Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

By integrating the sensitivity of nuclear medicine and the precision of nanotechnology, mankind can explore the very promising nuclear nanomedicine technology. Such integration enabled the imaging of biological processes at the molecular level which is a blessing to modern disease management. The present work is an effort to highlight the multifaceted applications of radiolabelled nanomaterials across various imaging modalities, formulation assessment, drug development, regulatory considerations, and therapeutic interventions. The present work highlights the application of radiolabelled nanomaterials for molecular imaging. The single-photon emission computed tomography (SPECT), positron emission tomography (PET); and hybrid multimodalities, along with their key features, are inherent parts of this discussion. The discussion continues with the assessment procedures of new formulations and their implications for drug delivery and the associated regulatory affairs. Cell tracking strategies that allow real-time monitoring of cellular behaviour and radionuclide therapy with targeted and precise treatment are explained with the comparison of different strategies. This is followed by the explanation of how the drug delivery systems incorporating molecular imaging radiotracers enable tracking of drug behavior, further facilitating optimization of dosage forms and therapeutic efficacy. Thus, this manuscript provides a comprehensive overview of the utilization of radiolabelling strategies across the spectrum of drug formulation, delivery, and regulatory aspects, which is a way forward to future projections in nuclear nanomedicine. In conclusion, the emergence of nuclear nanomedicines is a disease management breakthrough in modern healthcare systems. This innovative approach not only provides tailored diagnostics but also offers innovative therapeutic solutions.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710373025250423042401
2025-12-01
2025-09-27
Loading full text...

Full text loading...

References

  1. ThomasR. ParkI.K. JeongY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer.Int. J. Mol. Sci.2013148159101593010.3390/ijms14081591023912234
    [Google Scholar]
  2. MosayebiJ. KiyasatfarM. LaurentS. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications.Adv. Healthc. Mater.2017623170030610.1002/adhm.20170030628990364
    [Google Scholar]
  3. LuF.M. YuanZ. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases.Quant. Imaging Med. Surg.20155343344710.21037/qims.2015.07.0326029646
    [Google Scholar]
  4. LeeD.S. Radionanomedicine: Combined Nuclear and Nanomedicine.Springer201810.1007/978‑3‑319‑67720‑0
    [Google Scholar]
  5. MosesW.W. Fundamental limits of spatial resolution in PET.Nucl. Instrum. Methods Phys. Res. A2011648S236S24010.1016/j.nima.2010.11.09221804677
    [Google Scholar]
  6. StabinM. BrillA.B. Physics applications in nuclear medicine: 2007.J. Nucl. Med.200849220N25N10.2967/jnumed.107.05024518245725
    [Google Scholar]
  7. NaqviS.A.R. DrlicaK. Fluoroquinolones as imaging agents for bacterial infection.Dalton Trans.20174642144521446010.1039/C7DT01189J28920628
    [Google Scholar]
  8. KambaliI. Proton-produced radionuclides for radiodiagnostic modalities in cancer studies.J. Phys.: Conf. Ser2019115301210610.1088/1742‑6596/1153/1/012106
    [Google Scholar]
  9. SignoreA. GlaudemansA.W.J.M. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques.Ann. Nucl. Med.2011251068170010.1007/s12149‑011‑0521‑z21837469
    [Google Scholar]
  10. NaqviS.A.R. 99m Tc‐labeled antibiotics for infection diagnosis: Mechanism, action, and progress.Chem. Biol. Drug Des.2022991567410.1111/cbdd.1392334265177
    [Google Scholar]
  11. AmetameyS.M. HonerM. SchubigerP.A. Molecular imaging with PET.Chem. Rev.200810851501151610.1021/cr078242618426240
    [Google Scholar]
  12. DobruckiL.W. SinusasA.J. PET and SPECT in cardiovascular molecular imaging.Nat. Rev. Cardiol.201071384710.1038/nrcardio.2009.20119935740
    [Google Scholar]
  13. NaqviS.A.R. JabbarT. AlharbiM.A. NoureenA. AlharbiN.K. SheraziT.A. ShahzadiA. AhmedA.E. AfzalM.S. ImranM.B. Radiosynthesis, quality control, biodistribution, and infection-imaging study of a new 99mTc-labeled ertapenem radiopharmaceutical.Front Chem.202210102038710.3389/fchem.2022.102038736426099
    [Google Scholar]
  14. GhobrilC. LamannaG. Kueny-StotzM. GarofaloA. BilloteyC. Felder-FleschD. Dendrimers in nuclear medical imaging.New J. Chem.201236231032310.1039/C1NJ20416E
    [Google Scholar]
  15. FunkhouserJ. Reinventing pharma: The theranostic revolution.Curr. Drug Discov.200221719
    [Google Scholar]
  16. ShendeP. TrivediR. Nanotheranostics in epilepsy: A perspective for multimodal diagnosis and strategic management.Nano Select2021271277129010.1002/nano.202000141
