Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Prostate cancer remains a significant cause of cancer-related mortality among men worldwide. While non-steroidal anti-androgens (NSAAs) provide therapeutic advantages over steroidal agents, their clinical use is hindered by adverse effects like gynecomastia and hepatotoxicity. This study aims to design novel 1,2,4-oxadiazole derivatives with improved bioavailability, efficacy, and safety profiles.

Methods

Molecular docking studies were conducted using Molegro Virtual Docker (MVD) 6.0, with the androgen receptor (PDB ID: 1Z95) as the target. ADMET profiling was performed using SwissADME and pkCSM to assess pharmacokinetic and toxicity parameters.

Results

Docking analysis revealed 10 potent inhibitors with significant binding affinities, among which PS04, PS05, PS07, PS08, PS09, PS10, and PS12 exhibited optimal ADMET properties. These compounds demonstrated high gastrointestinal absorption, low toxicity, and favorable bioavailability.

Discussion

The identified 1,2,4-oxadiazole derivatives show promise as safer and more effective NSAAs by addressing limitations of current therapies. Their strong receptor interactions and favorable pharmacokinetics suggest potential for clinical development.

Conclusion

This study provides valuable insights for developing next-generation NSAAs, laying the groundwork for further and validation.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624372168250819040901
2025-09-11
2026-02-16
Loading full text...

Full text loading...

