Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

The metaverse, a convergence of virtual, augmented, and physical realities, is revolutionizing healthcare delivery, education, and patient engagement. Its backbone technologies include virtual reality (VR), augmented reality (AR), extended reality (XR), artificial intelligence (AI), blockchain, and the internet of things (IoT).

Methods

A qualitative synthesis was conducted using peer-reviewed literature retrieved from electronic databases, including PubMed, Scopus, IEEE Xplore, Web of Science, and Google Scholar. The search was restricted to studies published between 2010 and 2023, focusing on metaverse applications in healthcare, such as surgery, education, diagnostics, and telemedicine.

Results

Findings revealed the metaverse’s integration into various domains, such as XR-assisted surgeries (., Johns Hopkins' AR spine surgery), immersive VR-based rehabilitation, AR-enhanced diagnostics, and AI-driven simulations. Platforms, like Tetra Signum and WHO’s XR training programs, have demonstrated clinical efficacy. Holographic modeling and digital twins have been found to be increasingly used in surgical planning and remote consultation.

Discussion

The metaverse has been found to foster real-time, multimodal interaction among clinicians and patients. However, issues, such as data privacy, interoperability, access disparities, and legal ambiguity, challenge full-scale adoption. Ethical implementation and infrastructure upgrades are crucial for equitable integration.

Conclusion

Metaverse technologies are transforming traditional medicine into a proactive, personalized, and data-driven system. By embedding immersive experiences into clinical and educational workflows, they promise enhanced outcomes and democratized access to healthcare knowledge. Strategic policies and ethical safeguards are essential to unlock their full potential.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624406811251020052041
2025-11-04
2026-02-21
Loading full text...

Full text loading...

