Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level and are important factors in cancer progression and response to various therapeutic strategies. Radioresistance, an obstacle caused due to various intrinsic and extrinsic factors, remains a major hindrance in the treatment of cancer and could lead to tumor recurrence. Though research is being conducted on the cause and association of radioresistance with various cellular and environmental factors, there remains much to be explored and discovered. The roles of several RNA-binding proteins in tumor progression and metastasis are well documented. In addition, recent studies suggest the connection between Cancer Stem Cells (CSCs) and chemoresistance. We and others have extensively studied the regulatory role of RBPs in regulating CSCs. Resistance to radiation therapy and the involvement of RBPs in this process is under-studied. In this review, we have provided an updated compilation of the significant role played by RBPs in radioresistance.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710366175250425101010
2025-04-29
2025-09-01
Loading full text...

Full text loading...

References

  1. LundeB.M. MooreC. VaraniG. RNA-binding proteins: Modular design for efficient function.Nat. Rev. Mol. Cell Biol.20078647949010.1038/nrm217817473849
    [Google Scholar]
  2. GlisovicT. BachorikJ.L. YongJ. DreyfussG. RNA‐binding proteins and post‐transcriptional gene regulation.FEBS Lett.2008582141977198610.1016/j.febslet.2008.03.00418342629
    [Google Scholar]
  3. Schneider-LunitzV. Ruiz-OreraJ. HubnerN. van HeeschS. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes.PLOS Comput. Biol.20211712e100965810.1371/journal.pcbi.100965834879078
    [Google Scholar]
  4. KechavarziB. JangaS.C. Dissecting the expression landscape of RNA-binding proteins in human cancers.Genome Biol.2014151R1410.1186/gb‑2014‑15‑1‑r1424410894
    [Google Scholar]
  5. QinH. NiH. LiuY. YuanY. XiT. LiX. ZhengL. RNA-binding proteins in tumor progression.J. Hematol. Oncol.20201319010.1186/s13045‑020‑00927‑w32653017
    [Google Scholar]
  6. DelaneyG.P. BartonM.B. Evidence-based estimates of the demand for radiotherapy.Clin. Oncol.2015272707610.1016/j.clon.2014.10.00525455408
    [Google Scholar]
  7. HuY. LiQ. YiK. YangC. LeiQ. WangG. WangQ. XuX. HuR affects the radiosensitivity of esophageal cancer by regulating the EMT-related protein snail.Front. Oncol.20221288344410.3389/fonc.2022.88344435664798
    [Google Scholar]
  8. SilveraD. FormentiS.C. SchneiderR.J. Translational control in cancer.Nat. Rev. Cancer201010425426610.1038/nrc282420332778
    [Google Scholar]
  9. DvingeH. KimE. Abdel-WahabO. BradleyR.K. RNA splicing factors as oncoproteins and tumour suppressors.Nat. Rev. Cancer201616741343010.1038/nrc.2016.5127282250
    [Google Scholar]
  10. BaralleF.E. GiudiceJ. Alternative splicing as a regulator of development and tissue identity.Nat. Rev. Mol. Cell Biol.201718743745110.1038/nrm.2017.2728488700
    [Google Scholar]
  11. WangE. AifantisI. RNA splicing and cancer.Trends Cancer20206863164410.1016/j.trecan.2020.04.01132434734
    [Google Scholar]
  12. NeelamrajuY. Gonzalez-PerezA. Bhat-NakshatriP. NakshatriH. JangaS.C. Mutational landscape of RNA-binding proteins in human cancers.RNA Biol.201815111512910.1080/15476286.2017.139143629023197
    [Google Scholar]
