Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-6215
  • E-ISSN: 2772-6223

Abstract

Cancer is a fatal disease with different hallmarks and pathogenesis pathways. Personalized oncology (PO) or precision medicine (PM) serves as a platform for maximizing therapeutic efficacy by enabling rapid drug selection and combination based on the analysis of oncogenic hallmarks and pathogenesis in the clinical setting.

In a long developing history (six-decades similar and unique pharmacology and medical framework), personalized therapies have been broadening into various platforms and disciplines. The advantages and limitations of these methodologies are addressed. The next generation of PO will integrate information on pharmacology (drug sensitivity or drug combination) and oncology (sequencing, multi-omics profiling, computation, and drug response score analysis) and avoid undesired side effects (suitable organ delivery, dose-ranging prediction, and drug optimization).

Unlimited technical advances can drive the overall cancer treatment progress of different platforms and disciplines in medical knowledge. Greater therapeutic benefits are anticipated from the widespread development of drug selection and combination approaches using cutting-edge technologies, such as artificial intelligence and computational algorithms.

A combination of different techniques and disciplines takes a leading role in advancing cancer treatments and clinical pharmacology through the development of the next generation of PO strategies. Useful, cost-effective, and integrative algorithms and platforms will be innovated by the promotion of biomedical, mathematical, and clinical cancer treatment studies.

Routines and techniques of various PO are formalized according to specific cancer targets, mechanisms, and high-throughput drug sensitivity selection from a greater number of anticancer drugs.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215350799250401214735
2025-04-10
2025-10-09
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. AhmadA.S. Ormiston-SmithN. SasieniP.D. Trends in the lifetime risk of developing cancer in great britain: Comparison of risk for those born from 1930 to 1960.Br. J. Cancer2015112594394710.1038/bjc.2014.60625647015
    [Google Scholar]
  3. AliI. DinR.U. SaleemK. Aboul-EneinH.Y. Social aspects of cancer genesis.Cancer Ther.201181614
    [Google Scholar]
  4. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x32296047
    [Google Scholar]
  5. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  6. LuD.Y. ChenX.L. DingJ. Individualized cancer chemotherapy integrating drug sensitivity tests, pathological profile analysis and computational coordination – An effective strategy to improve clinical treatment.Med. Hypotheses2006661455110.1016/j.mehy.2005.07.02316168568
    [Google Scholar]
  7. LuD.Y. LuT.R. WuH.Y. Personalized cancer therapy, a perspective.Clin. Exp. Pharmacol.201442153
    [Google Scholar]
  8. LuD.Y. Personalized cancer chemotherapy, an effective way for enhancing outcomes in clinics.UKWoodhead Publishing, Elsevier2014
    [Google Scholar]
  9. LuD.Y. LuT.R. CheJ.Y. WuH.Y. Individualized cancer therapy.Innovat Pharm. Pharm.201424458469
    [Google Scholar]
  10. LuD.Y. LuT.R. DingJ. XuB. CheJ.Y. WuH.Y. Anticancer drug sensitivity testing, a historical review and future perspectives.Curr. Drug Ther.2015101445510.2174/157488551001150825100450
    [Google Scholar]
  11. VolmM. EfferthT. Prediction of cancer drug resistance and implications for personalized medicine.Front. Oncol.2015528210.3389/fonc.2015.0028226734568
    [Google Scholar]