References

  1. BallM. The metaverse: And how it will revolutionize everything.Liveright Publishing2022352
    [Google Scholar]
  2. FriesenN. The textbook and the lecture: Education in the age of new media.Johns Hopkins University Press201719210.1353/book.56899
    [Google Scholar]
  3. KimM. JeonC. KimJ. A study on immersion and presence of a portable hand haptic system for immersive virtual reality.Sensors2017175114110.3390/s17051141 28513545
    [Google Scholar]
  4. PierzchajloN. StevensonT.C. HuynhH. Augmented reality in minimally invasive spinal surgery: A narrative review of available technology.World Neurosurg.2023176354210.1016/j.wneu.2023.04.030 37059357
    [Google Scholar]
  5. BrockmeyerP. WiechensB. SchliephakeH. The role of augmented reality in the advancement of minimally invasive surgery procedures: A scoping review.Bioengineering202310450110.3390/bioengineering10040501 37106688
    [Google Scholar]
  6. DoraiswamyS. AbrahamA. MamtaniR. CheemaS. Use of telehealth during the COVID-19 pandemic: Scoping review.J. Med. Internet Res.20202212e2408710.2196/24087 33147166
    [Google Scholar]
  7. GarfanS. AlamoodiA.H. ZaidanB.B. Telehealth utilization during the COVID-19 pandemic: A systematic review.Comput. Biol. Med.202113810487810.1016/j.compbiomed.2021.104878 34592585
    [Google Scholar]
  8. WiederholdB.K. MetaverseGames: GameChanger for healthcare?Cyberpsychol. Behav. Soc. Netw.202225526726910.1089/cyber.2022.29246.editorial 35549346
    [Google Scholar]
  9. SkalidisI. MullerO. FournierS. CardioVerse: The cardiovascular medicine in the era of Metaverse.Trends Cardiovasc. Med.202333847147610.1016/j.tcm.2022.05.004 35568263
    [Google Scholar]
  10. ChenD. ZhangR. Exploring research trends of emerging technologies in health metaverse: A bibliometric analysis.SSRN Electron J202210.2139/ssrn.3998068
    [Google Scholar]
  11. Augmented and virtual reality in Healthcare Market Future Scope Analysis to 2025.2020Available from: https://www.biospace.com/augmented-and-virtual-reality-in-healthcare-market-future-scope-analysis-to-2025
  12. MilgramP. TakemuraH. UtsumiA. KishinoF. Augmented reality: A class of displays on the reality-virtuality continuum.Telemanipulator and Telepresence Technologies, Proceedings of the Photonics for Industrial Applications.Boston, MA, USA1994-10-31/1994-11-04282292
    [Google Scholar]
  13. JooW.J. BrongersmaM.L. Creating the ultimate virtual reality display.Science202237766131376137810.1126/science.abq7011 36137048
    [Google Scholar]
  14. PellasN. MystakidisS. KazanidisI. Immersive virtual reality in K-12 and higher education: A systematic review of the last decade scientific literature.Virtual Real.202125383586110.1007/s10055‑020‑00489‑9
    [Google Scholar]
  15. PellasN. DengelA. ChristopoulosA. A scoping review of immersive virtual reality in STEM education.IEEE Trans. Learn. Technol.202013474876110.1109/TLT.2020.3019405
    [Google Scholar]
  16. IbáñezM.B. Delgado-KloosC. Augmented reality for STEM learning: A systematic review.Comput. Educ.201812310912310.1016/j.compedu.2018.05.002
    [Google Scholar]
  17. KlopferE. Augmented Learning: Research and Design of Mobile Educational Games.Cambridge, MA, USAMIT Press200810.7551/mitpress/9780262113151.001.0001
    [Google Scholar]
  18. MystakidisS. ChristopoulosA. PellasN. A systematic mapping review of augmented reality applications to support STEM learning in higher education.Educ. Inf. Technol.2021271883192710.7551/mitpress/9780262113151.001.0001
    [Google Scholar]
  19. NebelingM. SpeicherM. WangX. MRAT: The mixed reality analytics toolkit.InProceedings of the 2020 CHI Conference on human factors in computing systems.Honolulu, HI, USA23 April 202011210.1145/3313831.3376330
    [Google Scholar]
  20. WaltersR.K. GaleE.M. BarnoudJ. GlowackiD.R. MulhollandA.J. The emerging potential of interactive virtual reality in drug discovery.Expert Opin. Drug Discov.202217768569810.1080/17460441.2022.2079632 35638298
    [Google Scholar]
  21. RajguruC. ObristM. MemoliG. Spatial soundscapes and virtual worlds: Challenges and opportunities.Front. Psychol.20201156905610.3389/fpsyg.2020.569056 33262723
    [Google Scholar]
  22. ShiY ShenG Haptic sensing and feedback techniques toward virtual reality.Research20247033310.34133/research.033338533183
    [Google Scholar]