  13. KangM.J. RyuB.K. LeeM.G. HanJ. LeeJ.H. HaT.K. ByunD.S. ChaeK.S. LeeB.H. ChunH.S. LeeK.Y. KimH.J. ChiS.G. NF-kappaB activates transcription of the RNA-binding factor HuR, via PI3K-AKT signaling, to promote gastric tumorigenesis.Gastroenterology2008135620302042.e3, 2042.e1-2042.e310.1053/j.gastro.2008.08.00918824170
    [Google Scholar]
  14. DixonD.A. TolleyN.D. KingP.H. NaborsL.B. McIntyreT.M. ZimmermanG.A. PrescottS.M. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells.J. Clin. Invest.2001108111657166510.1172/JCI1297311733561
    [Google Scholar]
  15. NaborsL.B. GillespieG.Y. HarkinsL. KingP.H. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs.Cancer Res.20016152154216111280780
    [Google Scholar]
  16. DangH. TakaiA. ForguesM. PomyenY. MouH. XueW. RayD. HaK.C.H. MorrisQ.D. HughesT.R. WangX.W. Oncogenic activation of the RNA binding protein NELFE and MYC signaling in hepatocellular carcinoma.Cancer Cell2017321101114.e810.1016/j.ccell.2017.06.00228697339
    [Google Scholar]
  17. HsiehA.C. RuggeroD. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer.Clin. Cancer Res.201016204914492010.1158/1078‑0432.CCR‑10‑043320702611
    [Google Scholar]
  18. MamaneY. PetroulakisE. RongL. YoshidaK. LerL.W. SonenbergN. eIF4E – from translation to transformation.Oncogene200423183172317910.1038/sj.onc.120754915094766
    [Google Scholar]
  19. FoxR.G. LytleN.K. JaquishD.V. ParkF.D. ItoT. BajajJ. KoechleinC.S. ZimdahlB. YanoM. KoppJ.L. KritzikM. SicklickJ.K. SanderM. GrandgenettP.M. HollingsworthM.A. ShibataS. PizzoD. ValasekM.A. SasikR. ScadengM. OkanoH. KimY. MacLeodA.R. LowyA.M. ReyaT. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma.Nature2016534760740741110.1038/nature1798827281208
    [Google Scholar]
  20. RycajK. TangD.G. Cancer stem cells and radioresistance.Int. J. Radiat. Biol.201490861562110.3109/09553002.2014.89222724527669
    [Google Scholar]
  21. SeyfriedT.N. HuysentruytL.C. On the origin of cancer metastasis.Crit. Rev. Oncog.2013181 - 2437310.1615/CritRevOncog.v18.i1‑2.4023237552
    [Google Scholar]
  22. ShuH.K.G. KimM.M. ChenP. FurmanF. JulinC.M. IsraelM.A. The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21 BAX expression.Proc. Natl. Acad. Sci. USA19989524144531445810.1073/pnas.95.24.144539826721
    [Google Scholar]
  23. CiccarelliC. Di RoccoA. GravinaG.L. MauroA. FestucciaC. Del FattoreA. BerardinelliP. De FeliceF. MusioD. BouchéM. TomboliniV. ZaniB.M. MaramponF. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.J. Cancer Res. Clin. Oncol.201814491685169910.1007/s00432‑018‑2696‑329959569
    [Google Scholar]
  24. ShonaiT. AdachiM. SakataK. TakekawaM. EndoT. ImaiK. HareyamaM. MEK/ERK pathway protects ionizing radiation-induced loss of mitochondrial membrane potential and cell death in lymphocytic leukemia cells.Cell Death Differ.20029996397110.1038/sj.cdd.440105012181747
    [Google Scholar]
  25. GaleazC. TotisC. BisioA. Radiation resistance: A matter of transcription factors.Front. Oncol.20211166284010.3389/fonc.2021.66284034141616
    [Google Scholar]
  26. Pećina-ŠlausN. AničićS. BukovacA. KafkaA. Wnt Signaling inhibitors and their promising role in tumor treatment.Int. J. Mol. Sci.2023247673310.3390/ijms2407673337047705
    [Google Scholar]
  27. ChenY.A. TzengD.T.W. HuangY.P. LinC.J. LoU.G. WuC.L. LinH. HsiehJ.T. TangC.H. LaiC.H. Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways.Cancers20181113410.3390/cancers1101003430602706
    [Google Scholar]
  28. ChangL. GrahamP.H. HaoJ. NiJ. BucciJ. CozziP.J. KearsleyJ.H. LiY. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.Cell Death Dis.2014510e1437e143710.1038/cddis.2014.41525275598