  12. LuD.Y. LuT.R. Drug sensitivity testing, a unique drug selection strategy.Adv. Biomark Sci. Technol20202596610.1016/j.abst.2020.11.001
    [Google Scholar]
  13. LuD.Y. LuT.R. Drug sensitivity testing for cancer therapy, technique analysis and trend.Curr. Rev. Clin. Exp. Pharm.202318131110.2174/277243281666621091010464934515020
    [Google Scholar]
  14. LuD.Y. LuT.R. YarlaN.S. XuB. Drug sensitivity testing for cancer therapy, key areas.Rev. Recent Clin. Trials202217429129910.2174/157488711766622081909452835986532
    [Google Scholar]
  15. PopovaA.A. LevkinP.A. Precision medicine in oncology:] In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy.Adv. Ther.202032190010010.1002/adtp.201900100
    [Google Scholar]
  16. LuD.Y. LuT.R. ChenX.L. ChenE.H. DingJ. XuB. Cancer bioinformatics, its impacts on cancer therapy.Metabolomics201552e133
    [Google Scholar]
  17. OcañaA. PandiellaA. Personalized therapies in the cancer “omics” era.Mol. Cancer20109120210.1186/1476‑4598‑9‑20220670437
    [Google Scholar]
  18. SivapathamS. SelvarajL. Currently available molecular analyses for personalized tumor therapy (Review).Biomed. Rep.20221769510.3892/br.2022.157836382257
    [Google Scholar]
  19. StranskyB. GalanteP. ChoW. Application of bioinformatics in cancer research.An IMICS Perspective on Cancer Research.ChamSpringer2010211233
    [Google Scholar]
  20. LuD.Y. QuR.X. LuT.R. WuH.Y. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics.Rev. Recent Clin. Trials201712210111010.2174/157488711266617020916144428190390
    [Google Scholar]
  21. MassaC. SeligerB. Combination of multiple omics techniques for a personalized therapy or treatment selection.Front. Immunol.202314125801310.3389/fimmu.2023.125801337828984
    [Google Scholar]
  22. Jiménez-SantosM.J. García-MartínS. Fustero-TorreC. DomenicoD.T. Gómez-LópezG. Al-ShahrourF. Bioinformatics roadmap for therapy selection in cancer genomics.Mol. Oncol.202216213881390810.1002/1878‑0261.1328635811332
    [Google Scholar]
  23. GadadeD.D. JhaH. KumarC. KhanF. Unlocking the power of precision medicine: Exploring the role of biomarkers in cancer management.Future J. Pharm. Sci.2024101510.1186/s43094‑023‑00573‑2
    [Google Scholar]
  24. MeyerU.A. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity.Nat. Rev. Genet.20045966967610.1038/nrg142815372089
    [Google Scholar]
  25. Al-JanabiI. Pharmacogenomics driving precision cancer medicine. Al-Rafidain.J. Med. Sci.20223486310.54133/ajms.v3i.85
    [Google Scholar]
  26. LuD.Y. LuT.R. XuB. DingJ. Pharmacogenetics of cancer therapy: Breakthroughs from beyond?Future Sci. OA201514FSO8010.4155/fso.15.80
    [Google Scholar]
  27. RultenS.L. GroseR.P. GatzS.A. JonesJ.L. CameronA.J.M. The future of precision oncology.Int. J. Mol. Sci.202324161261310.3390/ijms24161261337628794
    [Google Scholar]
  28. WangX.S. LeeS. ZhangH. TangG. WangY. An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data.Nat. Commun.2022131293610.1038/s41467‑022‑30449‑735618721
    [Google Scholar]
  29. LuD.Y. LuT.R. WuH.Y. New insights into individualized antimetastatic therapy.Adv. Tech. Biol. Med.201311106
    [Google Scholar]
  30. LuD.Y. LuT.R. CheJ.Y. WuH.Y. Old theories revisited on cancer assistant therapy. Int. J. Med.Health Sci. Rep.2014155057
    [Google Scholar]
  31. O’ConnorA.M. Using decision aids to help patients navigate the “grey zone” of medical decision-making.CMAJ2007176111597159810.1503/cmaj.07049017515586
    [Google Scholar]
  32. HolbrookA. LabirisR. GoldsmithC.H. OtaK. HarbS. SebaldtR.J. Influence of decision aids on patient preferences for anticoagulant therapy: A randomized trial.CMAJ2007176111583158710.1503/cmaj.06083717515584
    [Google Scholar]
