Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-6215
  • E-ISSN: 2772-6223

Abstract

Abstracts:

Neoplasm metastasis is a multi-step process with a high rate of cancer mortality (>60%). Several complex pathogenesis pathways and key therapeutic targets are unclear to us now. To change this scenario, effective drug targets and underlying mechanisms should be found, and high-quality metastasis treatment should be supported. Aberrant tumor sialylation was proposed as a putative drug target candidate to bridge the gaps between metastatic spread and drug responses (genetic, molecular, and animal models). More recently, several promising therapeutic mechanisms and benefits against neoplasm metastasis have been observed by potential association for the target of higher levels and diverse forms of sialic acids (sia) analogues, antigens, glycan, sialylation enzymes, and conjugates. Subsequently, sia-related pathophysiology in cancer diagnosis, prognosis, and therapeutic responses has been reviewed. New algorithms, computation, experimental evaluations, and modern technology might see breakthroughs in therapeutic targets, responses, and immune regulation sialylation enzymes, associated genes, different glycol conjugates, and other hallmarks of cancer.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215318526241030055747
2024-11-08
2025-09-03
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. AliI. Rahis-ud-din SaleemK. Aboul-EneinHY. RatherA. Social aspects of cancer genesis.Cancer Ther.201181614
    [Google Scholar]
  3. GuptaG.P. MassaguéJ. Cancer metastasis: Building a framework.Cell2006127467969510.1016/j.cell.2006.11.00117110329
    [Google Scholar]
  4. LimE.J. KangJ.H. KimY.J. KimS. LeeS.J. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer.Cell Death Dis.202213441710.1038/s41419‑022‑04862‑135487888
    [Google Scholar]
  5. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x32296047
    [Google Scholar]
  6. LuD.Y. LuT.R. WuH.Y. CaoS. Cancer metastases treatments.Curr. Drug Ther.201381242910.2174/1574885511308010003
    [Google Scholar]
  7. ParkerA.L. BenguiguiM. FornettiJ. GoddardE. LucottiS. Insua-RodríguezJ. WiegmansA.P. Current challenges in metastasis research and future innovation for clinical translation.Clin. Exp. Metastasis202239226327710.1007/s10585‑021‑10144‑535072851
    [Google Scholar]
  8. LuD.Y. XuB. LuT.R. Anticancer drug development, evaluative architecture.Lett. Drug Des. Discov.202421583684610.2174/1570180819666220610102444
    [Google Scholar]
  9. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  10. LuD-Y. LuT-R. Anti-metastatic drug development, overview and perspectives.Hosp. palliat. med. int. j.202362455110.15406/hpmij.2023.06.00217
    [Google Scholar]
  11. LuD. CaoJ. Structural aberrations of cellular sialic acids and their functions in cancer metastases.J Shanghai Univ20015216417010.1007/s11741‑001‑0016‑6
    [Google Scholar]
  12. MunkleyJ. ScottE. Targeting aberrant sialylation to treat cancer.Medicines (Basel)20196410210.3390/medicines604010231614918
    [Google Scholar]
  13. LuD.Y. LuT.R. WuH.Y. Antimetastatic therapy targeting aberrant sialylation profiles in cancer cells.Drug Ther Stud2011111210.4081/dts.2011.e12
    [Google Scholar]