  23. DuggalA.S. SinghR. GehlotA. RashidM. AlshamraniS.S. AlGhamdiA.S. Digital taste in mulsemedia augmented reality: Perspective on developments and challenges.Electronics2022119131510.3390/electronics11091315
    [Google Scholar]
  24. AtsikpasiP. FokidesE. A scoping review of the educational uses of 6DoF HMDs.Virtual Real.20212021211810.1007/s10055‑021‑00556‑9
    [Google Scholar]
  25. BoletsisC. ChasanidouD. A typology of virtual reality locomotion techniques.Multimodal Technol. Interact.2022697210.3390/mti6090072
    [Google Scholar]
  26. BinS. MasoodS. JungY. Virtual and augmented reality in medicine.Biomedical Information Technology.2nd edAcademic Press202067368610.1016/B978‑0‑12‑816034‑3.00020‑1
    [Google Scholar]
  27. FicarraB. Virtual reality, augmented reality, and mixed reality. Emerging technologies for nurses: Implications for Practice.New York, NY, USASpringer Publishing Company20209512610.1891/9780826146519.0004
    [Google Scholar]
  28. DibbleC.F. MolinaC.A. Device profile of the XVision-spine (XVS) augmented-reality surgical navigation system: Overview of its safety and efficacy.Expert Rev. Med. Devices20211811810.1080/17434440.2021.1865795 33322948
    [Google Scholar]
  29. HanS. BangM.Y. Domestic XR usage trend in the non-face-to-face era.Softw Policy Res Inst: Seongnam, Korea2020
    [Google Scholar]
  30. FilizM. Metaverse and a swot analysis of Turkish health system.Turk Res J Acad Soc Sci202256168
    [Google Scholar]
  31. JudL. FotouhiJ. AndronicO. Applicability of augmented reality in orthopedic surgery – A systematic review.BMC Musculoskelet. Disord.202021110310.1186/s12891‑020‑3110‑2 32061248
    [Google Scholar]
  32. García-RoblesP. Cortés-PérezI. Nieto-EscámezF.A. García-LópezH. Obrero-GaitánE. Osuna-PérezM.C. Immersive virtual reality and augmented reality in anatomy education: A systematic review and meta‐analysis.Anat. Sci. Educ.202417351452810.1002/ase.2397 38344900
    [Google Scholar]
  33. WongK.P. TseM.M. QinJ. Effectiveness of virtual reality-based interventions for managing chronic pain on pain reduction, anxiety, depression and mood: A systematic review.Health Care20221010204710.3390/healthcare10102047 36292493
    [Google Scholar]
  34. AppelL. AppelE. BoglerO. Older adults with cognitive and/or physical impairments can benefit from immersive virtual reality experiences: A feasibility study.Front. Med.2020632910.3389/fmed.2019.00329 32010701
    [Google Scholar]
  35. JungC. WolffG. WernlyB. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives.Cardiovascular Imaging2022153519532 34656478
    [Google Scholar]
  36. XieY. ZhangJ. WangH. Applications of blockchain in the medical field: Narrative review.J. Med. Internet Res.20212310e2861310.2196/28613 34533470
    [Google Scholar]
  37. TigmeanuC.V. ArdeleanL.C. RusuL.C. NegrutiuM.L. Additive manufactured polymers in dentistry, current state-of-the-art and future perspectives-A review.Polymers20221417365810.3390/polym14173658 36080732
    [Google Scholar]
  38. VianezA. MarquesA. Simões de AlmeidaR. Virtual reality exposure therapy for armed forces veterans with post-traumatic stress disorder: A systematic review and focus group.Int. J. Environ. Res. Public Health202219146410.3390/ijerph19010464 35010723
    [Google Scholar]
  39. JimJR HosainMT MridhaMF KabirMM ShinJ Toward trustworthy metaverse: Advancements and challenges.IEEE Access20231111831811834710.1109/ACCESS.2023.3326258
    [Google Scholar]
  40. KimT. DoJ.H. KimJ.I. SeoJ.W. JeongY. JangK. Inclusive user experience design for older adults: Focusing on XR-based cognitive and physical training.2024 IEEE International Conference on Big Data and Smart Computing (BigComp)Bangkok, Thailand18-21 February 202443643810.1109/BigComp60711.2024.00096
    [Google Scholar]
  41. ForondaC.L. GonzalezL. MeeseM.M. A comparison of virtual reality to traditional simulation in health professions education: A systematic review.Simul. Healthc.2024191SS90S9710.1097/SIH.0000000000000745 37651101
    [Google Scholar]
  42. RimerE. HusbyL.V. SolemS. Virtual reality exposure therapy for fear of heights: Clinicians’ attitudes become more positive after trying VRET.Front. Psychol.20211267187110.3389/fpsyg.2021.671871 34335386
    [Google Scholar]
  43. SongY.T. QinJ. Metaverse and personal healthcare.Procedia Comput. Sci.202221018919710.1016/j.procs.2022.10.136