    [Google Scholar]
  17. VelikyanI. (Radio)Theranostic patient management in oncology exemplified by neuroendocrine neoplasms, prostate cancer, and breast cancer.Pharmaceuticals20201333910.3390/ph1303003932151049
    [Google Scholar]
  18. TanE.H. GohS.W. Exploring new frontiers in molecular imaging: Emergence of 68 Ga PET/CT.World J. Radiol.201022556710.4329/wjr.v2.i2.5521160919
    [Google Scholar]
  19. AhmedovaA. TodorovB. BurdzhievN. GozeC. Copper radiopharmaceuticals for theranostic applications.Eur. J. Med. Chem.20181571406142510.1016/j.ejmech.2018.08.05130282317
    [Google Scholar]
  20. BallingerJ.R. Theranostic radiopharmaceuticals: Established agents in current use.Br. J. Radiol.20189110912017096910.1259/bjr.2017096929474096
    [Google Scholar]
  21. InoueY. ItohH. NagaharaK. HataH. MitsuiK. Relationships of radiation dose indices with body size indices in adult body computed tomography.Tomography2023941381139210.3390/tomography904011037489478
    [Google Scholar]
  22. HuangH. HuangF. LiangX. FuY. ChengZ. HuangY. ChenZ. DuanY. ChenY. Afatinib reverses EMT via inhibiting CD44-Stat3 axis to promote radiosensitivity in nasopharyngeal carcinoma.Pharmaceuticals20221613710.3390/ph1601003736678534
    [Google Scholar]
  23. SaleemS.M. JabbarT. ImranM.B. NoureenA. SheraziT.A. AfzalM.S. Rab NawazH.Z. RamadanM.F. AlkahtaniA.M. AlsuwatM.A. AlmubarakH.A. MomenahM.A. NaqviS.A.R. Radiosynthesis and preclinical evaluation of [99mTc]Tc-Tigecycline radiopharmaceutical to diagnose bacterial infections.Pharmaceuticals20241710128310.3390/ph1710128339458924
    [Google Scholar]
  24. Kraeber-BodéréF. BarbetJ. Challenges in nuclear medicine: Innovative theranostic tools for personalized medicine.Front. Med. (Lausanne)201411625705627
    [Google Scholar]
  25. NaqviS.A.R. HassanA.J. JanjuaM.R.S.A. AbbasN. ZahoorA.F. HassanS.U. HussainA. Radiolabeling and preclinical animal model evaluation of DTPA coupled 99m Tc-labelled flutamide complex ([ 99m Tc]DTPA-FLUT) as a potential radiotracer for cancer imaging.Acta Radiol.202465894094910.1177/0284185124124916138751050
    [Google Scholar]
  26. PellicoJ. GawneP.J. T M de RosalesR. Radiolabelling of nanomaterials for medical imaging and therapy.Chem. Soc. Rev.20215053355342310.1039/D0CS00384K33491714
    [Google Scholar]
  27. ChenZ. HaiderA. ChenJ. XiaoZ. GobbiL. HonerM. GretherU. ArnoldS.E. JosephsonL. LiangS.H. The repertoire of small-molecule PET probes for neuroinflammation imaging: Challenges and opportunities beyond TSPO.J. Med. Chem.20216424176561768910.1021/acs.jmedchem.1c0157134905377
    [Google Scholar]
  28. FarzinL. SheibaniS. MoassesiM.E. ShamsipurM. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions.J. Biomed. Mater. Res. A2019107125128510.1002/jbm.a.3655030358098
    [Google Scholar]
  29. PardridgeW.M. Blood–brain barrier delivery.Drug Discov. Today2007121-2546110.1016/j.drudis.2006.10.01317198973
    [Google Scholar]
  30. GoelM. MackeyevY. KrishnanS. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts.Cancer Nanotechnol.20231411510.1186/s12645‑023‑00165‑y36865684
    [Google Scholar]
  31. HussainA. AttiqueF. NaqviS.A.R. AliA. IbrahimM. HussainH. ZafarF. IqbalR.S. AyubM.A. AssiriM.A. ImranM. UllahS. Nanoformulation of Curcuma longa root extract and evaluation of its dissolution potential.ACS Omega2023811088109610.1021/acsomega.2c0625836643543
    [Google Scholar]
  32. RossinR. PanD. QiK. TurnerJ.L. SunX. WooleyK.L. WelchM.J. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: Synthesis, radiolabeling, and biologic evaluation.J. Nucl. Med.20054671210121816000291
    [Google Scholar]
  33. PanD. LanzaG.M. WicklineS.A. CaruthersS.D. Nanomedicine: Perspective and promises with ligand-directed molecular imaging.Eur. J. Radiol.200970227428510.1016/j.ejrad.2009.01.04219268515
    [Google Scholar]
  34. AssadiM. NabipourI. The role of nanotechnology in nuclear medicine as a limb of molecular medicine with emphasis on medical roadmap of Iran.International Congress of Nuclear Medicine and Molecular ImagingIran, 2009
    [Google Scholar]
  35. CaiW. ChenX. Multimodality molecular imaging of tumor angiogenesis.J. Nucl. Med.200849Suppl. 2113S128S10.2967/jnumed.107.04592218523069
    [Google Scholar]
  36. ZhangZ. WangL. GuoZ. SunY. YanJ. A pH-sensitive imidazole grafted polymeric micelles nanoplatform based on ROS amplification for ferroptosis-enhanced chemodynamic therapy.Colloids Surf. B Biointerfaces202423711387110.1016/j.colsurfb.2024.11387138547796
    [Google Scholar]
  37. BassecoulardE. LeluA. ZittM. Mapping nanosciences by citation flows: A preliminary analysis.Scientometrics200770385988010.1007/s11192‑007‑0315‑1
    [Google Scholar]
  38. SahooSK ParveenS PandaJJ The present and future of nanotechnology in human health care.Nanomedicine in CancerTaylor and Francis Group201777580610.1201/b22358‑32