  14. DobieC. SkropetaD. Insights into the role of sialylation in cancer progression and metastasis.Br. J. Cancer20211241769010.1038/s41416‑020‑01126‑733144696
    [Google Scholar]
  15. PietrobonoS. SteccaB. Aberrant sialylation in cancer: Biomarker and potential target for therapeutic intervention.Cancers (Basel)2021139201410.3390/cancers1309201433921986
    [Google Scholar]
  16. VarkiN.M. VarkiA. Diversity in cell surface sialic acid presentations: Implications for biology and disease.Lab. Invest.200787985185710.1038/labinvest.370065617632542
    [Google Scholar]
  17. ZhangH. GuY. HeW. KuoF. ZhangY. WangD. HeL. YangY. WangH. ChenY. Correlation between sialidase NEU1 mRNA expression changes in autism spectrum disorder.Front. Psychiatry20221387037410.3389/fpsyt.2022.87037435757207
    [Google Scholar]
  18. ErtuncN. PhitakT. WuD. FujitaH. HaneM. SatoC. KitajimaK. Sulfation of sialic acid is ubiquitous and essential for vertebrate development.Sci. Rep.20221211249610.1038/s41598‑022‑15143‑435864127
    [Google Scholar]
  19. TurumiK.I. DawesM.L. Serum sialic acid levels in mice with neoplasms.Cancer Res.195818557557713547052
    [Google Scholar]
  20. Freire-de-LimaL. PreviatoJ.O. Mendonça-PreviatoL. Editorial: Glycosylation changes in cancer: An innovative frontier at the interface of cancer and glycol-biology.Front. Oncol.2016625410.3389/fonc.2016.0025427965934
    [Google Scholar]
  21. AngataT. VarkiA. Chemical diversity in the sialic acids and related α-keto acids: An evolutionary perspective.Chem. Rev.2002102243947010.1021/cr000407m11841250
    [Google Scholar]
  22. KimuraA. NagaiY. TurumiK.I. KawashimaY. SatoH. Hexosamine and sialic acid contents in cells.Nature1961191478859610.1038/191596a013756013
    [Google Scholar]
  23. YogeeswaranG. SebastianH. SteinB.S. Cell surface sialylation of glycoproteins and glycosphingolipids in cultured metastatic variant rna‐virus transformed non‐producer BALB/c 3T3 cell lines.Int. J. Cancer197924219320210.1002/ijc.2910240211385511
    [Google Scholar]
  24. YogeeswaranG. SalkP.L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines.Science198121245021514151610.1126/science.72332377233237
    [Google Scholar]
  25. LuD.Y. XuJ. LuT.R. WuH.Y. XuB. Inhibitions of several antineoplastic drugs on serum sialic Acid levels in mice bearing tumors.Sci. Pharm.201381122323110.3797/scipharm.1209‑1823641340
    [Google Scholar]
  26. LuD.Y. LiangG. ZhangM.J. XuB. Serum contents of sialic acids in mice bearing different tumors.Chin Sci Bull (Eng)1994391412201223
    [Google Scholar]
  27. YuL.G. The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression.Glycoconj. J.200724841142010.1007/s10719‑007‑9034‑317457671
    [Google Scholar]
  28. LuD.Y. LuT.R. WuH.Y. Development of antimetastatic drugs by targeting tumor sialic acids.Sci. Pharm.201280349750810.3797/scipharm.1205‑0123008802
    [Google Scholar]
  29. PeracaulaR. TabarésG. López-FerrerA. BrossmerR. de BolósC. de LlorensR. Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells.Glycoconj. J.200522313514410.1007/s10719‑005‑0734‑216133834
    [Google Scholar]
  30. GcS. BellisS.L. HjelmelandA.B. ST6Gal1: Oncogenic signaling pathways and targets.Front. Mol. Biosci.2022996290810.3389/fmolb.2022.96290836106023
