnaire: Development and psychometric properties.Maturitas199624316117510.1016/S0378‑5122(96)82006‑88844630
    [Google Scholar]
  17. ZandvakiliF. GhazanfarpourM. KavianiM. RezaieeM. GhaderiE. Cross cultural adaptation of the menopause specific questionnaire into the Persian language.Ann. Med. Health Sci. Res.20144332532910.4103/2141‑9248.13345324971202
    [Google Scholar]
  18. CasadeiK. KielJ. Anthropometric Measurement.In: StatPearls.Treasure Island (FL): StatPearls Publishing;2025Available from: https://www.ncbi.nlm.nih.gov/books/NBK537315/
    [Google Scholar]
  19. WardL.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardisation.Eur. J. Clin. Nutr.201973219419910.1038/s41430‑018‑0335‑330297760
    [Google Scholar]
  20. TahaNH DizayeKF Impact of zingiber officinale on symptoms and hormonal changes during the menopausal period–A clinical trial in Duhok.Iraq. J Natural Sci Biol Med.2022134103
    [Google Scholar]
  21. de MeloGP da CostaAM Influence of climacteric symptoms in women s quality of life: Integrative review.Human Reprod. Arch.201732319
    [Google Scholar]
  22. JohnsonA RobertsL ElkinsG Complementary and alternative medicine for menopause.J Evid Based Integr Med.2019242515690X1982938010.1177/2515690X19829380
    [Google Scholar]
  23. ChenM. LinC. LiuC. Efficacy of phytoestrogens for menopausal symptoms: A meta-analysis and systematic review.Climacteric201518226026910.3109/13697137.2014.96624125263312
    [Google Scholar]
  24. ReameN.K. Equalizing equol for hot flash relief? Still more questions than answers.Menopause201522548048210.1097/GME.000000000000046925871002
    [Google Scholar]
  25. FrancoO.H. ChowdhuryR. TroupJ. VoortmanT. KunutsorS. KavousiM. Oliver-WilliamsC. MukaT. Use of plant-based therapies and menopausal symptoms: A systematic review and meta-analysis.JAMA2016315232554256310.1001/jama.2016.801227327802
    [Google Scholar]
  26. MooreT.R. FranksR.B. FoxC. Review of efficacy of complementary and alternative medicine treatments for menopausal symptoms.J. Midwifery Womens Health201762328629710.1111/jmwh.1262828561959
    [Google Scholar]
  27. ZhouX. AfzalS. WohlmuthH. MünchG. LeachD. LowM. LiC.G. Synergistic anti-inflammatory activity of ginger and turmeric extracts in inhibiting lipopolysaccharide and interferon-γ-induced proinflammatory mediators.Molecules20222712387710.3390/molecules2712387735745000
    [Google Scholar]
  28. MahomoodallyM. AumeeruddyM. RengasamyK.R. RoshanS. HammadS. PandoheeJ. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications.Seminars in cancer biology.AmsterdamElsevier2021
    [Google Scholar]
  29. MahboubiM. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity.Clin. Phytosci.201951610.1186/s40816‑018‑0097‑4
    [Google Scholar]
  30. FuloriaS. MehtaJ. ChandelA. SekarM. RaniN.N.I.M. BegumM.Y. SubramaniyanV. ChidambaramK. ThangaveluL. NordinR. WuY.S. SathasivamK.V. LumP.T. MeenakshiD.U. KumarasamyV. AzadA.K. FuloriaN.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin.Front. Pharmacol.20221382080610.3389/fphar.2022.82080635401176
    [Google Scholar]
  31. TabriziR. VakiliS. AkbariM. MirhosseiniN. LankaraniK.B. RahimiM. MobiniM. JafarnejadS. VahedpoorZ. AsemiZ. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials.Phytother. Res.201933225326210.1002/ptr.622630402990
    [Google Scholar]
  32. Gómez-EstacaJ. BalaguerM.P. López-CarballoG. GavaraR. Hernández-MuñozP. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization.Food Hydrocoll.20177031332010.1016/j.foodhyd.2017.04.019