    [Google Scholar]
  39. ZengM. GuoD. Fernández-VaroG. ZhangX. FuS. JuS. YangH. LiuX. WangY.C. ZengY. CasalsG. CasalsE. The integration of nanomedicine with traditional chinese medicine: Drug delivery of natural products and other opportunities.Mol. Pharm.202320288690410.1021/acs.molpharmaceut.2c0088236563052
    [Google Scholar]
  40. BilalB. NiaziR. NadeemS. FaridM.A. NazirM.S. AkhterT. JavedM. MohyuddinA. RaufA. AliZ. NaqviS.A.R. MuhammadN. ElkaeedE.B. IbrahiumH.A. AwwadN.S. HassanS.U. Fabrication of guided tissue regeneration membrane using lignin-mediated ZnO nanoparticles in biopolymer matrix for antimicrobial activity.Front Chem.20221083785810.3389/fchem.2022.83785835518713
    [Google Scholar]
  41. SunN. ZhaoL. ZhuJ. LiY. SongN. XingY. QiaoW. HuangH. ZhaoJ. 131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy.Int. J. Nanomed.2019144367438110.2147/IJN.S20325931354266
    [Google Scholar]
  42. ZhangC. ChaiJ. JiaQ. TanJ. MengZ. LiN. YuanM. Evaluating the therapeutic efficacy of radiolabeled BSA @ CuS nanoparticle‐induced radio‐photothermal therapy against anaplastic thyroid cancer.IUBMB Life202274543344510.1002/iub.260135112451
    [Google Scholar]
  43. SunX. HuangX. GuoJ. ZhuW. DingY. NiuG. WangA. KiesewetterD.O. WangZ.L. SunS. ChenX. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging.J. Am. Chem. Soc.201413651706170910.1021/ja410438n24401138
    [Google Scholar]
  44. ChenM. GuoZ. ChenQ. WeiJ. LiJ. ShiC. XuD. ZhouD. ZhangX. ZhengN. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy.Chem. Sci. (Camb.)20189184268427410.1039/C8SC00104A29780557
    [Google Scholar]
  45. SpinelliA.E. FerdeghiniM. CavedonC. ZivelonghiE. CalandrinoR. FenziA. SbarbatiA. BoschiF. First human Cerenkography.J. Biomed. Opt.201318202050210.1117/1.JBO.18.2.02050223334715
    [Google Scholar]
  46. HuH. HuangP. WeissO.J. YanX. YueX. ZhangM.G. TangY. NieL. MaY. NiuG. WuK. ChenX. PET and NIR optical imaging using self-illuminating 64 Cu-doped chelator-free gold nanoclusters.Biomaterials201435379868987610.1016/j.biomaterials.2014.08.03825224367
    [Google Scholar]
  47. YangZ. TianR. WuJ. FanQ. YungB.C. NiuG. JacobsonO. WangZ. LiuG. YuG. HuangW. SongJ. ChenX. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging.ACS Nano20171144247425510.1021/acsnano.7b0126128345873
    [Google Scholar]
  48. ChenG. QiuH. PrasadP.N. ChenX. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics.Chem. Rev.2014114105161521410.1021/cr400425h24605868
    [Google Scholar]
  49. GuoW. SunX. JacobsonO. YanX. MinK. SrivatsanA. NiuG. KiesewetterD.O. ChangJ. ChenX. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: Improved radiochemical stability and controllable Cerenkov luminescence.ACS Nano20159148849510.1021/nn505660r25549258
    [Google Scholar]
  50. YangY. TuD. ZhangY. ZhangP. ChenX. Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes.iScience202124210206210.1016/j.isci.2021.10206233604522
    [Google Scholar]
  51. Pérez-CampañaC. Gómez-VallejoV. MartinA. San SebastiánE. MoyaS.E. ReeseT. ZioloR.F. LlopJ. Tracing nanoparticles in vivo: A new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation.Analyst (Lond.)2012137214902490610.1039/c2an35863h22957337
    [Google Scholar]
  52. Pérez-CampañaC. Gómez-VallejoV. PuigivilaM. MartínA. Calvo-FernándezT. MoyaS.E. ZioloR.F. ReeseT. LlopJ. Biodistribution of different sized nanoparticles assessed by positron emission tomography: A general strategy for direct activation of metal oxide particles.ACS Nano2013743498350510.1021/nn400450p23473535
    [Google Scholar]
  53. MunaweeraI. ShiY. KoneruB. SaezR. AlievA. Di PasquaA.J. BalkusK.J. Chemoradiotherapeutic magnetic nanoparticles for targeted treatment of nonsmall cell lung cancer.Mol. Pharm.201512103588359610.1021/acs.molpharmaceut.5b0030426325115
    [Google Scholar]
  54. AhmedM.T. NaqviS.A.R. RasheedR. ZahoorA.F. UsmanM. HussainZ. Technetium-99m-labeled sulfadiazine: A targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Escherichia coli in mouse and rabbit models.Appl. Biochem. Biotechnol.2017183137438410.1007/s12010‑017‑2451‑228285355
    [Google Scholar]
  55. CuiX. MatheD. KovácsN. HorváthI. Jauregui-OsoroM. Torres Martin de RosalesR. MullenG.E.D. WongW. YanY. KrügerD. KhlobystovA.N. Gimenez-LopezM. SemjeniM. SzigetiK. VeresD.S. LuH. HernándezI. GillinW.P. ProttiA. PetikK.K. GreenM.A. BlowerP.J. Synthesis, characterization, and application of core–shell Co0.16Fe2.84O4@NaYF4 (Yb, Er) and Fe3O4@NaYF4 (Yb, Tm) nanoparticle as Trimodal (MRI, PET/SPECT, and optical) imaging agents.Bioconjug. Chem.201627231932810.1021/acs.bioconjchem.5b0033826172432
    [Google Scholar]
  56. SunY. YuM. LiangS. ZhangY. LiC. MouT. YangW. ZhangX. LiB. HuangC. LiF. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node.Biomaterials201132112999300710.1016/j.biomaterials.2011.01.01121295345