  33. LuD.Y. LuT.R. WuH.Y. Cost-effectiveness considerations of individualized cancer chemotherapy.Adv. Pharmacoepidemiol. Drug Saf.201325e121
    [Google Scholar]
  34. NaeimA. KeelerE.B. Is adjuvant therapy for older patients with node (−) early breast cancer cost-effective?Crit. Rev. Oncol. Hematol.2005531818910.1016/j.critrevonc.2004.09.00115607936
    [Google Scholar]
  35. LuD.Y. Cost-effectiveness consideration Personalized Cancer Chemotherapy, An Effective Way for Enhancing Outcomes in Clinics. LuD.Y. UKWoodhead Publishing, Elsevier20144959
    [Google Scholar]
  36. WangD. LiuB. ZhangZ. Accelerating the understanding of cancer biology through the lens of genomics.Cell202318681755177110.1016/j.cell.2023.02.01537059071
    [Google Scholar]
  37. LanderE.S. Initial impact of the sequencing of the human genome.Nature2011470733318719710.1038/nature0979221307931
    [Google Scholar]
  38. GarrawayL.A. LanderE.S. Lessons from the cancer genome.Cell20131531173710.1016/j.cell.2013.03.00223540688
    [Google Scholar]
  39. LuD.Y. LuT.R. WuH.Y. CaoS. Cancer Metastasis treatments.Curr. Drug Ther.201381242910.2174/1574885511308010003
    [Google Scholar]
  40. LambertA.W. PattabiramanD.R. WeinbergR.A. Emerging biological principles of metastasis.Cell2017168467069110.1016/j.cell.2016.11.03728187288
    [Google Scholar]
  41. GerstbergerS. JiangQ. GaneshK. Metastasis.Cell202318681564157910.1016/j.cell.2023.03.00337059065
    [Google Scholar]
  42. DenderenV.B.J.W. ThompsonE.W. The to and fro of tumour spread.Nature2013493743348748810.1038/493487a23344357
    [Google Scholar]
  43. LuD.Y. LuT.R. XuB. QiR.X. SastryN.Y. ZhouX.D. DingJ. Cancer metastasis, a clinical dilemma for therapeutics.Curr. Drug Ther.201611216316910.2174/1574885511666160810143216
    [Google Scholar]
  44. LuD.Y. PuttaS. CheJ.Y. Bone metastasis and circulation biomarkers profiling toward personalized cancer medicine.BME Horizon2023139110.37155/2972‑449X‑vol1(3)‑91
    [Google Scholar]
  45. LuD.Y. LuT.R. Antimetastatic drugs, pharmacologic challenge and opportunity.Curr. Drug Ther.202520216917910.2174/0115748855284405231212051251
    [Google Scholar]
  46. KimM.S. HaneyM.J. ZhaoY. MahajanV. DeygenI. KlyachkoN.L. InskoeE. PiroyanA. SokolskyM. OkolieO. HingtgenS.D. KabanovA.V. BatrakovaE.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells.Nanomedicine201612365566410.1016/j.nano.2015.10.01226586551
    [Google Scholar]
  47. LimW.A. JuneC.H. The principles of engineering immune cells to treat cancer.Cell2017168472474010.1016/j.cell.2017.01.01628187291
    [Google Scholar]
  48. LuD.Y. LuT.R. CaoS. Drug combinations in cancer treatment.Clin. Exp. Pharmacol.20133134
    [Google Scholar]
  49. LuD.Y. ChenE.H. WuH.Y. LuT.R. XuB. DingJ. Anticancer drug combination, how far we can go through?Anticancer. Agents Med. Chem.2017171212810.2174/187152061666616040411202827039923
    [Google Scholar]
  50. LuD.Y. LuT.R. Anticancer drug combination, from possibility to principles.Clin. Oncol.202492077
    [Google Scholar]
  51. LuD.Y. ChenE.H. DingJ. XuB. LuT.R. Anticancer drug combinations, a big momentum is needed.Metabolomics201553e139
    [Google Scholar]
  52. LuD.Y. LuT.R. YarlaN.S. WuH.Y. XuB. DingJ. ZhuH. Drug combination in clinical cancer treatments.Rev. Recent Clin. Trials2017123202211[PMID: 28782482
    [Google Scholar]
  53. LuD.Y. LuT.R. WuH.Y. Combination chemical agents with biological means in cancer therapy. Res. Rev.BioSci201374153155
    [Google Scholar]
  54. FlanaryV.L. FisherJ.L. WilkE.J. HowtonT.C. LasseigneB.N. Computational advancements in cancer combination therapy prediction.JCO Precis. Oncol.202377e230026110.1200/PO.23.0026137824797