    [Google Scholar]
  29. ChengJ.C-H. ChouC.H. KuoM.L. HsiehC-Y. Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-κB signal transduction pathway.Oncogene200625537009701810.1038/sj.onc.120970616732316
    [Google Scholar]
  30. NakashioA. FujitaN. RokudaiS. SatoS. TsuruoT. Prevention of phosphatidylinositol 3′-kinase-Akt survival signaling pathway during topotecan-induced apoptosis.Cancer Res.200060185303530911016662
    [Google Scholar]
  31. TakeuchiH. KondoY. FujiwaraK. KanzawaT. AokiH. MillsG.B. KondoS. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors.Cancer Res.20056583336334610.1158/0008‑5472.CAN‑04‑364015833867
    [Google Scholar]
  32. Giménez-BonaféP. TortosaA. Pérez-TomásR. Overcoming drug resistance by enhancing apoptosis of tumor cells.Curr. Cancer Drug Targets20099332034010.2174/15680090978816660019442052
    [Google Scholar]
  33. OuelletteM.M. ZhouS. YanY. Cell signaling pathways that promote radioresistance of cancer cells.Diagnostics202212365610.3390/diagnostics1203065635328212
    [Google Scholar]
  34. MorettiL. AttiaA. KimK.W. LuB. Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy.Autophagy20073214214410.4161/auto.360717204849
    [Google Scholar]
  35. RothW. Apoptoseresistenz in malignen Tumoren.Pathologe200930S211311610.1007/s00292‑009‑1181‑919756623
    [Google Scholar]
  36. OuelletteM.M. YanY. Radiation‐activated prosurvival signaling pathways in cancer cells.Precis. Radiat. Oncol.20193311112010.1002/pro6.1076
    [Google Scholar]
  37. RitterV. KrautterF. KleinD. JendrossekV. RudnerJ. Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy.Cell Death Dis.202112769410.1038/s41419‑021‑03971‑734257274
    [Google Scholar]
  38. Cabrera-LiconaA. Pérez-AñorveI.X. Flores-FortisM. Moral-HernándezO. González-de la RosaC.H. Suárez-SánchezR. Chávez-SaldañaM. Aréchaga-OcampoE. Deciphering the epigenetic network in cancer radioresistance.Radiother. Oncol.2021159485910.1016/j.radonc.2021.03.01233741468
    [Google Scholar]
  39. KrauseM. DubrovskaA. LingeA. BaumannM. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments.Adv. Drug Deliv. Rev.2017109637310.1016/j.addr.2016.02.00226877102
    [Google Scholar]
  40. Macedo-SilvaC. BenedettiR. CiardielloF. CappabiancaS. JerónimoC. AltucciL. Epigenetic mechanisms underlying prostate cancer radioresistance.Clin. Epigenetics202113112510.1186/s13148‑021‑01111‑834103085
    [Google Scholar]
  41. SchulzA. MeyerF. DubrovskaA. BorgmannK. Cancer stem cells and radioresistance: DNA repair and beyond.Cancers201911686210.3390/cancers1106086231234336
    [Google Scholar]
  42. KaranamK. KafriR. LoewerA. LahavG. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase.Mol. Cell201247232032910.1016/j.molcel.2012.05.05222841003
    [Google Scholar]
  43. PeitzschC. TyutyunnykovaA. PantelK. DubrovskaA. Cancer stem cells: The root of tumor recurrence and metastases.Semin. Cancer Biol.201744102410.1016/j.semcancer.2017.02.01128257956
    [Google Scholar]
  44. ChenY. LiD. WangD. LiuX. YinN. SongY. LuS.H. JuZ. ZhanQ. Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells.J. Cell. Biochem.2012113123643365210.1002/jcb.2422822711554
    [Google Scholar]
  45. IliakisG. MladenovE. MladenovaV. Necessities in the processing of DNA double strand breaks and their effects on genomic instability and cancer.Cancers20191111167110.3390/cancers1111167131661831
    [Google Scholar]
