Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Inflammation and cytokine expression play key roles in HNSCC development. TGF-β regulates multiple cancer-related processes, and natural compounds, such as emodin and piplartine, are known for their anti-cancer and anti-inflammatory effects. These effects are related to the ability to modulate molecular targets linked to the TGF-β signaling pathway.

Methods

This study conducted an analysis of natural compounds interacting with TGF-β pathway receptors. Six candidate receptors (LTBP1, TGF-β1, TGFβR1, SMAD2, E2F4, and EMP3) were selected based on database and literature searches. Protein and ligand models were obtained from specific databases, and molecular docking was performed using CB-Dock2.

Results

Emodin showed docking scores of -7.4, -7.6, -9.0, -7.5, -6.9, and -7.0 kcal/mol with receptors LTBP1, TGF-β1, TGFβR1, SMAD2, E2F4, and EMP3, respectively. Piplartine showed lower docking scores of -6.6, -6.4, -8.2, -6.7, -6.0, and -6.0 kcal/mol, respectively. The molecular docking protocol was validated by redocking the known inhibitor to TGFβR1, resulting in a low RMSD value, confirming the reliability of CB-Dock2.

Discussion

According to these results, emodin exhibits higher binding affinity to TGF-β receptors than piplartine. New candidate receptors (EMP3, LTBP1, and E2F4) were identified as potential therapeutic targets in HNSCC. High EMP3 expression significantly correlates with worse patient survival, indicating its prognostic potential.

Conclusion

These findings provide a promising preliminary indication of emodin as a potential modulator of targets in the TGF-β signaling pathway in HNSCC, supporting its further investigation in and models.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624377722251010100301
2025-10-30
2026-02-17
Loading full text...

Full text loading...