    [Google Scholar]
  44. ThomasonJ. Metahealth-How will the metaverse change health care?J Metaverse2021111316
    [Google Scholar]
  45. ElhenceA. KohliV. ChamolaV. SikdarB. Enabling cost-effective and secure minor medical teleconsultation using artificial intelligence and blockchain.IEEE Internet Things Mag202251808410.1109/IOTM.001.2100142
    [Google Scholar]
  46. MusamihA. YaqoobI. SalahK. Metaverse in healthcare: Applications, challenges, and future directions.IEEE Consum. Electron. Mag.2023124334610.1109/MCE.2022.3223522
    [Google Scholar]
  47. YangD ZhouJ SongY SunM BaiC. Metaverse in medicine.Clin eHealth2022 Dec52394310.1016/j.ceh.2022.04.002
    [Google Scholar]
  48. FosterT.C. MoroneyW.F. PhillipsH.L. LilienthalM.G. Human factors in simulation and training: An overview.Human Factors in Simulation and Training.CRC Press2023
    [Google Scholar]
  49. YangY. SiauK. XieW. SunY. Smart health.J. Organ. End User Comput.202234111410.4018/JOEUC.308814
    [Google Scholar]
  50. KriegerK. EggerJ. KleesiekJ. GunzerM. ChenJ. Multisensory extended reality applications offer benefits for volumetric biomedical image analysis in research and medicine.J Imaging Inform Med202438164665510.1007/s10278‑024‑01094‑x 38862851
    [Google Scholar]
  51. WuY. HuK. ChenD.Z. WuJ. Ai-enhanced virtual reality in medicine: A comprehensive survey.Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence Survey Track20248326833410.24963/ijcai.2024/920
    [Google Scholar]
  52. EggerJ. WildD. WeberM. Studierfenster: An open science cloud-based medical imaging analysis platform.J. Digit. Imaging202235234035510.1007/s10278‑021‑00574‑8 35064372
    [Google Scholar]
  53. AkshithaT. ReddyC.K. ReddyD.M. DossS. Exploring the potential of metaverse-driven intelligence systems in virtual healthcare realms.Metaverse Driven Intelligent Information Systems.ChamSpringer202413915810.1007/978‑3‑031‑72418‑3_9
    [Google Scholar]
  54. HeinJ. GrunderJ. CalvetL. Virtual reality for immersive education in orthopedic surgery digital twins.2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).Bellevue, WA, USA21-25 October 202462862910.1109/ISMAR‑Adjunct64951.2024.00183
    [Google Scholar]
  55. ShuH. LiangR. LiZ. Twin-S: A digital twin for skull base surgery.Int. J. CARS20231861077108410.1007/s11548‑023‑02863‑9 37160583
    [Google Scholar]
  56. CaiX. WangZ. LiS. PanJ. LiC. TaiY. Implementation of a virtual reality based digital-twin robotic minimally invasive surgery simulator.Bioengineering20231011130210.3390/bioengineering10111302 38002426
    [Google Scholar]
  57. WangS RenT ChengN WangR ZhangL Patient-specific dynamic digital-physical twin for coronary intervention training: An integrated mixed reality approach.arXiv202510.48550/arXiv.2505.10902
    [Google Scholar]
  58. BruynseelsK. Santoni de SioF. van den HovenJ. Digital twins in health care: Ethical implications of an emerging engineering paradigm.Front. Genet.201893110.3389/fgene.2018.00031 29487613
    [Google Scholar]
  59. ChessaM. Van De BruaeneA. FarooqiK. Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: An exciting future.Eur. Heart J.202243282672268410.1093/eurheartj/ehac266 35608227
    [Google Scholar]
  60. SiffL.N. MehtaN. An interactive holographic curriculum for urogynecologic surgery.Obstet. Gynecol.2018132127S32S10.1097/AOG.0000000000002860 30247304
    [Google Scholar]
  61. ShiL. LiB. KimC. KellnhoferP. MatusikW. Towards real-time photorealistic 3D holography with deep neural networks.Nature2021591784923423910.1038/s41586‑020‑03152‑0 33692557
    [Google Scholar]
  62. KitagawaM. SugimotoM. HarutaH. UmezawaA. KurokawaY. Intraoperative holography navigation using a mixed-reality wearable computer during laparoscopic cholecystectomy.Surgery202217141006101310.1016/j.surg.2021.10.004 34736791
    [Google Scholar]
  63. SchiffersF.A. Seeing beyond pixels: Holography's mission to craft the ultimate visual experience.Doctoral dissertation, Northwestern University2024
    [Google Scholar]
  64. MoroC. PhelpsC. StrombergaZ. Enhancing physiology teaching and learning through the use of holograms in health sciences and medicine.Proc Physiol Soc202046
    [Google Scholar]
  65. KaushikP GoswamiA SharmaO. Holoview: Interactive 3D visualization of medical data in AR.arXiv202510.48550/arXiv.2501.08736