    [Google Scholar]
  31. Dall’OlioF. ChiricoloM. Sialyltransferases in cancer.Glycoconj. J.20011811/1284185010.1023/A:102228802296912820717
    [Google Scholar]
  32. PucciM. DucaM. MalagoliniN. Dall’OlioF. Glycosyltransferaes in cancer: Prognostic biomarkers of survival in patient cohorts and impact on malignancy in experimental models.Cancers (Basel)2022149212810.3390/cancers1409212835565254
    [Google Scholar]
  33. MiyagiT. WadaT. YamaguchiK. ShiozakiK. SatoI. KakugawaY. YamanamiH. FujiyaT. Human sialidase as a cancer marker.Proteomics20088163303331110.1002/pmic.20080024818651674
    [Google Scholar]
  34. SjobergE.R. ChammasR. OzawaH. KawashimaI. KhooK.H. MorrisH.R. DellA. TaiT. VarkiA. Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole.J. Biol. Chem.199527072921293010.1074/jbc.270.7.29217852370
    [Google Scholar]
  35. ZhouQ. HakomoriS. KitamuraK. IgarashiY. GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction.J. Biol. Chem.199426931959196510.1016/S0021‑9258(17)42121‑17507488
    [Google Scholar]
  36. HanaiN. DohiT. NoresG.A. HakomoriS. A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth.J. Biol. Chem.1988263136296630110.1016/S0021‑9258(18)68785‑X2834372
    [Google Scholar]
  37. SonnenburgJ.L. van HalbeekH. VarkiA. Characterization of the acid stability of glycosidically linked neuraminic acid: Use in detecting de-N-acetyl-gangliosides in human melanoma.J. Biol. Chem.200227720175021751010.1074/jbc.M11086720011884388
    [Google Scholar]
  38. ChicheJ. Brahimi-HornM.C. PouysségurJ. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer.J. Cell. Mol. Med.201014477179410.1111/j.1582‑4934.2009.00994.x20015196
    [Google Scholar]
  39. MunkleyJ. ElliottD.J. Hallmarks of glycosylation in cancer.Oncotarget2016723354783548910.18632/oncotarget.815527007155
    [Google Scholar]
  40. ChallapalliA. AboagyeE.O. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring.Front. Oncol.201664410.3389/fonc.2016.0004426973812
    [Google Scholar]
  41. SerkovaN.J. EckhardtS.G. Metabolic imaging to assess treatment response to cytotoxic and cytostatic agents.Front. Oncol.2016615210.3389/fonc.2016.0015227471678
    [Google Scholar]
  42. XiaoH. WoodsE.C. VukojicicP. BertozziC.R. Precision glycocalyx editing as a strategy for cancer immunotherapy.Proc. Natl. Acad. Sci. USA201611337103041030910.1073/pnas.160806911327551071
    [Google Scholar]
  43. BüllC. den BrokM.H. AdemaG.J. Sweet escape: Sialic acids in tumor immune evasion.Biochim. Biophys. Acta20141846123824625026312
    [Google Scholar]
  44. ChiangC.H. WangC.H. ChangH.C. MoreS.V. LiW.S. HungW.C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin‐mediated signaling.J. Cell. Physiol.2010223249249910.1002/jcp.2206820112294
    [Google Scholar]
  45. JayantS. KhandareJ.J. WangY. SinghA.P. VorsaN. MinkoT. Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment.Pharm. Res.200724112120213010.1007/s11095‑007‑9406‑117668297
    [Google Scholar]
  46. LuD.Y. LuT.R. XuB. DingJ. ChenE-H. WuH.Y. WuS-Y. Sastry YarlaN. ZhuH. Antimetastatic therapy at aberrant sialylation in cancer cells, a potential hotspot.Clin. Proteomic. Bioinform.20172111810.15761/CPB.1000118
    [Google Scholar]
