Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

Presently, heavy particle ion radiation therapy is commonly utilized for the treatment of deep-seated malignancies, such as brain tumors. In addition to tumor treatment, these particles may negatively impact healthy nerve cells. Therefore, it is essential to investigate the radiobiological effects of these radiations on cells. Simulation studies that model the radiation of heavy particles and the exact geometrical configuration of nerve cells are essential and effective in evaluating potential cellular damage.

Methods

The NEURON software was employed in Geant4 code to simulate an individual nerve cell (ID no: NMO 06176) and a network of ten neural cells subjected to bombardment by Ti48 ion particles at an energy of 600 MeV/u.

Results

The absorbed energy differs among several components of individual cells and neural networks, including the soma and dendrites. The absorbed doses from Ti48 radiation in individual nerve cells and dendritic networks surpass those in the cell body, and this ratio remains consistent as the dosage escalates. The decrease in the initial length of dendrites in both individual cells and neuronal networks intensifies with increased dosages.

Discussion

The simulation results demonstrate that dendrites absorb a higher radiation dose than the soma, resulting in greater structural damage. This finding highlights the vulnerability of neuronal networks to high-LET radiation, with important implications for space radiation protection and clinical radiotherapy planning.

Conclusion

The diminution of dendritic length due to Ti48 radiation is more significant within the cellular network compared to isolated nerve cells.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710367266250506050409
2025-05-08
2025-09-01
Loading full text...

Full text loading...