References

  1. GormleyM. CreaneyG. SchacheA. IngarfieldK. ConwayD.I. Reviewing the epidemiology of head and neck cancer: Definitions, trends and risk factors.Br. Dent. J.2022233978078610.1038/s41415‑022‑5166‑x 36369568
    [Google Scholar]
  2. Miranda-GalvisM. LovelessR. KowalskiL.P. TengY. Impacts of environmental factors on head and neck cancer pathogenesis and progression.Cells202110238910.3390/cells10020389 33668576
    [Google Scholar]
  3. MesiaR. IglesiasL. LambeaJ. SEOM clinical guidelines for the treatment of head and neck cancer (2020).Clin. Transl. Oncol.202123591392110.1007/s12094‑020‑02533‑1 33635468
    [Google Scholar]
  4. NuszkiewiczJ. WróblewskaJ. BudekM. Exploring the link between inflammatory biomarkers and head and neck cancer: Understanding the impact of smoking as a cancer-predisposing factor.Biomedicines202412474810.3390/biomedicines12040748 38672104
    [Google Scholar]
  5. LiK. ZengX. LiuP. The role of inflammation-associated factors in head and neck squamous cell carcinoma.J. Inflamm. Res.2023164301431510.2147/JIR.S428358 37791117
    [Google Scholar]
  6. ChenY.P. WangY.Q. LvJ.W. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: Implications for immunotherapy.Ann. Oncol.2019301687510.1093/annonc/mdy470 30407504
    [Google Scholar]
  7. GavrielatouN. DoumasS. EconomopoulouP. FoukasP.G. PsyrriA. Biomarkers for immunotherapy response in head and neck cancer.Cancer Treat. Rev.20208410197710.1016/j.ctrv.2020.101977 32018128
    [Google Scholar]
  8. ChowL.Q.M. Head and neck cancer.N. Engl. J. Med.20203821607210.1056/NEJMra1715715 31893516
    [Google Scholar]
  9. HussainS. SinghA. NazirS.U. Cancer drug resistance: A fleet to conquer.J. Cell. Biochem.20191209142131422510.1002/jcb.28782 31037763
    [Google Scholar]
  10. AzabA. NassarA. AzabA. Anti-inflammatory activity of natural products.Molecules20162110132110.3390/molecules21101321 27706084
    [Google Scholar]
  11. DaiG. WangD. MaS. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin.Phytomedicine202210215414910.1016/j.phymed.2022.154149 35567995
    [Google Scholar]
  12. ShrimaliD. ShanmugamM.K. KumarA.P. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer.Cancer Lett.2013341213914910.1016/j.canlet.2013.08.023 23962559
    [Google Scholar]
  13. ZhangY. PuW. BousquenaudM. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis.Front. Oncol.20211056467410.3389/fonc.2020.564674 33489875
    [Google Scholar]
  14. AhmadW. AnsariM.A. AlsayariA. In vitro, molecular docking and in silico ADME/Tox studies of emodin and chrysophanol against human colorectal and cervical carcinoma.Pharmaceuticals20221511134810.3390/ph15111348 36355520
    [Google Scholar]
  15. McDonaldS.J. VanderVeenB.N. VelazquezK.T. Therapeutic potential of emodin for gastrointestinal cancers.Integr. Cancer Ther.2022211534735421106746910.1177/15347354211067469 34984952
    [Google Scholar]
  16. WangZ. ChenH. ChenJ. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway.Cancer Manag. Res.2019118463847310.2147/CMAR.S221877 31572001
    [Google Scholar]
  17. BezerraD.P. PessoaC. de MoraesM.O. Saker-NetoN. SilveiraE.R. Costa-LotufoL.V. Overview of the therapeutic potential of piplartine (piperlongumine).Eur. J. Pharm. Sci.201348345346310.1016/j.ejps.2012.12.003 23238172
    [Google Scholar]
  18. FofariaN.M. QhattalH.S.S. LiuX. SrivastavaS.K. Nanoemulsion formulations for anti-cancer agent piplartine - Characterization, toxicological, pharmacokinetics and efficacy studies.Int. J. Pharm.20164981-2122210.1016/j.ijpharm.2015.11.045 26642946
    [Google Scholar]
  19. DuarteA.B.S. GomesR.C. NunesV.R.V. The antitumor activity of piplartine: A review.Pharmaceuticals2023169124610.3390/ph16091246 37765054
    [Google Scholar]
  20. Allaman-PilletN. SchorderetD.F. Piperlongumine promotes death of retinoblastoma cancer cells.Oncotarget202112990791610.18632/oncotarget.27947 33953844
    [Google Scholar]
  21. ThongsomS. SugintaW. LeeK.J. ChoeH. TalabninC. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway.Apoptosis201722111473148410.1007/s10495‑017‑1422‑y 28913568
    [Google Scholar]
  22. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  23. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  24. MohantyM. MohantyP.S. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review.Monatsh. Chem.2023154768370710.1007/s00706‑023‑03076‑1 37361694
    [Google Scholar]
  25. AguP.C. AfiukwaC.A. OrjiO.U. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  26. BelfioreM.P. NardoneV. D’OnofrioI. Recurrent versus metastatic head and neck cancer: An evolving landscape and the role of immunotherapy.Biomedicines20241292080010.3390/biomedicines12092080 39335592
    [Google Scholar]
  27. IonnaF. BossiP. GuidaA. Recurrent/metastatic squamous cell carcinoma of the head and neck: A big and intriguing challenge which may be resolved by integrated treatments combining locoregional and systemic therapies.Cancers2021131023711210.3390/cancers13102371 34069092
    [Google Scholar]