    [Google Scholar]
  57. SonD.H. HughesS.M. YinY. Paul AlivisatosA. Cation exchange reactions in ionic nanocrystals.Science200430656981009101210.1126/science.110375515528440
    [Google Scholar]
  58. SunY. ZhuX. PengJ. LiF. Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging.ACS Nano2013712112901130010.1021/nn405082y24205939
    [Google Scholar]
  59. YangY. SunY. CaoT. PengJ. LiuY. WuY. FengW. ZhangY. LiF. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.Biomaterials201334377478310.1016/j.biomaterials.2012.10.02223117216
    [Google Scholar]
  60. OriuchiN. YangD.J. Antibodies for targeted imaging: Properties and radiolabeling.Targeted Molecular Imaging in Oncology.New York, NYSpringer2001838710.1007/978‑1‑4757‑3505‑5_6
    [Google Scholar]
  61. GoelS. ChenF. EhlerdingE.B. CaiW. Intrinsically radiolabeled nanoparticles: An emerging paradigm.Small201410193825383010.1002/smll.20140104824978934
    [Google Scholar]
  62. WangY. XuY. SongJ. LiuX. LiuS. YangN. WangL. LiuY. ZhaoY. ZhouW. ZhangY. Tumor cell-targeting and tumor microenvironment–responsive nanoplatforms for the multimodal imaging-guided photodynamic/photothermal/chemodynamic treatment of cervical cancer.Int. J. Nanomed.2024195837585810.2147/IJN.S46604238887692
    [Google Scholar]
  63. ZhuL. BaiM. XiaoS. LiuY. ZhuQ. WangZ. ZhaoJ. ZhangW. ChenD. In-situ monitoring of cellular H2O2 within 3D cell clusters using conductive scaffolds.Talanta202427912655910.1016/j.talanta.2024.12655939018950
    [Google Scholar]
  64. LambJ. HollandJ.P. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI.J. Nucl. Med.201859338238910.2967/jnumed.116.18741929025988
    [Google Scholar]
  65. ShafferT.M. WallM.A. HarmsenS. LongoV.A. DrainC.M. KircherM.F. GrimmJ. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes.Nano Lett.201515286486810.1021/nl503522y25559467
    [Google Scholar]
  66. ChenY. DengY. LiY. QinY. ZhouZ. YangH. SunY. Oxygen-independent radiodynamic therapy: Radiation-boosted chemodynamics for reprogramming the tumor immune environment and enhancing antitumor immune response.ACS Appl. Mater. Interfaces20241617215462155610.1021/acsami.4c0079338626342
    [Google Scholar]
  67. CuiX. BeloS. KrügerD. YanY. de RosalesR.T.M. Jauregui-OsoroM. YeH. SuS. MatheD. KovácsN. HorváthI. SemjeniM. SunasseeK. SzigetiK. GreenM.A. BlowerP.J. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging.Biomaterials201435225840584610.1016/j.biomaterials.2014.04.00424768194
    [Google Scholar]
  68. SharmaR. XuY. KimS.W. SchuellerM.J. AlexoffD. SmithS.D. WangW. SchlyerD. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging.Nanoscale20135167476748310.1039/c3nr02519e23832243
    [Google Scholar]
  69. JiangZ. LiY. WeiZ. YuanB. WangY. AkakuruO.U. LiY. LiJ. WuA. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo. Bioact. Mater.20216374074810.1016/j.bioactmat.2020.08.03633024895
    [Google Scholar]
  70. NelA.E. MädlerL. VelegolD. XiaT. HoekE.M.V. SomasundaranP. KlaessigF. CastranovaV. ThompsonM. Understanding biophysicochemical interactions at the nano–bio interface.Nat. Mater.20098754355710.1038/nmat244219525947
    [Google Scholar]
  71. XingY. ZhaoJ. ContiP.S. ChenK. Radiolabeled nanoparticles for multimodality tumor imaging.Theranostics20144329030610.7150/thno.734124505237
    [Google Scholar]
  72. BrechbielM.W. Bifunctional chelates for metal nuclides.Q. J. Nucl. Med. Mol. Imaging200852216617310.1007/s00259‑008‑0911‑218043537
    [Google Scholar]
  73. PriceE.W. OrvigC. Matching chelators to radiometals for radiopharmaceuticals.Chem. Soc. Rev.201443126029010.1039/C3CS60304K24173525
    [Google Scholar]
  74. HermansonG.T. Bioconjugate techniques.Academic Press2013
    [Google Scholar]
  75. LattuadaL. BargeA. CravottoG. GiovenzanaG.B. TeiL. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents.Chem. Soc. Rev.20114053019304910.1039/c0cs00199f21384039
    [Google Scholar]
  76. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  77. ErdiY.E. Limits of tumor detectability in nuclear medicine and PET.Mol. Imaging Radionucl. Ther.2012211232810.4274/Mirt.21.0323486256
    [Google Scholar]
  78. ShenK. LiuB. ZhouX. JiY. ChenL. WangQ. XueW. The evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancer.Front. Oncol.20211168379310.3389/fonc.2021.68379334395251
    [Google Scholar]
  79. WeiY. TangT. PangH.B. Cellular internalization of bystander nanomaterial induced by TAT-nanoparticles and regulated by extracellular cysteine.Nat. Commun.2019101364610.1038/s41467‑019‑11631‑w31409778
    [Google Scholar]
  80. YangC.T. HattiholiA. SelvanS.T. YanS.X. FangW.W. ChandrasekharanP. KoteswaraiahP. HeroldC.J. GulyásB. AwS.E. HeT. NgD.C.E. PadmanabhanP. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging.Acta Biomater.2020110153610.1016/j.actbio.2020.03.04732335310
    [Google Scholar]