References

  1. CacaoE. PariharV.K. LimoliC.L. CucinottaF.A. Stochastic modeling of radiation-induced dendritic damage on in silico mouse hippocampal neurons.Sci. Rep.201881549410.1038/s41598‑018‑23855‑9 29615729
    [Google Scholar]
  2. CucinottaF.A. AlpM. SulzmanF.M. WangM. Space radiation risks to the central nervous system.Life Sci. Space Res. 20142546910.1016/j.lssr.2014.06.003
    [Google Scholar]
  3. PariharV.K. AllenB. TranK.K. MacaraegT.G. ChuE.M. KwokS.F. ChmielewskiN.N. CraverB.M. BaulchJ.E. AcharyaM.M. CucinottaF.A. LimoliC.L. What happens to your brain on the way to Mars.Sci. Adv.201514e140025610.1126/sciadv.1400256 26180843
    [Google Scholar]
  4. PlanteI. PonomarevA. CucinottaF.A. 3D visualisation of the stochastic patterns of the radial dose in nano-volumes by a Monte Carlo simulation of HZE ion track structure.Radiat. Prot. Dosimetry20111432-415616110.1093/rpd/ncq526 21199826
    [Google Scholar]
  5. RabinB.M. Carrihill-KnollK.L. Shukitt-HaleB. Operant responding following exposure to HZE particles and its relationship to particle energy and linear energy transfer.Adv. Space Res.201148237037710.1016/j.asr.2011.03.008
    [Google Scholar]
  6. SchardtD. Elsässer, T.; Schulz-Ertner, D. Heavy-ion tumor therapy: Physical and radiobiological benefits.Rev. Mod. Phys.201082138342510.1103/RevModPhys.82.383
    [Google Scholar]
  7. KokhanV.S. DobyndeM.I. The effects of galactic cosmic rays on the central nervous system: From negative to unexpectedly positive effects that astronauts may encounter.Biology 202312340010.3390/biology12030400 36979092
    [Google Scholar]
  8. BayarchimegL. Simulation of radiation damage to neural cells with the geant4-DNA toolkit.EPJ Web Conf.201817320500510.1051/epjconf/201817305005
    [Google Scholar]
  9. ChmielewskiN.N. CaressiC. GiedzinskiE. PariharV.K. LimoliC.L. Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice.Environ. Mol. Mutagen.201657536437110.1002/em.22006 26996825
    [Google Scholar]
  10. HamadaN. ImaokaT. MasunagaS. OgataT. OkayasuR. TakahashiA. KatoT.A. KobayashiY. OhnishiT. OnoK. ShimadaY. TeshimaT. Recent advances in the biology of heavy-ion cancer therapy.J. Radiat. Res. 201051436538310.1269/jrr.09137 20679739
    [Google Scholar]
  11. PariharV.K. LimoliC.L. Cranial irradiation compromises neuronal architecture in the hippocampus.Proc. Natl. Acad. Sci. USA201311031128221282710.1073/pnas.1307301110 23858442
    [Google Scholar]
  12. ShiraiK. MizuiT. SuzukiY. OkamotoM. HanamuraK. YoshidaY. HinoM. NodaS. Al-jahdariW.S. ChakravartiA. ShiraoT. NakanoT. X irradiation changes dendritic spine morphology and density through reduction of cytoskeletal proteins in mature neurons.Radiat. Res.2013179663063610.1667/RR3098.1 23578130
    [Google Scholar]
  13. AlpM. CucinottaF.A. Track structure model of microscopic energy deposition by protons and heavy ions in segments of neuronal cell dendrites represented by cylinders or spheres.Life Sci. Space Res. 201713273810.1016/j.lssr.2017.03.004 28554507
    [Google Scholar]
  14. AlpM. PariharV.K. LimoliC.L. CucinottaF.A. Irradiation of neurons with high-energy charged particles: An in silico modeling approach.PLOS Comput. Biol.2015118e100442810.1371/journal.pcbi.1004428 26252394
    [Google Scholar]
  15. BatmunkhM. BelovO.V. BayarchimegL. LhagvaO. SweilamN.H. Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams.J. Radiat. Res. Appl. Sci.20158449850710.1016/j.jrras.2015.05.008
    [Google Scholar]
  16. BelovO.V. BatmunkhM. IncertiS. LkhagvaO. Radiation damage to neuronal cells: Simulating the energy deposition and water radiolysis in a small neural network.Phys. Med.201632121510152010.1016/j.ejmp.2016.11.004 27865670
    [Google Scholar]
  17. KroeseD.P. BreretonT. TaimreT. BotevZ.I. Why the Monte Carlo method is so important today.Wiley Interdiscip. Rev. Comput. Stat.20146638639210.1002/wics.1314
    [Google Scholar]
  18. AgostinelliS. AllisonJ. AmakoK. ApostolakisJ. AraujoH. ArceP. AsaiM. AxenD. BanerjeeS. BarrandG. BehnerF. BellagambaL. BoudreauJ. BrogliaL. BrunengoA. BurkhardtH. ChauvieS. ChumaJ. ChytracekR. CoopermanG. CosmoG. DegtyarenkoP. Dell’AcquaA. DepaolaG. DietrichD. EnamiR. FelicielloA. FergusonC. FesefeldtH. FolgerG. FoppianoF. FortiA. GarelliS. GianiS. GiannitrapaniR. GibinD. Góَmez Cadenas, J.J.; González, I.; Gracia Abril, G.; Greeniaus, G.; Greiner, W.; Grichine, V.; Grossheim, A.; Guatelli, S.; Gumplinger, P.; Hamatsu, R.; Hashimoto, K.; Hasui, H.; Heikkinen, A.; Howard, A.; Ivanchenko, V.; Johnson, A.; Jones, F.W.; Kallenbach, J.; Kanaya, N.; Kawabata, M.; Kawabata, Y.; Kawaguti, M.; Kelner, S.; Kent, P.; Kimura, A.; Kodama, T.; Kokoulin, R.; Kossov, M.; Kurashige, H.; Lamanna, E.; Lampén, T.; Lara, V.; Lefebure, V.; Lei, F.; Liendl, M.; Lockman, W.; Longo, F.; Magni, S.; Maire, M.; Medernach, E.; Minamimoto, K.; Mora de Freitas, P.; Morita, Y.; Murakami, K.; Nagamatu, M.; Nartallo, R.; Nieminen, P.; Nishimura, T.; Ohtsubo, K.; Okamura, M.; O’Neale, S.; Oohata, Y.; Paech, K.; Perl, J.; Pfeiffer, A.; Pia, M.G.; Ranjard, F.; Rybin, A.; Sadilov, S.; Di Salvo, E.; Santin, G.; Sasaki, T.; Savvas, N.; Sawada, Y.; Scherer, S.; Sei, S.; Sirotenko, V.; Smith, D.; Starkov, N.; Stoecker, H.; Sulkimo, J.; Takahata, M.; Tanaka, S.; Tcherniaev, E.; Safai Tehrani, E.; Tropeano, M.; Truscott, P.; Uno, H.; Urban, L.; Urban, P.; Verderi, M.; Walkden, A.; Wander, W.; Weber, H.; Wellisch, J.P.; Wenaus, T.; Williams, D.C.; Wright, D.; Yamada, T.; Yoshida, H.; Zschiesche, D. Geant4-a simulation toolkit.Nucl. Instrum. Methods Phys. Res. A2003506325030310.1016/S0168‑9002(03)01368‑8
    [Google Scholar]
  19. AscoliG.A. DonohueD.E. HalaviM. NeuroMorpho.Org: A central resource for neuronal morphologies.J. Neurosci.200727359247925110.1523/JNEUROSCI.2055‑07.2007 17728438
    [Google Scholar]
  20. CucinottaF.A. Eliedonna CacaoM.A. Detriments in neuron morphology following heavy ion irradiation: What’s the target?Radiat. Prot. Dosimetry20191831-2697410.1093/rpd/ncy265 30561664
    [Google Scholar]
  21. FialaJ.C. SpacekJ. HarrisK.M. Dendritic spine pathology: Cause or consequence of neurological disorders?Brain Res. Brain Res. Rev.2002391295410.1016/S0165‑0173(02)00158‑3 12086707
    [Google Scholar]
  22. Yilmazer-HankeD.M. Morphological correlates of emotional and cognitive behaviour: Insights from studies on inbred and outbred rodent strains and their crosses.Behav. Pharmacol.2008195-640343410.1097/FBP.0b013e32830dc0de 18690101
    [Google Scholar]
  23. BrittenR.A. LimoliC.L. New radiobiological principles for the CNS Arising from space radiation research.Life2023136129310.3390/life13061293 37374076
    [Google Scholar]
  24. EmotoK. Dendrite remodeling in development and disease.Dev. Growth Differ.201153327728610.1111/j.1440‑169X.2010.01242.x 21492146
    [Google Scholar]
  25. KulkarniV.A. FiresteinB.L. The dendritic tree and brain disorders.Mol. Cell. Neurosci.2012501102010.1016/j.mcn.2012.03.005 22465229
    [Google Scholar]
  26. PrelichM.T. MatarM. GokogluS.A. GalloC.A. SchepelmannA. IqbalA.K. LewandowskiB.E. BrittenR.A. PrabhuR.K. MyersJ.G. Predicting space radiation single ion exposure in rodents: A machine learning approach.Front. Syst. Neurosci.20211571543310.3389/fnsys.2021.715433 34720896
    [Google Scholar]
/content/journals/crp/10.2174/0118744710367266250506050409
Loading
/content/journals/crp/10.2174/0118744710367266250506050409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test