  47. MatsumotoA. CabralH. SatoN. KataokaK. MiyaharaY. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression.Angew. Chem. Int. Ed.201049325494549710.1002/anie.20100122020575125
    [Google Scholar]
  48. AichU. CampbellC.T. ElmouelhiN. WeierC.A. SampathkumarS.G. ChoiS.S. YaremaK.J. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression.ACS Chem. Biol.20083423024010.1021/cb700270818338853
    [Google Scholar]
  49. FusterM.M. BrownJ.R. WangL. EskoJ.D. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells.Cancer Res.200363112775278112782582
    [Google Scholar]
  50. ZhengJ.S. ZhengS.Y. ZhangY.B. YuB. ZhengW. YangF. ChenT. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles.Colloids Surf. B Biointerfaces201183118318710.1016/j.colsurfb.2010.11.02321145219
    [Google Scholar]
  51. ManuK.A. KuttanG. Anti-metastatic potential of Punarnavine, an alkaloid from Boerhaavia diffusa Linn.Immunobiology2009214424525510.1016/j.imbio.2008.10.00219171408
    [Google Scholar]
  52. LadensteinR. PötschgerU. Valteau-CouanetD. LukschR. CastelV. YanivI. LaureysG. BrockP. MichonJ.M. OwensC. TrahairT. ChanG.C.F. RuudE. SchroederH. Beck PopovicM. SchreierG. LoibnerH. AmbrosP. HolmesK. CastellaniM.R. GazeM.N. GaraventaA. PearsonA.D.J. LodeH.N. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial.Lancet Oncol.201819121617162910.1016/S1470‑2045(18)30578‑330442501
    [Google Scholar]
  53. HolmbergL.A. SandmaierB.M. Vaccination with Theratope® (STn-KLH) as treatment for breast cancer.Expert Rev. Vaccines20043665566310.1586/14760584.3.6.65515606349
    [Google Scholar]
  54. ThejassP. KuttanG. Antimetastatic activity of sulforaphane.Life Sci.200678263043305010.1016/j.lfs.2005.12.03816600309
    [Google Scholar]
  55. LeeS.J. ChungI.M. KimM.Y. ParkK.D. ParkW.W. MoonH.I. Inhibition of lung metastasis in mice by oligonol.Phytother. Res.20092371043104610.1002/ptr.281019288502
    [Google Scholar]
  56. LuD.Y. Personalized cancer chemotherapy, an effective way for enhancing outcomes in clinics.UKWoodhead Publishing, Elsevier2014
    [Google Scholar]
  57. LuD.Y. QuR.X. LuT.R. WuH.Y. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics.Rev. Recent Clin. Trials201712210111010.2174/157488711266617020916144428190390
    [Google Scholar]
  58. LuD.Y. LuT.R. XuB. DingJ. Pharmacogenetics of cancer therapy: Breakthroughs from beyond?Future Sci OA.201514FSO8010.4155/fso.15.80
    [Google Scholar]
  59. LuD.Y. LuT.R. CheJ.Y. YarlaN.S. Individualized cancer therapy, what is the next generation?ECCancer201826286297
    [Google Scholar]
  60. LuD.Y. LuT.R. YarlaN.S. XuB. Drug sensitivity testing for cancer therapy, key areas.Rev. Recent Clin. Trials202217429129910.2174/157488711766622081909452835986532
    [Google Scholar]
  61. LuD.Y. LuT.R. XuB. CheJ.Y. ShenY. YarlaN.S. Individualized cancer therapy, future approaches.Curr. Pharmacogenomics Person. Med.201816215616310.2174/1875692116666180821095434
    [Google Scholar]
  62. KhalilI.G. HillC. Systems biology for cancer.Curr. Opin. Oncol.2005171444810.1097/01.cco.0000150951.38222.1615608512
    [Google Scholar]
  63. LuD.Y. LuT.R. Mathematics or physics-majored students on the biomedical fields, insiders or outsiders?Metabolomics201554e142
    [Google Scholar]
  64. LoeweL. A framework for evolutionary systems biology.BMC Syst. Biol.2009312710.1186/1752‑0509‑3‑2719239699