  81. XiaY. MathamM.V. SuH. PadmanabhanP. GulyásB. Nanoparticulate contrast agents for multimodality molecular imaging.J. Biomed. Nanotechnol.20161281553158410.1166/jbn.2016.225829341579
    [Google Scholar]
  82. KimJ. LeeN. HyeonT. Recent development of nanoparticles for molecular imaging.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201737521072017002210.1098/rsta.2017.002229038377
    [Google Scholar]
  83. MassoudT.F. GambhirS.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light.Genes Dev.200317554558010.1101/gad.104740312629038
    [Google Scholar]
  84. CaiW. ChenK. LiZ.B. GambhirS.S. ChenX. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature.J. Nucl. Med.200748111862187010.2967/jnumed.107.04321617942800
    [Google Scholar]
  85. ChenK. LiZ.B. WangH. CaiW. ChenX. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots.Eur. J. Nucl. Med. Mol. Imaging200835122235224410.1007/s00259‑008‑0860‑818566815
    [Google Scholar]
  86. ZhangR. LuW. WenX. HuangM. ZhouM. LiangD. LiC. Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis.J. Nucl. Med.201152695896410.2967/jnumed.110.08322021571801
    [Google Scholar]
  87. LiangM. LiuX. ChengD. LiuG. DouS. WangY. RusckowskiM. HnatowichD.J. Multimodality nuclear and fluorescence tumor imaging in mice using a streptavidin nanoparticle.Bioconjug. Chem.20102171385138810.1021/bc100081h20557066
    [Google Scholar]
  88. LeeH.Y. LiZ. ChenK. HsuA.R. XuC. XieJ. SunS. ChenX. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles.J. Nucl. Med.20084981371137910.2967/jnumed.108.05124318632815
    [Google Scholar]
  89. ChoiJ. ParkJ.C. NahH. WooS. OhJ. KimK.M. CheonG.J. ChangY. YooJ. CheonJ. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging.Angew. Chem. Int. Ed.200847336259626210.1002/anie.20080136918613191
    [Google Scholar]
  90. MisriR. MeierD. YungA.C. KozlowskiP. HäfeliU.O. Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe.Nanomedicine2012861007101610.1016/j.nano.2011.10.01322100757
    [Google Scholar]
  91. MisriR. SaatchiK. NgS.S.W. KumarU. HäfeliU.O. Evaluation of 111In labeled antibodies for SPECT imaging of mesothelin expressing tumors.Nucl. Med. Biol.201138688589610.1016/j.nucmedbio.2011.02.01321843785
    [Google Scholar]
  92. TangJ. BaxterS. MenonA. AlaargA. Sanchez-GaytanB.L. FayF. ZhaoY. OuimetM. BrazaM.S. LongoV.A. Abdel-AttiD. DuivenvoordenR. CalcagnoC. StormG. TsimikasS. MooreK.J. SwirskiF.K. NahrendorfM. FisherE.A. Pérez-MedinaC. FayadZ.A. ReinerT. MulderW.J.M. Immune cell screening of a nanoparticle library improves atherosclerosis therapy.Proc. Natl. Acad. Sci. USA201611344E6731E674010.1073/pnas.160962911327791119
    [Google Scholar]
  93. YangX. HongH. GrailerJ.J. RowlandI.J. JavadiA. HurleyS.A. XiaoY. YangY. ZhangY. NicklesR.J. CaiW. SteeberD.A. GongS. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging.Biomaterials201132174151416010.1016/j.biomaterials.2011.02.00621367450
    [Google Scholar]
  94. ChristensenE. HenriksenJ.R. JørgensenJ.T. AmitayY. SchmeedaH. GabizonA.A. KjærA. AndresenT.L. HansenA.E. Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts.Int. J. Nanomed.2018137647765610.2147/IJN.S18257930538449
    [Google Scholar]
  95. KircherM.F. GambhirS.S. GrimmJ. Noninvasive cell-tracking methods.Nat. Rev. Clin. Oncol.201181167768810.1038/nrclinonc.2011.14121946842
    [Google Scholar]
  96. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  97. FaircloughM. PrenantC. EllisB. BoutinH. McMahonA. BrownG. LocatelliP. JonesA.K.P. A new technique for the radiolabelling of mixed leukocytes with zirconium‐89 for inflammation imaging with positron emission tomography.J. Labelled Comp. Radiopharm.201659727027610.1002/jlcr.339227061114
    [Google Scholar]
  98. FaircloughM. EllisB. BoutinH. JonesA.K.P. McMahonA. AlzabinS. GennariA. PrenantC. Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography.Appl. Radiat. Isot.201713071210.1016/j.apradiso.2017.09.00428923298
    [Google Scholar]
  99. BhatnagarP. LiZ. ChoiY. GuoJ. LiF. LeeD.Y. FigliolaM. HulsH. LeeD.A. ZalT. LiK.C. CooperL.J.N. Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper-64.Integr. Biol.20135123123810.1039/c2ib20093g23034721
    [Google Scholar]
  100. LeeS.B. AhnS.B. LeeS.W. JeongS.Y. GhilsukY. AhnB.C. KimE.M. JeongH.J. LeeJ. LimD.K. JeonY.H. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence.NPG Asia Mater.201686e28110.1038/am.2016.80
    [Google Scholar]
  101. BelderbosS. González-GómezM.A. CleerenF. WoutersJ. PiñeiroY. DerooseC.M. CoosemansA. GsellW. BormansG. RivasJ. HimmelreichU. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@Al(OH)3 nanoparticles: Comparison of nanoparticle and nanoparticle-labeled stem cell distribution.EJNMMI Res.20201017310.1186/s13550‑020‑00655‑932607918
    [Google Scholar]