    [Google Scholar]
  33. AmalrajA. VarmaK. JacobJ. DivyaC. KunnumakkaraA.B. StohsS.J. GopiS. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study.J. Med. Food201720101022103010.1089/jmf.2017.393028850308
    [Google Scholar]
  34. WangM. JiangS. ZhouL. YuF. DingH. LiP. ZhouM. WangK. Potential mechanisms of action of curcumin for cancer prevention: Focus on cellular signaling pathways and miRNAs.Int. J. Biol. Sci.20191561200121410.7150/ijbs.3371031223280
    [Google Scholar]
  35. NgZ.Y. WongJ.Y. PanneerselvamJ. MadheswaranT. KumarP. PillayV. HsuA. HansbroN. BebawyM. WarkP. HansbroP. DuaK. ChellappanD.K. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma.Colloids Surf. B Biointerfaces2018172515910.1016/j.colsurfb.2018.08.02730134219
    [Google Scholar]
  36. YangQ.Q. FarhaA.K. KimG. GulK. GanR.Y. CorkeH. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments.Trends Food Sci. Technol.20209734135410.1016/j.tifs.2020.01.023
    [Google Scholar]
  37. BallesterP. CerdáB. ArcusaR. García-MuñozA.M. MarhuendaJ. ZafrillaP. Antioxidant activity in extracts from Zingiberaceae family: Cardamom, turmeric, and ginger.Molecules20232810402410.3390/molecules2810402437241765
    [Google Scholar]
  38. Mohd SahardiN.F.N. MakpolS. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence.Evid. Based Complement. Alternat. Med.20192019111310.1155/2019/505439531531114
    [Google Scholar]
  39. Sundar Dhilip KumarS. HoureldN. AbrahamseH. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases.Molecules201823483510.3390/molecules2304083529621160
    [Google Scholar]
  40. TaavoniS EkbataniNN HaghaniH Effect of Tribulus terrestris, ginger, saffron, and Cinnamomum on menopausal symptoms: A randomised, placebo-controlled clinical trial.Przeglad Menopauzalny2017161192210.5114/pm.2017.67366
    [Google Scholar]
  41. DolgariR. AmirsasanR. VakiliJ. Effects of Pilates training with and without turmeric supplementation on serum Klotho and quality of life in post-menopausal overweight women: A randomized clinical trial.Daneshvar Medicine201914218
    [Google Scholar]
  42. Ataei-AlmanghadimK. Farshbaf-KhaliliA. OstadrahimiA.R. ShasebE. MirghafourvandM. The effect of oral capsule of curcumin and vitamin E on the hot flashes and anxiety in postmenopausal women: A triple blind randomised controlled trial.Complement. Ther. Med.20204810226710.1016/j.ctim.2019.10226731987231
    [Google Scholar]
  43. SuprihatinT. WidyartiS. Rifa’iM. RahayuS. Malondialdehyde (MDA) ovary and estradiol blood serum levels of premenopause white rat (Rattus norvegicus) after Turmeric Powder (Curcuma longa L.) Treatment.Science201993237242
    [Google Scholar]
  44. SahebzadE.S. TehranianN. KazemnejadA. SharifiM. MojabF. AzinA. Effect of turmeric on adiponectin, sexual function and sexual hormones in stressed mice.Life Sci.202127711957510.1016/j.lfs.2021.11957533961859
    [Google Scholar]
  45. EbuehiOAT Garlic, ginger and tumeric extracts alter cell cycle arrest through estrogen pathway.The FASEB J.201933S1790.4
    [Google Scholar]
  46. Griñan-LisonC. Blaya-CánovasJ.L. López-TejadaA. Ávalos-MorenoM. Navarro-OcónA. CaraF.E. González-GonzálezA. LorenteJ.A. MarchalJ.A. Granados-PrincipalS. Antioxidants for the treatment of breast cancer: Are we there yet?Antioxidants202110220510.3390/antiox1002020533572626
    [Google Scholar]
  47. LiJ. YuJ. ZouH. ZhangJ. RenL. Estrogen receptor-mediated health benefits of phytochemicals: A review.Food Funct.20231424106811069910.1039/D3FO04702D
    [Google Scholar]