    [Google Scholar]
  65. WernerH.M.J. MillsG.B. RamP.T. Cancer systems biology: A peek into the future of patient care?Nat. Rev. Clin. Oncol.201411316717610.1038/nrclinonc.2014.624492837
    [Google Scholar]
  66. TurroE. AstleW.J. MegyK. GräfS. GreeneD. ShamardinaO. AllenH.L. Sanchis-JuanA. FrontiniM. ThysC. StephensJ. MapetaR. BurrenO.S. DownesK. HaimelM. TunaS. DeeviS.V.V. AitmanT.J. BennettD.L. CallejaP. CarssK. CaulfieldM.J. ChinneryP.F. DixonP.H. GaleD.P. JamesR. KoziellA. LaffanM.A. LevineA.P. MaherE.R. MarkusH.S. MoralesJ. MorrellN.W. MumfordA.D. OrmondroydE. RankinS. RendonA. RichardsonS. RobertsI. RoyN.B.A. SaleemM.A. SmithK.G.C. StarkH. TanR.Y.Y. ThemistocleousA.C. ThrasherA.J. WatkinsH. WebsterA.R. WilkinsM.R. WilliamsonC. WhitworthJ. HumphrayS. BentleyD.R. AbbsS. AbulhoulL. AdlardJ. AhmedM. AitmanT.J. AlachkarH. AllsupD.J. Almeida-KingJ. AncliffP. AntrobusR. ArmstrongR. ArnoG. AshfordS. AstleW.J. AttwoodA. AuroraP. BabbsC. BacchelliC. BakchoulT. BankaS. BarianaT. BarwellJ. BatistaJ. BaxendaleH.E. BealesP.L. BennettD.L. BentleyD.R. BierzynskaA. BissT. Bitner-GlindziczM.A.K. BlackG.C. BledaM. BlesneacI. BockenhauerD. BogaardH. BourneC.J. BoyceS. BradleyJ.R. BraginE. BreenG. BrennanP. BrewerC. BrownM. BrowningA.C. BrowningM.J. BuchanR.J. BucklandM.S. BueserT. DizC.B. BurnJ. BurnsS.O. BurrenO.S. BurrowsN. CallejaP. CampbellC. Carr-WhiteG. CarssK. CaseyR. CaulfieldM.J. ChambersJ. ChambersJ. ChanM.M.Y. CheahC. ChengF. ChinneryP.F. ChitreM. ChristianM.T. ChurchC. Clayton-SmithJ. ClearyM. BrodN.C. CoghlanG. ColbyE. ColeT.R.P. CollinsJ. CollinsP.W. ColomboC. ComptonC.J. CondliffeR. CookS. CookH.T. CooperN. CorrisP.A. FurnellA. CunninghamF. CurryN.S. CutlerA.J. DanielsM.J. DattaniM. DaughertyL.C. DavisJ. De SoyzaA. DeeviS.V.V. DentT. DeshpandeC. DewhurstE.F. DixonP.H. DouzgouS. DownesK. DrazykA.M. DreweE. DuarteD. DuttT. EdgarJ.D.M. EdwardsK. EgnerW. EkaniM.N. ElliottP. ErberW.N. ErwoodM. EstiuM.C. EvansD.G. EvansG. EveringtonT. EyriesM. FassihiH. FavierR. FindhammerJ. FletcherD. FlinterF.A. FlotoR.A. FowlerT. FoxJ. FraryA.J. FrenchC.E. FresonK. FrontiniM. GaleD.P. GallH. GanesanV. GattensM. GeogheganC. GerightyT.S.A. GharaviA.G. GhioS. GhofraniH-A. GibbsJ.S.R. GibsonK. GilmourK.C. GirerdB. GleadallN.S. GoddardS. GoldsteinD.B. GomezK. GordinsP. GosalD. GräfS. GrahamJ. GrassiL. GreeneD. GreenhalghL. GreinacherA. GreseleP. GriffithsP. GrigoriadouS. GrocockR.J. GrozevaD. GurnellM. HackettS. HadinnapolaC. HagueW.M. HagueR. HaimelM. HallM. HansonH.L. HaqueE. HarknessK. HarperA.R. HarrisC.L. HartD. HassanA. HaymanG. HendersonA. HerwadkarA. HoffmanJ. HoldenS. HorvathR. HouldenH. HouwelingA.C. HowardL.S. HuF. HudsonG. HughesJ. HuissoonA.P. HumbertM. HumphrayS. HunterS. HurlesM. IrvingM. IzattL. JamesR. JohnsonS.A. JollesS. JolleyJ. JosifovaD. JurkuteN. KartenT. KartenJ. KasanickiM.A. KazkazH. KazmiR. KelleherP. KellyA.M. KelsallW. KempsterC. KielyD.G. KingstonN. KlimaR. KoellingN. KostadimaM. KovacsG. KoziellA. KreuzhuberR. KuijpersT.W. KumarA. KumararatneD. KurianM.A. LaffanM.A. LallooF. LambertM. AllenH.L. LawrieA. LaytonD.M. LenchN. LentaigneC. LesterT. LevineA.P. LingerR. LonghurstH. LorenzoL.E. LoukaE. LyonsP.A. MachadoR.D. MacKenzie