References

  1. JamesN.D. TannockI. N’DowJ. The lancet commission on prostate cancer: Planning for the surge in cases.Lancet2024403104371683172210.1016/S0140‑6736(24)00651‑2 38583453
    [Google Scholar]
  2. ParkS.J. HongJ. ParkY.J. Association between antibiotic use and subsequent risk of prostate cancer: A retrospective cohort study in South Korea.Int. J. Urol.202431432533110.1111/iju.15364 38130052
    [Google Scholar]
  3. Prostate-Specific Antigen (PSA): Patient Education. Exon citations.2024114Available from: 10.36255/prostate‑specific‑antigen‑psa
    [Google Scholar]
  4. JallohM. CassellA. NiangL. RebbeckT. Global viewpoints: Updates on prostate cancer in Sub‐Saharan Africa.BJU Int.2024133161310.1111/bju.16178 37702258
    [Google Scholar]
  5. SinghSK VishwakarmaM SharmaA SinghS Detection of prostate cancer using recurrent.RE J202478
    [Google Scholar]
  6. SamuelFU NathanielO BamideleKJ Diseases of the prostate.Elements of Reproduction and Reproductive Diseases of Goats.202521722410.1002/9781394190089.ch19
    [Google Scholar]
  7. KhanM.S. SabirN. ShoaibM. Estimation of selected metals in the tissues of prostate carcinoma patients.Asian J Appl Chem Res202415429410.9734/ajacr/2024/v15i4312
    [Google Scholar]
  8. AnractJ. KleinC. PinarU. RouprêtM. Barry DelongchampsN. RobertG. Incidental prostate cancer in patients undergoing surgery for benign prostatic hyperplasia: A predictive model.Eur. Urol. Oncol.20258114515110.1016/j.euo.2024.08.009 39256094
    [Google Scholar]
  9. LuoL.S. HuangJ. LuanH.H. MubarikS. ZhongQ. ZengX.T. Estimating disparities of prostate cancer burden and its attributable risk factors for males across the BRICS‐plus, 1990–2019: A comparable study of key nations with emerging economies.Prostate202484657058310.1002/pros.24673 38328967
    [Google Scholar]
  10. PortoJ.G. Blachman-BraunR. AjamiT. Incidental prostate cancer after holmium laser enucleation of the prostate: Critical analysis of independent risk factors and impact on surgical outcomes.BJUI Compass20245337438110.1002/bco2.306 38481670
    [Google Scholar]
  11. KanayamaM. ChenY. RabizadehD. Clinical and functional analyses of an African-ancestry gain-of-function HOXB13 variant implicated in aggressive prostate cancer.Eur. Urol. Oncol.20247475175910.1016/j.euo.2023.09.012 37806842
    [Google Scholar]
  12. ChouWH ChalkerC SokolovaAO IsharwalS Prostate cancer and genetic contributions.Andrology2024andr.1381210.1111/andr.1381239611376
    [Google Scholar]
  13. Álvarez-GonzálezB. HernándezA.F. Zafra-GómezA. Exposure to environmental pollutants and genetic variants related to oxidative stress and xenobiotic metabolism—Association with prostate cancer.Environ. Toxicol. Pharmacol.202410810445510.1016/j.etap.2024.104455 38657881
    [Google Scholar]
  14. LiadiY. CampbellT. DikeP. HarlemonM. ElliottB. Odero-MarahV. Prostate cancer metastasis and health disparities: A systematic review.Prostate Cancer Prostatic Dis.202427218319110.1038/s41391‑023‑00667‑1 37046071
    [Google Scholar]
  15. BanerjeeS. SenguptaM. DuttaB. BiswasS. The the frigging kinship between prostate carcinogenesis and the genomic landscape of Indian males.Int J Bioinform Intell Comput20243110413410.61797/ijbic.v3i1.295
    [Google Scholar]
  16. EnikeevaK. RafikovaG. SharifyanovaY. MulyukovaD. VanzinA. PavlovV. Epigenetics as a key factor in prostate cancer.Adv. Biol.202485230052010.1002/adbi.202300520 38379272
    [Google Scholar]
  17. JiménezN. Garcia de HerrerosM. ReigÒ. Development and independent validation of a prognostic gene expression signature based on RB1, PTEN, and TP53 in metastatic hormone-sensitive prostate cancer patients.Eur. Urol. Oncol.20247495496410.1016/j.euo.2023.12.012 38429210
    [Google Scholar]
  18. MaddahM.M. Hedayatizadeh-OmranA. MoosazadehM. Alizadeh-NavaeiR. Evaluation of the prognostic role of TP53 gene mutations in prostate cancer outcome: A systematic review and meta-analysis.Clin. Genitourin. Cancer202422610222610.1016/j.clgc.2024.102226 39393313
    [Google Scholar]
  19. CuligZ. PuhrM. Androgen receptor–interacting proteins in prostate cancer development and therapy resistance.Am. J. Pathol.2024194332433410.1016/j.ajpath.2023.12.003 38104650
    [Google Scholar]