  102. Zaw ThinM. AllanH. BofingerR. KostelecT.D. GuillaumeS. ConnellJ.J. PatrickP.S. HailesH.C. TaborA.B. LythgoeM.F. StuckeyD.J. KalberT.L. Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours.Nanoscale20201231165701658510.1039/D0NR03237A32749427
    [Google Scholar]
  103. KimH.D. YunM.J. LeeJ.H. KimK.H. KimT.G. Transparent multi-level resistive switching phenomena observed in ITO/RGO/ITO memory cells by the sol-gel dip-coating method.Sci. Rep.201441461410.1038/srep0461424714566
    [Google Scholar]
  104. JungK.O. KimT.J. YuJ.H. RheeS. ZhaoW. HaB. Red-HorseK. GambhirS.S. PratxG. Whole-body tracking of single cells via positron emission tomography.Nat. Biomed. Eng.20204883584410.1038/s41551‑020‑0570‑532541917
    [Google Scholar]
  105. YaoM. ShiX. ZuoC. MaM. ZhangL. ZhangH. LiX. YangG.Y. TangY. WuR. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia.ACS Appl. Mater. Interfaces20201234378853789510.1021/acsami.0c1050032806884
    [Google Scholar]
  106. TavaréR. Escuin-OrdinasH. MokS. McCrackenM.N. ZettlitzK.A. SalazarF.B. WitteO.N. RibasA. WuA.M. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy.Cancer Res.2016761738210.1158/0008‑5472.CAN‑15‑170726573799
    [Google Scholar]
  107. StantonS.E. EaryJ.F. MarzbaniE.A. MankoffD. SalazarL.G. HigginsD. ChildsJ. ReichowJ. DangY. DisisM.L. Concurrent SPECT/PET-CT imaging as a method for tracking adoptively transferred T-cells in vivo.J. Immunother. Cancer2016412710.1186/s40425‑016‑0131‑327190628
    [Google Scholar]
  108. KrebsS. AhadA. CarterL.M. EyquemJ. BrandC. BellM. PonomarevV. ReinerT. MearesC.F. GottschalkS. SadelainM. LarsonS.M. WeberW.A. Antibody with infinite affinity for in vivo tracking of genetically engineered lymphocytes.J. Nucl. Med.201859121894190010.2967/jnumed.118.20804129903928
    [Google Scholar]
  109. AliciE. KonstantinidisK.V. AintsA. DilberM.S. Abedi-ValugerdiM. Visualization of 5T33 myeloma cells in the C57BL/KaLwRij mouse: Establishment of a new syngeneic murine model of multiple myeloma.Exp. Hematol.200432111064107210.1016/j.exphem.2004.07.01915539084
    [Google Scholar]
  110. CharoenphunP. MeszarosL.K. ChuamsaamarkkeeK. Sharif-PaghalehE. BallingerJ.R. FerrisT.J. WentM.J. MullenG.E.D. BlowerP.J. [89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography.Eur. J. Nucl. Med. Mol. Imaging201542227828710.1007/s00259‑014‑2945‑x25359636
    [Google Scholar]
  111. DiocouS. VolpeA. Jauregui-OsoroM. BoudjemelineM. ChuamsaamarkkeeK. ManF. BlowerP.J. NgT. MullenG.E.D. FruhwirthG.O. [18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model.Sci. Rep.20177194610.1038/s41598‑017‑01044‑428424464
    [Google Scholar]
  112. MalcolmF. AlanC.P. The role of gamma scintigraphy in the study of drug delivery.Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine ProfessionalThe University of New Mexico2003176
    [Google Scholar]
  113. LeithaT. Nuclear medicine: Proof of principle for targeted drugs in diagnosis and therapy.Curr. Pharm. Des.200915217318710.2174/13816120978700289819149611
    [Google Scholar]
  114. LappinG. TempleS. Radiotracers in Drug Development.200610.1201/9781420004984
    [Google Scholar]
  115. RobertsD. LockleyB. Radiosynthesis-A Vital Role Supporting Drug Development?Drug Discov. World200455964
    [Google Scholar]
  116. WangS.J. HuangW.S. ChuangC.M. ChangC.H. LeeT.W. TingG. ChenM.H. ChangP.M.H. ChaoT.C. TengH.W. ChaoY. ChenY.M. LinT.P. ChangY.J. ChenS.J. HuangY.R. LanK.L. A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of 188Re-liposome in patients with metastatic tumors.EJNMMI Res.2019914610.1186/s13550‑019‑0509‑631119414
    [Google Scholar]
  117. KotagiriN. CooperM.L. RettigM. EgbulefuC. PriorJ. CuiG. KarmakarP. ZhouM. YangX. SudlowG. MarsalaL. ChanswangphuwanaC. LuL. Habimana-GriffinL. ShokeenM. XuX. WeilbaecherK. TomassonM. LanzaG. DiPersioJ.F. AchilefuS. Radionuclides transform chemotherapeutics into phototherapeutics for precise treatment of disseminated cancer.Nat. Commun.20189127510.1038/s41467‑017‑02758‑929348537
    [Google Scholar]
  118. ShafferT.M. PrattE.C. GrimmJ. Utilizing the power of Cerenkov light with nanotechnology.Nat. Nanotechnol.201712210611710.1038/nnano.2016.30128167827
    [Google Scholar]
  119. KotagiriN. SudlowG.P. AkersW.J. AchilefuS. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers.Nat. Nanotechnol.201510437037910.1038/nnano.2015.1725751304
    [Google Scholar]
  120. DuanD. LiuH. XuY. HanY. XuM. ZhangZ. LiuZ. Activating TiO2 nanoparticles: Gallium-68 serves as a high-yield photon emitter for cerenkov-induced photodynamic therapy.ACS Appl. Mater. Interfaces20181065278528610.1021/acsami.7b1790229368518
    [Google Scholar]
  121. TangR. ZheleznyakA. MixdorfM. GhaiA. PriorJ. BlackK.C.L. ShokeenM. ReedN. BiswasP. AchilefuS. Osteotropic radiolabeled nanophotosensitizer for imaging and treating multiple myeloma.ACS Nano20201444255426410.1021/acsnano.9b0961832223222