  28. JankB.J. SchnoellJ. KladnikK. Targeting TGF beta receptor 1 in head and neck squamous cell carcinoma.Oral Dis.20243031114112710.1111/odi.14594 37154295
    [Google Scholar]
  29. BrittonW.R. CioffiI. StonebrakerC. Advancements in TGF-β targeting therapies for head and neck squamous cell carcinoma.Cancers202416173047304810.3390/cancers16173047 39272905
    [Google Scholar]
  30. LiuQ. HodgeJ. WangJ. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation.Theranostics202010188365838110.7150/thno.45395 32724475
    [Google Scholar]
  31. ChilveryS. BansodS. SaifiM.A. GoduguC. Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways.Int. Immunopharmacol.20208810690910.1016/j.intimp.2020.106909 32882664
    [Google Scholar]
  32. KanehisaM GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  33. ChandrashekarDS BashelB BalasubramanyaSAH UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.00228732212
    [Google Scholar]
  34. BermanH.M. WestbrookJ. FengZ. The protein data bank.Nucleic Acids Res200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  35. RadaevS. SunP.D. Ternary complex of TGF-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily.2010Available from: https://www.wwpdb.org/pdb?id=pdb_00003kfd
  36. RadaevS. ZouZ. HuangT. LaferE.M. HinckA.P. SunP.D. Ternary complex of transforming growth factor-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily.J. BioChem.201028519148061481410.1074/jbc.M109.079921
    [Google Scholar]
  37. SheriffS. TGF-beta receptor type 1 kinase domain (WT).2016Available from: https://www.wwpdb.org/pdb?id=pdb_00005e8s
  38. TebbenA.J. RuzanovM. GaoM. Crystal structures of apo and inhibitor-bound TGF beta R2 kinase domain: Insights into TGF beta R isoform selectivity.Acta Cryst.2016D7265867410.1107/S2059798316003624
    [Google Scholar]
  39. MiyazonoK. MoriwakiS. ItoT. TanokuraM. Crystal structure of human Smad2-Ski complex.2018Available from: https://www.wwpdb.org/pdb?id=pdb_00005xod
  40. MiyazonoK.I. MoriwakiS. ItoT. KurisakiA. AsashimaM. TanokuraM. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors.Sci. Signal.20181152310.1126/scisignal.aao7227
    [Google Scholar]
  41. ZhengN. FraenkelE. PaboC.O. PavletichN.P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP.1999Available from: https://www.wwpdb.org/pdb?id=pdb_00001cf7
  42. ZhengN. FraenkelE. PaboC.O. PavletichN.P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP.Genes Dev.199913666667410.1101/gad.13.6.666 10090723
    [Google Scholar]
  43. FlemingJ MaganaP NairS AlphaFold protein structure database and 3D-beacons: New data and capabilities.J Mol Biol20254371516896710.1016/j.jmb.2025.168967
    [Google Scholar]
  44. VaradiM. BertoniD. MaganaP. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences.Nucleic Acids Res.202452D1D368D37510.1093/nar/gkad1011 37933859
    [Google Scholar]
  45. CarugoO. pLDDT values in alphafold2 protein models are unrelated to globular protein local flexibility.Crystals20231311156010.3390/cryst13111560
    [Google Scholar]
  46. Substances.Available from: https://zinc15.docking.org/substances/home/
  47. SterlingT. IrwinJ.J. ZINC 15 – Ligand Discovery for Everyone.J. Chem. Inf. Model.201555112324233710.1021/acs.jcim.5b00559 26479676
    [Google Scholar]
  48. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  49. LiuY. GrimmM. DaiW. HouM. XiaoZ.X. CaoY. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking.Acta Pharmacol. Sin.202041113814410.1038/s41401‑019‑0228‑6 31263275
    [Google Scholar]
  50. LiuY. YangX. GanJ. ChenS. XiaoZ.X. CaoY. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting.Nucleic Acids Res.202250W1W159-6410.1093/nar/gkac394 35609983
    [Google Scholar]
  51. FlachsenbergF. EhrtC. GutermuthT. RareyM. Redocking the PDB.J. Chem. Inf. Model.202464121923710.1021/acs.jcim.3c01573 38108627
    [Google Scholar]
  52. ZhangF. SawyerJ.S. Crystal Structure of TGF-beta receptor I kinase with inhibitor.2004Available from: https://www.wwpdb.org/pdb?id=pdb_00001py5
  53. Scott SawyerJ. BeightD.W. BrittK.S. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain.Bioorg. Med. Chem. Lett.200414133581358410.1016/j.bmcl.2004.04.007 15177479
    [Google Scholar]
  54. SuM. YangQ. DuY. Comparative assessment of scoring functions: The CASF-2016 update.J. Chem. Inf. Model.201959289591310.1021/acs.jcim.8b00545 30481020
    [Google Scholar]
  55. NaeemA. HuP. YangM. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules27238367 36500466
    [Google Scholar]
  56. NonnekensJ. HoeijmakersJ.H.J. After surviving cancer, what about late life effects of the cure?EMBO Mol. Med.2017914610.15252/emmm.201607062 27852619
    [Google Scholar]
  57. DaiG. DingK. CaoQ. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2.Eur. J. Pharmacol.201985917252510.1016/j.ejphar.2019.172525 31288005
    [Google Scholar]
  58. BezerraD.P. MilitãoG.C.G. de CastroF.O. Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways.Toxicol. In Vitro 20072111810.1016/j.tiv.2006.07.007 16971088
    [Google Scholar]