  46. McCannE. O’SullivanJ. MarconeS. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response.Transl. Oncol.202114110090510.1016/j.tranon.2020.10090533069104
    [Google Scholar]
  47. KorbeckiJ. SimińskaD. Gąssowska-DobrowolskaM. ListosJ. GutowskaI. ChlubekD. Baranowska-BosiackaI. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms.Int. J. Mol. Sci.202122191070110.3390/ijms22191070134639040
    [Google Scholar]
  48. BindraR.S. CrosbyM.E. GlazerP.M. Regulation of DNA repair in hypoxic cancer cells.Cancer Metastasis Rev.200726224926010.1007/s10555‑007‑9061‑317415527
    [Google Scholar]
  49. CarmelietP. JainR.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases.Nat. Rev. Drug Discov.201110641742710.1038/nrd345521629292
    [Google Scholar]
  50. FangJ. XiaC. CaoZ. ZhengJ.Z. ReedE. JiangB.H. Apigenin inhibits VEGF and HIF‐1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways.FASEB J.200519334235310.1096/fj.04‑2175com15746177
    [Google Scholar]
  51. MaR. GaoP. YangH. HuJ. XiaoJ.J. ShiM. ZhaoL.N. Inhibition of cell proliferation and radioresistance by miR-383-5p through targeting RNA binding protein motif (RBM3) in nasopharyngeal carcinoma.Ann. Transl. Med.20219212310.21037/atm‑20‑688133569425
    [Google Scholar]
  52. TroschelF.M. EichH.T. GreveB. Tackling the HuRdle of radioresistance: A radiation perspective on the RNA-binding protein HuR.Transl. Cancer Res.202312123223322638192977
    [Google Scholar]
  53. KudinovA.E. KaranicolasJ. GolemisE.A. BoumberY. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets.Clin. Cancer Res.20172392143215310.1158/1078‑0432.CCR‑16‑272828143872
    [Google Scholar]
  54. MaR. ZhaoL.N. YangH. WangY.F. HuJ. ZangJ. MaoJ.G. XiaoJ.J. ShiM. RNA binding motif protein 3 (RBM3) drives radioresistance in nasopharyngeal carcinoma by reducing apoptosis via the PI3K/AKT/Bcl-2 signaling pathway.Am. J. Transl. Res.201810124130414030662656
    [Google Scholar]
  55. JiangN. DaiQ. SuX. FuJ. FengX. PengJ. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior.Mol. Biol. Rep.20204764587462910.1007/s11033‑020‑05435‑132333246
    [Google Scholar]
  56. ZunigaO. ByrumS. WolfeA.R. Discovery of the inhibitor of DNA binding 1 as a novel marker for radioresistance in pancreatic cancer using genome-wide RNA-seq.Cancer Drug Resist.20225492693810.20517/cdr.2022.6036627902
    [Google Scholar]
  57. YuanM. EberhartC.G. KaiM. RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation.Oncotarget2014592820282610.18632/oncotarget.192424811242
    [Google Scholar]
  58. BuryC.S. McGeehanJ.E. AntsonA.A. CarmichaelI. GerstelM. ShevtsovM.B. GarmanE.F. RNA protects a nucleoprotein complex against radiation damage.Acta Crystallogr. D Struct. Biol.201672564865710.1107/S205979831600335127139628
    [Google Scholar]
  59. SehgalP. ChaturvediP. Chromatin and cancer: Implications of disrupted chromatin organization in tumorigenesis and its diversification.Cancers202315246610.3390/cancers1502046636672415
    [Google Scholar]
  60. MehtaM. RaguramanR. RameshR. MunshiA. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer.Adv. Drug Deliv. Rev.202219111456910.1016/j.addr.2022.11456936252617
    [Google Scholar]
  61. Morillo-BernalJ. Pizarro-GarcíaP. Moreno-BuenoG. CanoA. MazónM.J. ErasoP. PortilloF. HuR (ELAVL1) stabilizes SOX9 mRNA and promotes migration and invasion in breast cancer cells.Cancers202416238410.3390/cancers1602038438254873
    [Google Scholar]