    [Google Scholar]
  122. KavadiyaS. BiswasP. Design of Cerenkov radiation–assisted photoactivation of TiO2 nanoparticles and reactive oxygen species generation for cancer treatment.J. Nucl. Med.201960570270910.2967/jnumed.118.21560830291195
    [Google Scholar]
  123. NiD. FerreiraC.A. BarnhartT.E. QuachV. YuB. JiangD. WeiW. LiuH. EngleJ.W. HuP. CaiW. Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy.J. Am. Chem. Soc.201814044149711497910.1021/jacs.8b0937430336003
    [Google Scholar]
  124. YuB. NiD. RosenkransZ.T. BarnhartT.E. WeiH. FerreiraC.A. LanX. EngleJ.W. HeQ. YuF. CaiW. A “Missile‐Detonation” strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics.Adv. Mater.20193152190489410.1002/adma.20190489431709622
    [Google Scholar]
  125. PellicoJ. Ruiz-CabelloJ. Saiz-AlíaM. del RosarioG. CajaS. MontoyaM. Fernández de ManuelL. MoralesM.P. GutiérrezL. GalianaB. EnríquezJ.A. HerranzF. Fast synthesis and bioconjugation of 68 Ga core‐doped extremely small iron oxide nanoparticles for PET/MR imaging.Contrast Media Mol. Imaging201611320321010.1002/cmmi.168126748837
    [Google Scholar]
  126. KoziorowskiJ. StanciuA. Gomez-VallejoV. LlopJ. Radiolabeled nanoparticles for cancer diagnosis and therapy.Anticancer. Agents Med. Chem.201717333335410.2174/187152061666616021916290226899184
    [Google Scholar]
  127. El-GharebW.I. SwidanM.M. IbrahimI.T. Abd El-BaryA. TadrosM.I. SakrT.M. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent.Int. J. Pharm.202058611951410.1016/j.ijpharm.2020.11951432565281
    [Google Scholar]
  128. MokhodoevaO. VlkM. MálkováE. KuklevaE. MičolováP. ŠtambergK. ŠloufM. DzhenlodaR. KozempelJ. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs.J. Nanopart. Res.2016181030110.1007/s11051‑016‑3615‑7
    [Google Scholar]
  129. RosenholmJ.M. MamaevaV. SahlgrenC. LindénM. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage.Nanomedicine (Lond.)20127111112010.2217/nnm.11.16622191780
    [Google Scholar]
  130. GaoH. LiuX. TangW. NiuD. ZhouB. ZhangH. LiuW. GuB. ZhouX. ZhengY. SunY. JiaX. ZhouL. 99m Tc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery.Nanoscale2016847195731958010.1039/C6NR07062K27874119
    [Google Scholar]
  131. WildingI.R. CoupeA.J. DavisS.S. The role of γ-scintigraphy in oral drug delivery.Adv. Drug Deliv. Rev.2001461-310312410.1016/S0169‑409X(00)00135‑611259836
    [Google Scholar]
  132. ChakravartyR. HongH. CaiW. Positron emission tomography image-guided drug delivery: Current status and future perspectives.Mol. Pharm.201411113777379710.1021/mp500173s24865108
    [Google Scholar]
  133. HatefiA. MinkoT. Advances in image-guided drug delivery.Drug Deliv. Transl. Res.2012211210.1007/s13346‑011‑0057‑825786596
    [Google Scholar]
  134. DaiW. ZhangJ. WangY. JiaoC. SongZ. MaY. DingY. ZhangZ. HeX. Radiolabeling of nanomaterials: Advantages and challenges.Front. Toxicol.2021375331610.3389/ftox.2021.75331635295152
    [Google Scholar]
  135. Raza NaqviS.A. MatzowT. FinucaneC. NagraS.A. IshfaqM.M. MatherS.J. SosabowskiJ. Insertion of a lysosomal enzyme cleavage site into the sequence of a radiolabeled neuropeptide influences cell trafficking in vitro and in vivo. Cancer Biother. Radiopharm.2010251899510.1089/cbr.2009.066620187801
    [Google Scholar]
  136. YangY. LiuY. ChengC. ShiH. YangH. YuanH. NiC. Rational design of GO-modified Fe3O4/SiO2 nanoparticles with combined Rhenium-188 and gambogic acid for magnetic target therapy.ACS Appl. Mater. Interfaces2017934281952820810.1021/acsami.7b0758928793762
    [Google Scholar]
  137. HuangX. ZhangF. WangH. NiuG. ChoiK.Y. SwierczewskaM. Mesenchymal stem cell-based delivery of radiolabeled nanoparticles for targeted imaging and therapy of cancer.Theranostics201558706719
    [Google Scholar]
  138. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  139. Helal-NetoE. de BarrosA.O.S. Saldanha-GamaR. Brandão-CostaR. AlencarL.M.R. dos SantosC.C. Martínez-MáñezR. Ricci-JuniorE. AlexisF. MorandiV. Barja-FidalgoC. Santos-OliveiraR. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles.Int. J. Mol. Sci.201921123010.3390/ijms2101023031905708
    [Google Scholar]
  140. WignerP. ZielinskiK. MichlewskaS. DanielskaP. MarczakA. RicciE.J. Santos-OliveiraR. SzwedM. Disturbance of cellular homeostasis as a molecular risk evaluation of human endothelial cells exposed to nanoparticles.Sci. Rep.2021111384910.1038/s41598‑021‑83291‑033589697
    [Google Scholar]
  141. RizzoliR. BodyJ.J. BrandiM.L. Cannata-AndíaJ. ChappardD. El MaghraouiA. The role of biomarkers in bone care: A European perspective.Osteoporos. Int.20193061145116530805679
    [Google Scholar]
  142. U.S. Food and Drug Administration Part 211—Current good manufacturing practice for finished pharmaceuticals.2011Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=211