  59. GongL.H. ChenX.X. WangH. Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel in human ovarian cancer cells.Oxid. Med. Cell. Longev.2014201411010.1155/2014/906804 24895529
    [Google Scholar]
  60. KimT.H. SongJ. KimS.H. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells.Neuro-oncol.201416101354136410.1093/neuonc/nou088 24879047
    [Google Scholar]
  61. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20016441710.1016/S0169‑409X(00)00129‑0
    [Google Scholar]
  62. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  63. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  64. de StreelG. LucasS. Targeting immunosuppression by TGF-β1 for cancer immunotherapy.Biochem. Pharmacol.202119211469710.1016/j.bcp.2021.114697 34302795
    [Google Scholar]
  65. KimB.G. MalekE. ChoiS.H. Ignatz-HooverJ.J. DriscollJ.J. Novel therapies emerging in oncology to target the TGF-β pathway.J. Hematol. Oncol.20211415510.1186/s13045‑021‑01053‑x 33823905
    [Google Scholar]
  66. WangJ. XuZ. WangZ. DuG. LunL. TGF-beta signaling in cancer radiotherapy.Cytokine202114815570910.1016/j.cyto.2021.155709 34597918
    [Google Scholar]
  67. YegodayevK.M. NovoplanskyO. GoldenA. TGF-beta-activated cancer-associated fibroblasts limit cetuximab efficacy in preclinical models of head and neck cancer.Cancers202012233910.3390/cancers12020339 32028632
    [Google Scholar]
  68. ShiX. YangJ. DengS. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies.J. Hematol. Oncol.202215113510.1186/s13045‑022‑01349‑6 36115986
    [Google Scholar]
  69. YoshimatsuY. WakabayashiI. KimuroS. TNF‐α enhances TGF‐β‐induced endothelial‐to‐mesenchymal transition via TGF‐β signal augmentation.Cancer Sci.202011172385239910.1111/cas.14455 32385953
    [Google Scholar]
  70. LiuS. ChenS. ZengJ. TGF β signaling: A complex role in tumorigenesis. (Review)Mol. Med. Rep.201817169970410.3892/mmr.2017.7724 29115550
    [Google Scholar]
  71. BissantzC. KuhnB. StahlM. A medicinal chemist’s guide to molecular interactions.J. Med. Chem.201053145061508410.1021/jm100112j 20345171
    [Google Scholar]
  72. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  73. CarverW. FixE. FixC. FanD. ChakrabartiM. AzharM. Effects of emodin, a plant‐derived anthraquinone, on TGF‐β1‐induced cardiac fibroblast activation and function.J. Cell. Physiol.2021236117440744910.1002/jcp.30416 34041746
    [Google Scholar]
  74. FlemingN.I. JorissenR.N. MouradovD. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.Cancer Res.201373272573510.1158/0008‑5472.CAN‑12‑2706 23139211
    [Google Scholar]
  75. KimN. RyuH. KimS. CXCR7 promotes migration and invasion in head and neck squamous cell carcinoma by upregulating TGF-β1/Smad2/3 signaling.Sci. Rep.2019911810010.1038/s41598‑019‑54705‑x 31792315
    [Google Scholar]
  76. BaiJ. WuJ. TangR. Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a.Invest. New Drugs202038222924510.1007/s10637‑019‑00777‑5 30976957
    [Google Scholar]
  77. KahmY.J. KimR.K. JungU. KimI.G. Epithelial membrane protein 3 regulates lung cancer stem cells via the TGF β signaling pathway.Int. J. Oncol.20215948010.3892/ijo.2021.5261 34476496
    [Google Scholar]
  78. JunF. HongJ. LiuQ. Epithelial membrane protein 3 regulates TGF-β signaling activation in CD44-high glioblastoma.Oncotarget201789143431435810.18632/oncotarget.11102 27527869
    [Google Scholar]
  79. LinR. LiX. WuS. Suppression of latent transforming growth factor-β (TGF-β)-binding protein 1 (LTBP1) inhibits natural killer/T cell lymphoma progression by inactivating the TGF-β/Smad and p38MAPK pathways.Exp. Cell Res.2021407111279010.1016/j.yexcr.2021.112790 34418460
    [Google Scholar]
  80. CaiR. WangP. ZhaoX. LTBP1 promotes esophageal squamous cell carcinoma progression through epithelial-mesenchymal transition and cancer-associated fibroblasts transformation.J. Transl. Med.202018113910.1186/s12967‑020‑02310‑2 32216815
    [Google Scholar]
  81. LiY. HuangY. LiB. YangK. Roles of E2F family members in the diagnosis and prognosis of head and neck squamous cell carcinoma.BMC Med. Genomics20231613810.1186/s12920‑023‑01470‑6 36855110
    [Google Scholar]
  82. ErtosunM.G. HapilF.Z. Osman NidaiO.Z.E.S. E2F1 transcription factor and its impact on growth factor and cytokine signaling.Cytokine Growth Factor Rev.201631172510.1016/j.cytogfr.2016.02.001 26947516
    [Google Scholar]
  83. QiL. RenZ. LiW. E2F4 transcription factor is a prognostic biomarker related to immune infiltration of head and neck squamous cell carcinoma.Sci. Rep.20221211213210.1038/s41598‑022‑16541‑4 35840663
    [Google Scholar]
  84. LiuH. LiR. WangZ. Drug‐likeness evaluation and inhibitory mechanism of the emodin derivative on cardiac fibrosis based on metastasis‐associated protein 3.Br. J. Pharmacol.2025182132878289610.1111/bph.70012 40083252
    [Google Scholar]
/content/journals/cst/10.2174/0115743624377722251010100301
Loading
/content/journals/cst/10.2174/0115743624377722251010100301
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test