    [Google Scholar]
  55. LuD.Y. LuT.R. ChenX.L. Individualized cancer chemotherapy, are we ready for that yet?Metabolomics20122e113
    [Google Scholar]
  56. LuD.Y. LuT.R. Personalized oncology, platforms and selection.Clin. Oncol.202492105
    [Google Scholar]
  57. IorioF. KnijnenburgT.A. VisD.J. BignellG.R. MendenM.P. SchubertM. AbenN. GonçalvesE. BarthorpeS. LightfootH. CokelaerT. GreningerP. DykV.E. ChangH. SilvaD.H. HeynH. DengX. EganR.K. LiuQ. MironenkoT. MitropoulosX. RichardsonL. WangJ. ZhangT. MoranS. SayolsS. SoleimaniM. TamboreroD. Lopez-BigasN. Ross-MacdonaldP. EstellerM. GrayN.S. HaberD.A. StrattonM.R. BenesC.H. WesselsL.F.A. Saez-RodriguezJ. McDermottU. GarnettM.J. A landscape of pharmacogenomic interactions in cancer.Cell2016166374075410.1016/j.cell.2016.06.01727397505
    [Google Scholar]
  58. LuD.Y. LuT.R. CheJ.Y. YarlaN.S. Individualized cancer therapy, what is the next generation?EC Cancer201826286297
    [Google Scholar]
  59. LuD.Y. LuT.R. Mathematics or physics-majored students on the biomedical fields, insiders or outsiders?Metabolomics201554e142
    [Google Scholar]
  60. LuD.Y. WuH.Y. LuT.R. CheJ.Y. LuY. Updating biomedical studies by recruiting more mathematics or physics-majored talents.Metabolomics201662e148
    [Google Scholar]
  61. RoccaA. KholodenkoB.N. Can systems biology advance clinical precision oncology?Cancers20211324631210.3390/cancers1324631234944932
    [Google Scholar]
  62. LuD.Y. LuT.R. LuY. WuH.Y. YarlaN.S. The acquisition of mathematical language in biomedical articles.J. Cell. Devel Biol.2017118
    [Google Scholar]
  63. FranssenL.C. LorenziT. BurgessA.E.F. ChaplainM.A.J. A mathematical framework for modeling the metastatic spread of cancer.Bull. Math. Biol.20198161965201010.1007/s11538‑019‑00597‑x30903592
    [Google Scholar]
  64. GerleeP. JohanssonM. Inferring rates of metastatic dissemination using stochastic network models.PLOS Comput. Biol.2019154e100686810.1371/journal.pcbi.100686830933969
    [Google Scholar]
  65. RaikarG.V.S. RaikarA.S. SomnacheS.N. Advancements in artificial intelligence and machine learning in revolutionising biomarker discovery.Braz. J. Pharm. Sci.202359e2314610.1590/s2175‑97902023e23146
    [Google Scholar]
  66. LiuZ. LiuL. WengS. XuH. XingZ. RenY. GeX. WangL. GuoC. LiL. ChengQ. LuoP. ZhangJ. HanX. BEST: A web application for comprehensive biomarker exploration on large-scale data in solid tumors.J. Big Data202310116510.1186/s40537‑023‑00844‑y
    [Google Scholar]
  67. YingtaweesittikulH. WuJ. MongiaA. PeresR. KoK. NagarajanN. SuphavilaiC. CREAMMIST: An integrative probabilistic database for cancer drug response prediction.Nucleic Acids Res.202351D1D1242D124810.1093/nar/gkac91136259664
    [Google Scholar]
  68. CariniC. SeyhanA.A. Tribulations and future opportunities for artificial intelligence in precision medicine.J. Transl. Med.202422141110.1186/s12967‑024‑05067‑038702711
    [Google Scholar]
  69. LiR. KumarA. ChenJ.H. How chatbots and large language model artificial intelligence systems will reshape modern medicine: Fountain of creativity or pandoras box?JAMA Intern. Med.2023183659659710.1001/jamainternmed.2023.183537115531
    [Google Scholar]
  70. NaqaE.I. KarolakA. LuoY. FolioL. TarhiniA.A. RollisonD. ParodiK. Translation of AI into oncology clinical practice.Oncogene202342423089309710.1038/s41388‑023‑02826‑z37684407
    [Google Scholar]
  71. BailleuxC. GalJ. ChamoreyE. MograbiB. MilanoG. Artificial intelligence and anticancer drug development—keep a cool head.Pharmaceutics202416221110.3390/pharmaceutics1602021138399265
    [Google Scholar]