  20. ChenQ.H. MunozE. AshongD. Insight into recent advances in degrading androgen receptor for castration-resistant prostate cancer.Cancers202416366310.3390/cancers16030663 38339414
    [Google Scholar]
  21. SafiR. WardellS.E. WatkinsonP. Androgen receptor monomers and dimers regulate opposing biological processes in prostate cancer cells.Nat. Commun.2024151767510.1038/s41467‑024‑52032‑y 39227594
    [Google Scholar]
  22. ObstJ.K. TienA.H. SetiawanJ.C. DeneaultL.F. SadarM.D. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer.Steroids202421010948210.1016/j.steroids.2024.109482 39053630
    [Google Scholar]
  23. MaJ. YangQ. YeX. Head-to-head comparison of prostate-specific membrane antigen PET and multiparametric MRI in the diagnosis of pretreatment patients with prostate cancer: A meta-analysis.Eur. Radiol.20233464017403710.1007/s00330‑023‑10436‑2 37981590
    [Google Scholar]
  24. ZhuM. SaliR. BabaF. Artificial intelligence in pathologic diagnosis, prognosis and prediction of prostate cancer.Am. J. Clin. Exp. Urol.202412420021510.62347/JSAE9732 39308594
    [Google Scholar]
  25. ZahedH. FengX. SheikhM. Age at diagnosis for lung, colon, breast and prostate cancers: An international comparative study.Int. J. Cancer20241541284010.1002/ijc.34671 37615573
    [Google Scholar]
  26. BallalY. AghaeiN. ShaikM.S. The impact of radiation therapy on sexual health in breast, cervix, and prostate cancer patients: a systematic review.J Psychosexual Health202461163110.1177/26318318241233076
    [Google Scholar]
  27. HerlemannA. CowanJ.E. WashingtonS.L. Long-term prostate cancer–specific mortality after prostatectomy, brachytherapy, external beam radiation therapy, hormonal therapy, or monitoring for localized prostate cancer.Eur. Urol.202485656557310.1016/j.eururo.2023.09.024 37858454
    [Google Scholar]
  28. PioF. MurdockA. FullerR.E. WhalenM.J. The role of whole-gland and focal cryotherapy in recurrent prostate cancer.Cancers20241618322510.3390/cancers16183225 39335196
    [Google Scholar]
  29. EfstathiouJ.A. MorgansA.K. BlandC.S. ShoreN.D. Novel hormone therapy and coordination of care in high-risk biochemically recurrent prostate cancer.Cancer Treat. Rev.202412210263010.1016/j.ctrv.2023.102630 38035646
    [Google Scholar]
  30. van AsN. YasarB. GriffinC. Radical prostatectomy versus stereotactic radiotherapy for clinically localised prostate cancer: Results of the PACE-A randomised trial.Eur. Urol.202486656657610.1016/j.eururo.2024.08.030 39266383
    [Google Scholar]
  31. Ruiz de PorrasV. FontA. AytesA. Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives.Cancer Lett.202152316216910.1016/j.canlet.2021.08.033 34517086
    [Google Scholar]
  32. WangE.C. LeeW.R. ArmstrongA.J. Second generation anti-androgens and androgen deprivation therapy with radiation therapy in the definitive management of high-risk prostate cancer.Prostate Cancer Prostatic Dis.2023261304010.1038/s41391‑022‑00598‑3 36203051
    [Google Scholar]
  33. AlamiriJ. BrittonC.J. AhmedM.E. Radiographic paradoxical response in metastatic castrate‐resistant prostate cancer (mCRPC) managed with new generation anti‐androgens: A retrospective analysis.Prostate202282161483149010.1002/pros.24413 36089822
    [Google Scholar]
  34. KumarS. WadhwaP. Synthesis, molecular docking and biological evaluation of 1,2,4-oxadiazole based novel non-steroidal derivatives against prostate cancer.Bioorg. Chem.202414310702910.1016/j.bioorg.2023.107029 38091717
    [Google Scholar]
  35. KhedkarN.R. SindkhedkarM. JosephA. Computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: A prospective strategy for anticancer therapy.RSC Medicinal Chemistry20241551626163910.1039/D4MD00055B 38784476
    [Google Scholar]
  36. AtmaramU.A. RoopanS.M. Biological activity of oxadiazole and thiadiazole derivatives.Appl. Microbiol. Biotechnol.20221069-103489350510.1007/s00253‑022‑11969‑0 35562490
    [Google Scholar]
  37. AraújoH.M. MouraG.A. RochaY.M. In vitro antitumor and immunomodulatory activities of 1,2,4-oxadiazole derivatives.Biochem. Biophys. Rep.20254110195010.1016/j.bbrep.2025.101950 40028040
    [Google Scholar]
  38. Reddy GankidiK. ShivakumaraS. ReddyK.R. EppakayalaL. Synthesis and biological evaluation of 1,3,4-oxadiazole linked thiazole-isoxazole-pyridines as anticancer agents.Results Chem.2024710124810.1016/j.rechem.2023.101248
    [Google Scholar]