  143. LahootiA. SarkarS. LaurentS. ShanehsazzadehS. KhodadadianA. MahdaviS.R. Automated radiolabeling of nanoparticles: Advances, challenges, and clinical translation.EJNMMI Res.202010111931900594
    [Google Scholar]
  144. AlexisF. PridgenE. MolnarL.K. FarokhzadO.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharm.20085450551510.1021/mp800051m18672949
    [Google Scholar]
  145. JainR.K. StylianopoulosT. Delivering nanomedicine to solid tumors.Nat. Rev. Clin. Oncol.201071165366410.1038/nrclinonc.2010.13920838415
    [Google Scholar]
  146. ChenH. ZhangX. DaiS. MaY. ZhangY. ZhangL. Artificial intelligence in nanomedicine: From deep learning to next-generation nanotechnology.Nanomedicine (Lond.)2021162220372056
    [Google Scholar]
  147. ZhuX. LiY. GuN. Application of artificial intelligence in the exploration and optimization of biomedical nanomaterials.Nano Biomed. Eng.202315334235310.26599/NBE.2023.9290035
    [Google Scholar]
  148. AdirO. PoleyM. ChenG. FroimS. KrinskyN. ShkloverJ. Shainsky-RoitmanJ. LammersT. SchroederA. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.20190198931286573
    [Google Scholar]
  149. WangH. CaoH. YangL. Machine learning-driven multidomain nanomaterial design: From bibliometric analysis to applications.ACS Appl. Nano Mater.2024723265792660010.1021/acsanm.4c04940
    [Google Scholar]
  150. KapoorDU SharmaJB GandhiSM PrajapatiBG ThanawuthK LimmatvapiratS SriamornsakP AI-driven design and optimization of nanoparticle-based drug delivery systems.Sci. Eng. Health Stud2024182401000310.69598/sehs.18.24010003
    [Google Scholar]
  151. U.S. Food and Drug Administration CFR - Code of Federal Regulations Title 21.2025Available from: www.fda.gov
  152. European Medicines Agency Guideline on Radiopharmaceuticals.2017Available from: www.ema.europa.eu
  153. KhanS Garcia Gonzalez MoralS JahanA MkwashiA. Horizon scanning report: Identification of innovations for PET radiopharmaceuticals in the context of the Welsh Health Service.Newcastle University2023https://eprints.ncl.ac.uk/303015
    [Google Scholar]
  154. HalwaniA.A. Development of pharmaceutical nanomedicines: from the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics1401010635057002
    [Google Scholar]
  155. International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). (2009). ICH Harmonised Tripartite Guideline: Nonclinical Evaluation for Anticancer Pharmaceuticals S9.Retrieved from: https://database.ich.org/sites/default/files/S9_Guideline.pdf
    [Google Scholar]
  156. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  157. Committee for Medicinal Products for Human Use (CHMP) Reflection paper on nanotechnology-based medicinal products.2021Available from: https://etp-nanomedicine.eu/wp-content/uploads/2018/10/reflection-paper-nanotechnology-based-medicinal-products-human-use_en-1.pdf
  158. KumarasamyR.V. NatarajanP.M. UmapathyV.R. RoyJ.R. MironescuM. PalanisamyC.P. Clinical applications and therapeutic potentials of advanced nanoparticles: A comprehensive review on completed human clinical trials.Front. Nanotechnol.20246147999310.3389/fnano.2024.1479993
    [Google Scholar]
  159. PhillipsE. Penate-MedinaO. ZanzonicoP.B. CarvajalR.D. MohanP. YeY. HummJ. GönenM. KalaigianH. SchöderH. StraussH.W. LarsonS.M. WiesnerU. BradburyM.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe.Sci. Transl. Med.20146260260ra14910.1126/scitranslmed.300952425355699
    [Google Scholar]
  160. KratochwilC. BruchertseiferF. GieselF.L. WeisM. VerburgF.A. MottaghyF. KopkaK. ApostolidisC. HaberkornU. MorgensternA. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer.J. Nucl. Med.201657121941194410.2967/jnumed.116.17867327390158
    [Google Scholar]
  161. StrosbergJ. El-HaddadG. WolinE. HendifarA. YaoJ. ChasenB. MittraE. KunzP.L. KulkeM.H. JaceneH. BushnellD. O’DorisioT.M. BaumR.P. KulkarniH.R. CaplinM. LebtahiR. HobdayT. DelpassandE. Van CutsemE. BensonA. SrirajaskanthanR. PavelM. MoraJ. BerlinJ. GrandeE. ReedN. SeregniE. ÖbergK. Lopera SierraM. SantoroP. ThevenetT. ErionJ.L. RuszniewskiP. KwekkeboomD. KrenningE. NETTER-1 Trial Investigators Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors.N. Engl. J. Med.2017376212513510.1056/NEJMoa160742728076709
    [Google Scholar]
  162. International Atomic Energy Agency (IAEA) Guidelines on good manufacturing practices for radiopharmaceuticals.2023Available from: www.iaea.org
  163. ThakorA.S. JokerstJ.V. GhanouniP. CampbellJ.L. MittraE. GambhirS.S. Clinically approved nanoparticle imaging agents.J. Nucl. Med.201657121833183710.2967/jnumed.116.18136227738007
    [Google Scholar]
  164. Risk Evaluation and Mitigation Strategies (REMS) overview.2023.U.S. FDA. . Available from: www.fda.gov
/content/journals/crp/10.2174/0118744710373025250423042401
Loading
/content/journals/crp/10.2174/0118744710373025250423042401
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test