  72. Sontheimer-PhelpsA. HassellB.A. IngberD.E. Modelling cancer in microfluidic human organs-on-chips.Nat. Rev. Cancer2019192658110.1038/s41568‑018‑0104‑630647431
    [Google Scholar]
  73. ZhangY. XuJ. YuY. ShangW. YeA. Anticancer drug sensitivity assay with quantitative heterogeneity testing using single-cell Raman Spectroscope.Molecules20182311290310.3390/molecules2311290330405051
    [Google Scholar]
  74. WangJ. LinK. HuH. QieX. HuangW.E. CuiZ. GongY. SongY. In vitro anticancer drug sensitivity sensing through single-cell Raman Spectroscopy.Biosensors202111828610.3390/bios1108028634436088
    [Google Scholar]
  75. KherlopianA.R. SongT. DuanQ. NeimarkM.A. PoM.J. GohaganJ.K. LaineA.F. A review of imaging techniques for systems biology.BMC Syst. Biol.2008217410.1186/1752‑0509‑2‑7418700030
    [Google Scholar]
  76. ProiettoM. CrippaM. DamianiC. PasqualeV. SaccoE. VanoniM. GilardiM. Tumor heterogeneity: Preclinical models, emerging technologies, and future applications.Front. Oncol.202313116453510.3389/fonc.2023.116453537188201
    [Google Scholar]
  77. TynerJ.W. HaderkF. KumaraswamyA. BaughnL.B. NessV.B. LiuS. MaratheH. AlumkalJ.J. BivonaT.G. ChanK.S. DrukerB.J. HutsonA.D. NelsonP.S. SawyersC.L. WilleyC.D. Understanding drug sensitivity and tackling resistance in cancer.Cancer Res.20228281448146010.1158/0008‑5472.CAN‑21‑369535195258
    [Google Scholar]
  78. LuD.Y. XuB. LuT.R. Anticancer drug development, evaluative architecture.Lett. Drug Des. Discov.202421583684610.2174/1570180819666220610102444
    [Google Scholar]
  79. AhujaV. New drug approvals by FDA from 2013-2017.EC Pharmacology Toxicology201869772774
    [Google Scholar]
  80. PassiI. SalwanS. KumarB. US-FDA approved drugs in 2020 and 2021, a review.Mini Rev. Med. Chem.202323121273129710.2174/138955752366622120810453036503454
    [Google Scholar]
  81. LuD. ShenW. CaoJ. LuT. CuiB. FuZ. Effect of magnetized water on the mice given high doses of antineoplastic drugs.J. Shanghai Univer199931818310.1007/s11741‑999‑0036‑1
    [Google Scholar]
  82. RagehM.M. El-GarhyM.R. MohamadE.A. Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity.Naunyn Schmiedebergs Arch. Pharmacol.202039381475148510.1007/s00210‑020‑01855‑932200461
    [Google Scholar]
  83. LuD.Y. WuH.Y. Chemotherapy and magnetic water in anticancer treatment.EC Pharm. Toxicol.2024121112
    [Google Scholar]
  84. LuD.Y. WuH.Y. Magnetic water and field in anticancer treatment.EC Pharm. Toxicol.202513214
    [Google Scholar]
  85. ParkerA.L. BenguiguiM. FornettiJ. GoddardE. LucottiS. Insua-RodríguezJ. WiegmansA.P. Current challenges in metastasis research and future innovation for clinical translation.Clin. Exp. Metastasis202239226327710.1007/s10585‑021‑10144‑535072851
    [Google Scholar]
  86. LuD.Y. LuT.R. Anti-metastatic drug development, overview and perspectives.Hosp Palliat. Med. Inter J.202362455110.15406/hpmij.2023.06.00217
    [Google Scholar]
  87. MayM. Why drug delivery is the key to new medicines.Nat. Med.20222861100110210.1038/s41591‑022‑01826‑y35668179
    [Google Scholar]
  88. LuD.Y. LuT.R. Anticancer drug development, pharmaceutical progress.Curr. Cell. Sci20251910.2174/0127726215312620241029102421
    [Google Scholar]
  89. LuD.Y. LuT.R. XuB. YarlaN.S. Anticancer drug developments, challenge from historic perspective.EC Pharm. Toxicol.2018611922936
    [Google Scholar]
  90. LuD.Y. LuT.R. Sialic acids and cancer, pathophysiological association beteen metastatic progress and treatment.Curr. Cell. Sci.,20251610.2174/0127726215318526241030055747
    [Google Scholar]
/content/journals/csci/10.2174/0127726215350799250401214735
Loading
/content/journals/csci/10.2174/0127726215350799250401214735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test