RossR.V. MadanB. MaherE.R. MaimarisJ. MalkaS. ManglesS. MapetaR. MarchbankK.J. MarksS. MarkusH.S. MarschallH-U. MarshallA. MartinJ. MathiasM. MatthewsE. MaxwellH. McAlindenP. McCarthyM.I. McKinneyH. McMahonA. MeachamS. MeadA.J. CastelloI.M. MegyK. MehtaS.G. MichaelidesM. MillarC. MohammedS.N. MoledinaS. MontaniD. MooreA.T. MoralesJ. MorrellN.W. MozereM. MuirK.W. MumfordA.D. NemethA.H. NewmanW.G. NewnhamM. NooraniS. NurdenP. O’SullivanJ. ObajiS. OdhamsC. OkoliS. OlschewskiA. OlschewskiH. OngK.R. OramS.H. OrmondroydE. OuwehandW.H. PallesC. PapadiaS. ParkS-M. ParryD. PatelS. PatersonJ. PeacockA. PearceS.H. PedenJ. PeerlinckK. PenkettC.J. Pepke-ZabaJ. PetersenR. PilkingtonC. PooleK.E.S. PrathalingamR. PsailaB. PyleA. QuintonR. RahmanS. RankinS. RaoA. RaymondF.L. Rayner-MatthewsP.J. ReesC. RendonA. RentonT. RhodesC.J. RiceA.S.C. RichardsonS. RichterA. RobertL. RobertsI. RogersA. RoseS.J. Ross-RussellR. RoughleyC. RoyN.B.A. RuddyD.M. Sadeghi-AlavijehO. SaleemM.A. SamaniN. SamarghiteanC. Sanchis-JuanA. SargurR.B. SarkanyR.N. SatchellS. SavicS. SayerJ.A. SayerG. ScelsiL. SchaeferA.M. SchulmanS. ScottR. ScullyM. SearleC. SeegerW. SenA. SewellW.A.C. SeyresD. ShahN. ShamardinaO. ShapiroS.E. ShawA.C. ShortP.J. SibsonK. SideL. SimeoniI. SimpsonM.A. SimsM.C. SivapalaratnamS. SmedleyD. SmithK.R. SmithK.G.C. SnapeK. SoranzoN. SoubrierF. SouthgateL. Spasic-BoskovicO. StainesS. StaplesE. StarkH. StephensJ. StewardC. StirrupsK.E. StuckeyA. SuntharalingamJ. SwietlikE.M. SyrrisP. TaitR.C. TalksK. TanR.Y.Y. TateK. TaylorJ.M. TaylorJ.C. ThaventhiranJ.E. ThemistocleousA.C. ThomasE. ThomasD. ThomasM.J. ThomasP. ThomsonK. ThrasherA.J. ThreadgoldG. ThysC. TillyT. TischkowitzM. TittertonC. ToddJ.A. TohC-H. TolhuisB. TomlinsonI.P. ToshnerM. TraylorM. TreacyC. TreadawayP. TrembathR. TunaS. TurekW. TurroE. TwissP. ValeT. GeetC.V. ZuydamN. VandekuilenM. VandersteenA.M. Vazquez-LopezM. von ZiegenweidtJ. Vonk NoordegraafA. WagnerA. WaisfiszQ. WalkerS.M. WalkerN. WalterK. WareJ.S. WatkinsH. WattC. WebsterA.R. WedderburnL. WeiW. WelchS.B. WesselsJ. WestburyS.K. WestwoodJ-P. WhartonJ. WhitehornD. WhitworthJ. WilkieA.O.M. WilkinsM.R. WilliamsonC. WilsonB.T. WongE.K.S. WoodN. WoodY. WoodsC.G. WoodwardE.R. WortS.J. WorthA. WrightM. YatesK. YongP.F.K. YoungT. YuP. Yu-Wai-ManP. ZlamalovaE. KingstonN. WalkerN. BradleyJ.R. AshfordS. PenkettC.J. FresonK. StirrupsK.E. RaymondF.L. OuwehandW.H. Whole-genome sequencing of patients with rare diseases in a national health system.Nature202058378149610210.1038/s41586‑020‑2434‑232581362
    [Google Scholar]
  67. LuD.Y. LuT.R. YarlaN.S. XuB. ChenE.H. DingJ. Anticancer drug development, breakthroughs are waiting.Adv. Pharmacol. Clin. Trials20172111910.23880/APCT‑16000119
    [Google Scholar]
  68. LuD.Y. LuT.R. ChenE.H. YarlaN.S. XuB. DingJ. ZhuH. Anticancer drug development, system updating and global participation.Curr. Drug Ther.2017121374510.2174/1574885511666161025122906
    [Google Scholar]
  69. LuDY. LuTR. Antimetastatic drug, pharmacologic challenge and opportunity.Curr Drug Ther20241910.2174/0115748855284405231212051251
    [Google Scholar]
/content/journals/csci/10.2174/0127726215318526241030055747
Loading
/content/journals/csci/10.2174/0127726215318526241030055747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test