  48. YangS. SunY. KapilevichL. ZhangX. HuangY. Protective effects of curcumin against osteoporosis and its molecular mechanisms: A recent review in preclinical trials.Front. Pharmacol.202314124941810.3389/fphar.2023.124941837790808
    [Google Scholar]
  49. LiuH. HeS. WangT. Orang-OjongB. LuQ. ZhangZ. PanL. ChaiX. WuH. FanG. ZhangP. FengY. SongY.S. GaoX. KarasR.H. ZhuY. Selected phytoestrogens distinguish roles of ER α transactivation and ligand binding for anti-inflammatory activity.Endocrinology201815993351336410.1210/en.2018‑0027530010822
    [Google Scholar]
  50. Mohammadzadeh HonarvarN. ZarezadehM. KhorshidiM. Makhdoomi ArzatiM. YekaninejadM.S. AbdollahiM. EffatpanahM. HashemiR. SaedisomeoliaA. The effect of an oral ginger supplementation on NF-κB concentration in peripheral blood mononuclear cells and anthropomorphic data of patients with type 2 diabetes: A randomized double-blind, placebo-controlled clinical trial.Complement. Ther. Med.20194271110.1016/j.ctim.2018.10.01930670285
    [Google Scholar]
  51. RahimlouM. YariZ. RayyaniE. KeshavarzS.A. HosseiniS. MorshedzadehN. HekmatdoostA. Effects of ginger supplementation on anthropometric, glycemic and metabolic parameters in subjects with metabolic syndrome: A randomized, double-blind, placebo-controlled study.J. Diabetes Metab. Disord.201918111912510.1007/s40200‑019‑00397‑z31275882
    [Google Scholar]
  52. El GayarM.H. AboromiaM.M.M. IbrahimN.A. Abdel HafizM.H. Effects of ginger powder supplementation on glycemic status and lipid profile in newly diagnosed obese patients with type 2 diabetes mellitus.Obes. Med.20191410009410.1016/j.obmed.2019.100094
    [Google Scholar]
  53. Ebrahimzadeh AttariV. OstadrahimiA. Asghari JafarabadiM. MehralizadehS. MahlujiS. Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: A RCT.Eur. J. Nutr.20165562129213610.1007/s00394‑015‑1027‑626318445
    [Google Scholar]
  54. ParkS.H. JungS.J. ChoiE.K. HaK.C. BaekH.I. ParkY.K. HanK.H. JeongS.Y. OhJ.H. ChaY.S. ParkB.H. ChaeS.W. The effects of steamed ginger ethanolic extract on weight and body fat loss: A randomized, double-blind, placebo-controlled clinical trial.Food Sci. Biotechnol.202029226527310.1007/s10068‑019‑00649‑x32064135
    [Google Scholar]
  55. RafieipourN. GharbiN. RahimiH. KohansalA. Sadeghi-DehsahraeiH. FadaeiM. TahmasebiM. MomeniS.A. OstovarN. AhmadiM. MajdS.S. Mohammadi-SartangM. Ginger intervention on body weight and body composition in adults: A GRADE-assessed systematic review and dose-response meta-analysis of 27 randomized controlled trials.Nutr. Rev.202482121651166510.1093/nutrit/nuad14938261398
    [Google Scholar]
  56. LatifR. MumtazS. Al SheikhM.H. ChathothS. Nasser Al NaimiS. Effects of turmeric on cardiovascular risk factors, mental health, and serum homocysteine in overweight, obese females.Altern. Ther. Health Med.202127S111411932088675
    [Google Scholar]
  57. SeoS.H. FangF. KangI. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 mice.Int. J. Environ. Res. Public Health202118263110.3390/ijerph1802063133451038
    [Google Scholar]
  58. HongK.H. UmM.Y. AhnJ. HaT.Y. 6-Gingerol ameliorates adiposity and inflammation in adipose tissue in high fat diet-induced obese mice: Association with regulating of adipokines.Nutrients20231515345710.3390/nu1515345737571394
    [Google Scholar]
  59. MisawaK. HashizumeK. YamamotoM. MinegishiY. HaseT. ShimotoyodomeA. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.J. Nutr. Biochem.201526101058106710.1016/j.jnutbio.2015.04.01426101135
    [Google Scholar]