  39. LiT. ShiX. QuZ. Identification of a novel, potent, and orally bioavailable oxadiazole-based sphingosine kinases inhibitor from virtual screening and rational structural optimization for the treatment of prostatic cancer.SSRN202410.2139/ssrn.5051274
    [Google Scholar]
  40. DeviE.R. SravaniD. AlkhathamiA.G. Design, synthesis, in-vitro and in-silico anticancer studies on amide derivatives of 1,3,4-oxadiazole-isoxazol-pyridine-benzimidazole.Chem. Zvesti2024202412110.1007/s11696‑024‑03861‑0
    [Google Scholar]
  41. HolmboeE.S. ConcatoJ. Treatment decisions for localized prostate cancer.J. Gen. Intern. Med.2000151069470110.1046/j.1525‑1497.2000.90842.x 11089712
    [Google Scholar]
  42. OkadaK. OishiK. YoshidaO. SudoK. KawaseM. NakayamaR. Study of the effect of an anti-androgen (Oxendolone) on experimentally induced canine prostatic hyperplasia.Urol. Res.1988162737810.1007/BF00261959 2453093
    [Google Scholar]
  43. DhondtB. BuelensS. Van BesienJ. Abiraterone and spironolactone in prostate cancer: A combination to avoid.Acta Clin. Belg.201974643944410.1080/17843286.2018.1543827 30477405
    [Google Scholar]
  44. BeckmannK. GarmoH. LindahlB. Spironolactone use is associated with lower prostate cancer risk: A population-wide case-control study.Prostate Cancer Prostatic Dis.202023352753310.1038/s41391‑020‑0220‑8 32123316
    [Google Scholar]
  45. GoldenbergS.L. BruchovskyN. Use of cyproterone acetate in prostate cancer.Urol. Clin. North Am.199118111112210.1016/S0094‑0143(21)01398‑7 1825143
    [Google Scholar]
  46. GaoW. KimJ. DaltonJ.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands.Pharm. Res.20062381641165810.1007/s11095‑006‑9024‑3 16841196
    [Google Scholar]
  47. Maurice-DrorC. Le MoigneR. VaishampayanU. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer.Invest. New Drugs202240232232910.1007/s10637‑021‑01202‑6 34843005
    [Google Scholar]
  48. MahlerC. VerhelstJ. DenisL. Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer.Clin. Pharmacokinet.199834540541710.2165/00003088‑199834050‑00005 9592622
    [Google Scholar]
  49. IshiokaT. KuboA. KoisoY. NagasawaK. ItaiA. HashimotoY. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety.Bioorg. Med. Chem.20021051555156610.1016/S0968‑0896(01)00421‑7 11886817
    [Google Scholar]
  50. LampeH. TamL. HansenA.R. Bi-specific T-cell engagers (BiTEs) in prostate cancer and strategies to enhance development: Hope for a BiTE-r future.Front. Pharmacol.202415139980210.3389/fphar.2024.1399802 38873417
    [Google Scholar]
  51. TiwariP. MohiteP. Paving the path to discoveries and unlocking the secrets of N-Heterocycles.Paving the Path to Discoveries and Unlocking the Secrets of N-Heterocycles (impact and contributions of six-membered N-heterocycle in biological activities).UKCambridge Scholar Publishing2024
    [Google Scholar]
  52. AlzahraniA.Y.A. GuptaP. PatilV. Diaryl Pyrazoline, 1,3,4-Oxadizole, and 1,2,4-Triazole pharmacophore hybridization: Design, synthesis, HDAC inhibition, and Caspase 3/7 activation studies.Russ. J. Bioorganic Chem.202450237539110.1134/S1068162024020389
    [Google Scholar]
  53. KumarS. AroraP. WadhwaP. KaurP. A rationalized approach to design and discover novel non-steroidal derivatives through computational aid for the treatment of prostate cancer.Curr. Computeraided Drug Des.202420557558910.2174/1573409919666230626113346 37365786
    [Google Scholar]
  54. ColcerasaA. FriedrichF. MelesinaJ. Structure–activity studies of 1,2,4-oxadiazoles for the inhibition of the NAD+-dependent Lysine Deacylase Sirtuin 2.J. Med. Chem.20246712100761009510.1021/acs.jmedchem.4c00229 38847803
    [Google Scholar]
  55. SharmaS. MajeeC. MazumderR. Insight into the various synthetic approaches of 1,3,4 and 1,2,4-Oxadiazole and its derivatives, along with their remarkable biological activities.Lett. Org. Chem.202522212814610.2174/0115701786318560240723060417
    [Google Scholar]
  56. LalthanpuiiP.B. LalrinmawiaC. LalruatfelaB. RamlianaL. LalchhandamaK. Molecular modeling of lupeol for antiviral activity and cellular effects.J. Appl. Pharm. Sci.2023131113114310.7324/JAPS.2023.145048
    [Google Scholar]
  57. MehraA. MittalA. ThakurD. Molecular docking, pharmacophore mapping, and virtual screening of novel glucokinase activators as antidiabetic agents.Curr. Proteomics202421425127610.2174/0115701646323264240821072359