  62. Suresh BabuS. JoladarashiD. JeyabalP. ThandavarayanR.A. KrishnamurthyP. RNA-stabilizing proteins as molecular targets in cardiovascular pathologies.Trends Cardiovasc. Med.201525867668310.1016/j.tcm.2015.02.00625801788
    [Google Scholar]
  63. RedmonI.C. ArdizzoneM. HekimoğluH. HatfieldB.M. WaldernJ.M. DeyA. MontgomeryS.A. LaederachA. RamosS.B.V. Sequence and tissue targeting specificity of ZFP36L2 reveals Elavl2 as a novel target with co-regulation potential.Nucleic Acids Res.20225074068408210.1093/nar/gkac20935380695
    [Google Scholar]
  64. BertoS. UsuiN. KonopkaG. FogelB.L. ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism.Hum. Mol. Genet.20162512ddw11010.1093/hmg/ddw11027260404
    [Google Scholar]
  65. YangC. YaoC. JiZ. ZhaoL. ChenH. LiP. TianR. ZhiE. HuangY. HanX. HongY. ZhouZ. LiZ. RNA‐binding protein ELAVL2 plays post‐transcriptional roles in the regulation of spermatogonia proliferation and apoptosis.Cell Prolif.2021549e1309810.1111/cpr.1309834296486
    [Google Scholar]
  66. KimY. YouJ.H. RyuY. ParkG. LeeU. MoonH.E. ParkH.R. SongC.W. KuJ.L. ParkS.H. PaekS.H. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma.NPJ Precis. Oncol.2024817910.1038/s41698‑024‑00566‑138548861
    [Google Scholar]
  67. ForouzanfarM. LachinaniL. DormianiK. Nasr-EsfahaniM.H. GureA.O. GhaediK. Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells.Stem Cell Res. Ther.202011119310.1186/s13287‑020‑01703‑w32448364
    [Google Scholar]
  68. BleyN. HmedatA. MüllerS. RolnikR. RauschA. LedererM. HüttelmaierS. Musashi–1—A stemness RBP for cancer therapy?Biology202110540710.3390/biology1005040734062997
    [Google Scholar]
  69. BaiN. AdeshinaY. BychkovI. XiaY. GowthamanR. MillerS.A. GuptaA.K. JohnsonD.K. LanL. GolemisE.A. Rationally designed inhibitors of the musashi protein-RNA interaction by hotspot mimicry.Preprint202310.21203/rs.3.rs‑2395172/v1
    [Google Scholar]
  70. Olivares-UrbanoM.A. Griñán-LisónC. MarchalJ.A. NúñezM.I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer.Cells202097165110.3390/cells907165132660072
    [Google Scholar]
  71. PengQ. ZhouY. OyangL. WuN. TangY. SuM. LuoX. WangY. ShengX. MaJ. LiaoQ. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics.Mol. Ther.20223031018103510.1016/j.ymthe.2021.11.01034793975
    [Google Scholar]
  72. XuY. WuW. HanQ. WangY. LiC. ZhangP. XuH. Post-translational modification control of RNA-binding protein hnRNPK function.Open Biol.20199318023910.1098/rsob.18023930836866
    [Google Scholar]
  73. BalzeauJ. MenezesM.R. CaoS. HaganJ.P. The LIN28/let-7 Pathway in Cancer.Front. Genet.201783110.3389/fgene.2017.0003128400788
    [Google Scholar]
  74. GewaltT. NohK.W. MederL. The role of LIN28B in tumor progression and metastasis in solid tumor entities.Oncol. Res.202331210111510.32604/or.2023.02810537304235
    [Google Scholar]
  75. RadaevaM. HoC.H. XieN. ZhangS. LeeJ. LiuL. LallousN. CherkasovA. DongX. Discovery of Novel Lin28 Inhibitors to Suppress Cancer Cell Stemness.Cancers20221422568710.3390/cancers1422568736428779
    [Google Scholar]
  76. YangX. ZhongW. CaoR. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer.Cell. Signal.20207310968910.1016/j.cellsig.2020.10968932535199
    [Google Scholar]
  77. ChenX. AnY. TanM. XieD. LiuL. XuB. Biological functions and research progress of eIF4E.Front. Oncol.202313107685510.3389/fonc.2023.107685537601696
    [Google Scholar]
  78. ChiH.C. TsaiC.Y. TsaiM.M. LinK.H. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression.Int. J. Mol. Sci.201819255510.3390/ijms1902055529439529
    [Google Scholar]