    [Google Scholar]
  66. LiuS. XieM. ZhangZ. A 3D hologram with mixed reality techniques to improve understanding of pulmonary lesions caused by COVID-19: Randomized controlled trial.J. Med. Internet Res.2021239e2408110.2196/24081 34061760
    [Google Scholar]
  67. RyanG.V. CallaghanS. RaffertyA. HigginsM.F. ManginaE. McAuliffeF. Learning outcomes of immersive technologies in health care student education: Systematic review of the literature.J. Med. Internet Res.2022242e3008210.2196/30082 35103607
    [Google Scholar]
  68. KlinkerK. WiescheM. KrcmarH. Digital transformation in health care: Augmented reality for hands-free service innovation.Inf. Syst. Front.20202261419143110.1007/s10796‑019‑09937‑7
    [Google Scholar]
  69. ArpaiaP. De BenedettoE. De PaolisL. D’ErricoG. DonatoN. DuraccioL. Performance and usability evaluation of an extended reality platform to monitor patient’s health during surgical procedures.Sensors20222210390810.3390/s22103908 35632317
    [Google Scholar]
  70. WuM.L. ChienJ.C. WuC.T. LeeJ.D. An augmented reality system using improved-iterative closest point algorithm for on-patient medical image visualization.Sensors2018188250510.3390/s18082505 30071645
    [Google Scholar]
  71. KuklaP. MaciejewskaK. StrojnaI. ZapałM. ZwierzchowskiG. BąkB. Extended reality in diagnostic imaging—A literature review.Tomography2023931071108210.3390/tomography9030088 37368540
    [Google Scholar]
  72. KhanH.U. AliY. KhanF. Al-antariM.A. A comprehensive study on unraveling the advances of immersive technologies (VR/AR/MR/XR) in the healthcare sector during the COVID-19: Challenges and solutions.Heliyon20241015e3503710.1016/j.heliyon.2024.e35037 39157361
    [Google Scholar]
  73. Faizan SiddiquiM. JabeenS. AlwazzanA. Integration of augmented reality, virtual reality, and extended reality in healthcare and medical education: A glimpse into the emerging horizon in LMICs—A systematic review.J. Med. Educ. Curric. Dev.2025122382120525134231510.1177/23821205251342315 40452894
    [Google Scholar]
  74. RonaghiM.H. Application of augmented and virtual reality technologies in medicine.PayavardSalamat2021145394403
    [Google Scholar]
  75. BaniasadiT. AyyoubzadehS.M. MohammadzadehN. Challenges and practical considerations in applying virtual reality in medical education and treatment.Oman Med. J.2020353e12510.5001/omj.2020.43 32489677
    [Google Scholar]
  76. AlazabM. KhanL.U. KoppuS. Digital twins for healthcare 4.0—Recent advances, architecture, and open challenges.IEEE Consum. Electron. Mag.2023126293710.1109/MCE.2022.3208986
    [Google Scholar]
  77. GeraetsC.N.W. van der StouweE.C.D. Pot-KolderR. VelingW. Advances in immersive virtual reality interventions for mental disorders: A new reality?Curr. Opin. Psychol.202141404510.1016/j.copsyc.2021.02.004 33714892
    [Google Scholar]
  78. ZhangJ. LuV. KhandujaV. The impact of extended reality on surgery: A scoping review.Int. Orthop.202347361162110.1007/s00264‑022‑05663‑z 36645474
    [Google Scholar]
  79. ChengodenR VictorN Huynh-TheT Metaverse for healthcare: A survey on potential applications, challenges and future directions.IEEE Access202311127651279510.1109/ACCESS.2023.3241628
    [Google Scholar]
  80. WangG. BadalA. JiaX. Development of metaverse for intelligent healthcare.Nat. Mach. Intell.202241192292910.1038/s42256‑022‑00549‑6 36935774
    [Google Scholar]
  81. CooksonC. WatersR. The transformative potential of computerised brain implants.2024Available from: https://www.ft.com/content/f4cd1130-6adc-4dbd-b74b-9813ae008166#comments-anchor
  82. WangY. LiC. QuL. CaiH. GeY. Application and challenges of a metaverse in medicine.Front. Robot. AI202310129119910.3389/frobt.2023.1291199 38152305
    [Google Scholar]
  83. KarikariE. KoshechkinK.A. Review on brain-computer interface technologies in healthcare.Biophys. Rev.20231551351135810.1007/s12551‑023‑01138‑6 37974976
    [Google Scholar]
  84. HulsenT. Applications of the metaverse in medicine and healthcare.Adv Lab Med20235215916510.1515/almed‑2023‑0124 38939198
    [Google Scholar]
  85. RogersM.P. DeSantisA.J. JanjuaH. BarryT.M. KuoP.C. The future surgical training paradigm: Virtual reality and machine learning in surgical education.Surgery202116951250125210.1016/j.surg.2020.09.040 33280858