  60. SukS. KwonG.T. LeeE. JangW.J. YangH. KimJ.H. ThimmegowdaN.R. ChungM.Y. KwonJ.Y. YangS. KimJ.K. ParkJ.H.Y. LeeK.W. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice.Mol. Nutr. Food Res.20176110170013910.1002/mnfr.20170013928556482
    [Google Scholar]
  61. JarząbA. Kukula-KochW. Recent advances in obesity: The role of turmeric tuber and its metabolites in the prophylaxis and therapeutical strategies.Curr. Med. Chem.201925374837485310.2174/092986732466616111809544327855627
    [Google Scholar]
  62. Bertoncini-SilvaC. ZinggJ.M. FassiniP.G. SuenV.M.M. Bioactive dietary components—Anti-obesity effects related to energy metabolism and inflammation.Biofactors202349229732110.1002/biof.192136468445
    [Google Scholar]
  63. Kasprzak-DrozdK. OniszczukT. GancarzM. KondrackaA. RusinekR. OniszczukA. Curcumin and weight loss: Does it work?Int. J. Mol. Sci.202223263910.3390/ijms2302063935054828
    [Google Scholar]
  64. WangJ. GhoshS.S. GhoshS. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions.Am. J. Physiol. Cell Physiol.20173124C438C44510.1152/ajpcell.00235.201628249988
    [Google Scholar]
  65. LongobardiC. DamianoS. AndrettaE. PriscoF. RussoV. PagniniF. FlorioS. CiarciaR. Curcumin modulates nitrosative stress, inflammation, and DNA damage and protects against ochratoxin A-induced hepatotoxicity and nephrotoxicity in rats.Antioxidants2021108123910.3390/antiox1008123934439487
    [Google Scholar]
  66. LeeS.Y. ChoS.S. LiY. BaeC.S. ParkK.M. ParkD.H. Anti-inflammatory Effect of Curcuma longa and Allium hookeri Co-treatment via NF-κB and COX-2 Pathways.Sci. Rep.2020101571810.1038/s41598‑020‑62749‑732235914
    [Google Scholar]
  67. Jaja-ChimedzaA. GrafB.L. SimmlerC. KimY. KuhnP. PauliG.F. RaskinI. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract.PLoS One2017128e018265810.1371/journal.pone.018265828792522
    [Google Scholar]
  68. NairA. GopiS. JacobJ. Bioavailability, pharmacokinetic, pharmacodynamic, and clinical studies of natural products on their antiinflammatory activities.Inflammation and natural products.AmsterdamElsevier2021277314
    [Google Scholar]
  69. SohnS.I. PriyaA. BalasubramaniamB. MuthuramalingamP. SivasankarC. SelvarajA. ValliammaiA. JothiR. PandianS. Biomedical applications and bioavailability of curcumin—An updated overview.Pharmaceutics20211312210210.3390/pharmaceutics1312210234959384
    [Google Scholar]
  70. ShabbirU. RubabM. DaliriE.B.M. ChelliahR. JavedA. OhD.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota.Nutrients202113120610.3390/nu1301020633445760
    [Google Scholar]
  71. ChangR. ChenL. QamarM. WenY. LiL. ZhangJ. LiX. AssadpourE. EsatbeyogluT. KharazmiM.S. LiY. JafariS.M. The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems.Adv. Colloid Interface Sci.202331810293310.1016/j.cis.2023.10293337301064
    [Google Scholar]
  72. LiZ. LinQ. McClementsD.J. FuY. XieH. LiT. ChenG. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties.Food Chem.202135512968610.1016/j.foodchem.2021.12968633799264
    [Google Scholar]
  73. WalyN.E. Histopathological impact of Ginger loaded nanoparticle versus ginger extract as a novel therapy of experimentally induced acute ulcerative colitis.Egypt. J. Histol.2021452442456
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838341012241006094648
Loading
/content/journals/ctm/10.2174/0122150838341012241006094648
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 17-β estradiol; body composition; ginger; menopause; quality of life; turmeric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test