    [Google Scholar]
  58. SharmaU. KumarR. MazumderA. Substrate‐based synthetic strategies and biological activities of 1,3,4‐oxadiazole: A review.Chem. Biol. Drug Des.20241036e1455210.1111/cbdd.14552 38825735
    [Google Scholar]
  59. RazaA. ChaudharyJ. KhanA.A. Exploring molecular interactions and ADMET profiles of novel MAO-B inhibitors: Toward effective therapeutic strategies for neurodegenerative disorders.Future J. Pharm. Sci.202410111110.1186/s43094‑024‑00684‑4
    [Google Scholar]
  60. KhanS. BuğdayN. YaşarŞ. RehmanA. HaqI.U. YaşarS. Synthesis, biological evaluation and molecular docking studies of 8-(hetero)aryl caffeine derivatives.J. Organomet. Chem.202399712279410.1016/j.jorganchem.2023.122794
    [Google Scholar]
  61. Bezerra MoraisP.A. Barbosa SilvaJ.A. JavariniC.L. State-of-art on the synthesis of heterocyclic compounds targeting SARS-CoV-2.Curr. Org. Chem.202429810.2174/0113852728248762240812075831
    [Google Scholar]
  62. AbdullahiS.H. UzairuA. ShallangwaG.A. UbaS. UmarA.B. Molecular docking, ADMET and pharmacokinetic properties predictions of some di-aryl pyridinamine derivatives as estrogen receptor (Er+) kinase inhibitors.Egypt J Basic Appl Sci20229118020410.1080/2314808X.2022.2050115
    [Google Scholar]
  63. YangY. QinJ. LiuH. YaoX. Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors.J. Chem. Inf. Model.201151368069210.1021/ci100427j 21338122
    [Google Scholar]
  64. KandilS.B. McGuiganC. WestwellA.D. Synthesis and biological evaluation of bicalutamide analogues for the potential treatment of prostate cancer.Molecules20202615610.3390/molecules26010056 33374450
    [Google Scholar]
  65. KandilS. LeeK.Y. DaviesL. RizzoS.A. DartD.A. WestwellA.D. Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists.Eur. J. Med. Chem.2019167496010.1016/j.ejmech.2019.01.054 30743097
    [Google Scholar]
  66. GomhaS.M. Abdel-azizH.M. BadreyM.G. AbdullaM.M. efficient synthesis of some new 1,3,4‐thiadiazoles and 1,2,4‐triazoles linked to pyrazolylcoumarin ring system as potent 5α‐reductase inhibitors.J. Heterocycl. Chem.20195641275128210.1002/jhet.3487
    [Google Scholar]
  67. MochonaB. QiX. EuynniS. SikazwiD. MateevaN. SolimanK.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents.Bioorg. Med. Chem. Lett.201626122847285110.1016/j.bmcl.2016.04.058 27156770
    [Google Scholar]
  68. GamalEl MohammedSAM YooKH Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety.Euro. J. Med. Chem.2015904552
    [Google Scholar]
  69. RachalaM.R. MaringantiT.C. SyedT. EppakayalaL. Synthesis and biological evaluation of 1,3,4-oxadiazole bearing pyrimidine-pyrazine derivatives as anticancer agents.Synth. Commun.202353151262126810.1080/00397911.2023.2219354
    [Google Scholar]
  70. ChenH. XuF. XuB-B. Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines.Chin. Chem. Lett.201627227728210.1016/j.cclet.2015.09.016
    [Google Scholar]
  71. LiuH. AnX. LiS. WangY. LiJ. LiuH. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations.Mol. Biosyst.201511123347335410.1039/C5MB00499C 26442831
    [Google Scholar]
  72. AkkirajuA.G. AtchaK.R. SagurthiS.R. Cloning, purification, and biophysical characterization of femb protein from methicillin-resistant staphylococcus aureus and inhibitors screening.Appl. Biochem. Biotechnol.202419684974499210.1007/s12010‑023‑04780‑8 37991634
    [Google Scholar]
  73. MishraS. DahimaR. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor.J. Drug Deliv. Ther.201992-s36636910.22270/jddt.v9i2‑s.2710
    [Google Scholar]
  74. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  75. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257-6310.1093/nar/gky318 29718510
    [Google Scholar]
  76. BanerjeeP. DehnbostelF.O. PreissnerR. Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets.Front Chem.2018636210.3389/fchem.2018.00362 30271769
    [Google Scholar]
  77. RajeevGupta AmirR. SinghS.K. JasmeenK. Computational evaluation of ADMET properties and molecular docking studies on cryptolepine analogs as inhibitors of HIV integrase.Curr. Signal Transduct. Ther.2025201e1574362430529010.2174/0115743624305290240829035242
    [Google Scholar]
/content/journals/cst/10.2174/0115743624372168250819040901
Loading
/content/journals/cst/10.2174/0115743624372168250819040901
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test