    [Google Scholar]
  86. UllahH ManickamS ObaidatM LaghariSUA UddinM Exploring the potential of metaverse technology in healthcare: Applications, challenges, and future directions.IEEE Access202311696866970710.1109/ACCESS.2023.3286696
    [Google Scholar]
  87. WiebeA. KannenK. SelaskowskiB. Virtual reality in the diagnostic and therapy for mental disorders: A systematic review.Clin. Psychol. Rev.20229810221310.1016/j.cpr.2022.102213 36356351
    [Google Scholar]
  88. FreemanD. ReeveS. RobinsonA. Virtual reality in the assessment, understanding, and treatment of mental health disorders.Psychol. Med.201747142393240010.1017/S003329171700040X 28325167
    [Google Scholar]
  89. ZhaoJ. XuX. JiangH. DingY. The effectiveness of virtual reality-based technology on anatomy teaching: A meta-analysis of randomized controlled studies.BMC Med. Educ.202020112710.1186/s12909‑020‑1994‑z 32334594
    [Google Scholar]
  90. Sánchez-MargalloJ.A. Plaza de MiguelC. Fernández AnzulesR.A. Sánchez-MargalloF.M. Application of mixed reality in medical training and surgical planning focused on minimally invasive surgery.Front. Virtual Real.2021269264110.3389/frvir.2021.692641
    [Google Scholar]
  91. VillaniP.G. Decision science for personalized medicine: Datadriven and model-driven methods.InDecision Science Alliance International Summer Conference.Valencia, Spain31 January 2025129137
    [Google Scholar]
  92. AdilM. SongH. KhanM.K. MastorakisS. FaroukA. JinZ. Metaverse in health care: Security challenges and pathways for future research.IEEE Syst. Man. Cybern. Mag.20251119510610.1109/MSMC.2024.3368201
    [Google Scholar]
  93. ChoudharyP. Digital information security and privacy protection in healthcare sector in India.202242
    [Google Scholar]
  94. RaneN. ChoudharyS. RaneJ. Healthcare Metaverse: Applications, challenges, and future development.SSRN20232023Nov310.2139/ssrn.4637901
    [Google Scholar]
  95. GazzarataR. AlmeidaJ. LindsköldL. HL7 fast healthcare interoperability resources (HL7 FHIR) in digital healthcare ecosystems for chronic disease management: Scoping review.Int. J. Med. Inform.202418910550710.1016/j.ijmedinf.2024.105507 38870885
    [Google Scholar]
  96. RawatD.B. El AlamiH. Metaverse: Requirements, architecture, standards, status, challenges, and perspectives.IEEE Internet of Things Magazine202361141810.1109/IOTM.001.2200258
    [Google Scholar]
  97. UpadhyayU. KumarA. SharmaG. Mitigating risks in the cloud-based metaverse access control strategies and techniques.Int. J. Cloud Appl. Comput.202314113010.4018/IJCAC.334364
    [Google Scholar]
  98. LakeK Mc KittrickA DesselleM Cybersecurity and privacy issues in extended reality health care applications: Scoping review.JMIR XR and Spatial Computing202411v1i6e5940910.2196/59409
    [Google Scholar]
  99. BangJ. KimJ.Y. Metaverse ethics for healthcare using AI technology: Challenges and risks.International Conference on Human-Computer InteractionSpringer202336737810.1007/978‑3‑031‑34732‑0_28
    [Google Scholar]
  100. SinghR.R. KumarS. PandeyA. TripathiS.K. YadavP.K. PathakV. The role of the metaverse in emergency medicine and its legal implications: A systematic.Rev. Toxicol.2025191
    [Google Scholar]
  101. PopescuG.H. CsillagP. PoliakovaA. AlpopiȘ.G. Artificial intelligence-driven clinical data analytics, machine learning-based diagnosis and treatment data, and medical decision support and patient-centered smart healthcare systems for digital twin-based medical condition diagnosis.Am. J. Med. Res.2024112
    [Google Scholar]
  102. YangE. Implications of immersive technologies in healthcare sector and its built environment.Front. Med. Technol.20235118492510.3389/fmedt.2023.1184925 37799269
    [Google Scholar]
  103. Ud DinI. AlmogrenA. Exploring the psychological effects of metaverse on mental health and well-being.Inf. Technol. Tour.202325336738910.1007/s40558‑023‑00259‑8
    [Google Scholar]
  104. KaurJ. Metaverse medicine: Bridging healthcare gaps with AI and IoT solutions InImpact and potential of machine learning in the metaverse.IGI Global202410012810.4018/979‑8‑3693‑5762‑0.ch005
    [Google Scholar]
/content/journals/cst/10.2174/0115743624406811251020052041
Loading
/content/journals/cst/10.2174/0115743624406811251020052041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test