  79. DormannD. HaassC. Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration.Mol. Cell. Neurosci.20135647548610.1016/j.mcn.2013.03.00623557964
    [Google Scholar]
  80. ChabotB. ShkretaL. Defective control of pre–messenger RNA splicing in human disease.J. Cell Biol.20162121132710.1083/jcb.20151003226728853
    [Google Scholar]
  81. BradleyR.K. AnczukówO. RNA splicing dysregulation and the hallmarks of cancer.Nat. Rev. Cancer202323313515510.1038/s41568‑022‑00541‑736627445
    [Google Scholar]
  82. SévignyM. Bourdeau JulienI. VenkatasubramaniJ.P. HuiJ.B. DutchakP.A. SephtonC.F. FUS contributes to mTOR-dependent inhibition of translation.J. Biol. Chem.202029552184591847310.1074/jbc.RA120.01380133082139
    [Google Scholar]
  83. TorgovnickA. SchumacherB. DNA repair mechanisms in cancer development and therapy.Front. Genet.2015615710.3389/fgene.2015.0015725954303
    [Google Scholar]
  84. ShiloA. Ben HurV. DenichenkoP. SteinI. PikarskyE. RauchJ. KolchW. ZenderL. KarniR. Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development.RNA201420450551510.1261/rna.042259.11324572810
    [Google Scholar]
  85. CárdenasE.L. O’RourkeR.L. MenonA. MeagherJ. StuckeyJ. GarnerA.L. Design of Cell-Permeable Inhibitors of Eukaryotic Translation Initiation Factor 4E (eIF4E) for Inhibiting Aberrant Cap-Dependent Translation in Cancer.J. Med. Chem.20236615107341074510.1021/acs.jmedchem.3c0091737471629
    [Google Scholar]
  86. LinZ. RadaevaM. CherkasovA. DongX. Lin28 Regulates Cancer Cell Stemness for Tumour Progression.Cancers20221419464010.3390/cancers1419464036230562
    [Google Scholar]
  87. WangQ. CaoH. HouX. WangD. WangZ. ShangY. ZhangS. LiuJ. RenC. LiuJ. Cancer Stem‐Like Cells‐Oriented Surface Self‐Assembly to Conquer Radioresistance.Adv. Mater.20233538230291610.1002/adma.20230291637288841
    [Google Scholar]
  88. KoY. JinH. LeeJ. ParkS. ChangK. KangK. JeongB. KimH. Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells.Oncol. Rep.20184063752376210.3892/or.2018.671430272295
    [Google Scholar]
  89. LiF. ZhouK. GaoL. ZhangB. LiW. YanW. SongX. YuH. WangS. YuN. JiangQ. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance.Oncol. Lett.20161253059306510.3892/ol.2016.512427899964
    [Google Scholar]
  90. LöbleinM.T. FalkeI. EichH.T. GreveB. GötteM. TroschelF.M. Dual knockdown of musashi rna-binding proteins msi-1 and msi-2 attenuates putative cancer stem cell characteristics and therapy resistance in ovarian cancer cells.Int. J. Mol. Sci.202122211150210.3390/ijms22211150234768932
    [Google Scholar]
  91. DongR. ChenP. PolireddyK. WuX. WangT. RameshR. DixonD.A. XuL. AubéJ. ChenQ. An RNA-Binding protein, hu-antigen r, in pancreatic cancer epithelial to mesenchymal transition, metastasis, and cancer stem cells.Mol. Cancer Ther.202019112267227710.1158/1535‑7163.MCT‑19‑082232879054
    [Google Scholar]
  92. ParkS.J. HeoK. ChoiC. YangK. AdachiA. OkadaH. YoshidaY. OhnoT. NakanoT. TakahashiA. Carbon ion irradiation abrogates Lin28B-induced X-ray resistance in melanoma cells.J. Radiat. Res. (Tokyo)201758676577110.1093/jrr/rrx02228482074
    [Google Scholar]
  93. ChenC. BaiL. CaoF. WangS. HeH. SongM. ChenH. LiuY. GuoJ. SiQ. PanY. ZhuR. ChuangT.H. XiangR. LuoY. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis.Oncogene201938234527453910.1038/s41388‑019‑0735‑430742065
    [Google Scholar]
  94. KangD. LeeY. LeeJ.S. RNA-binding proteins in cancer: functional and therapeutic perspectives.Cancers2020129269910.3390/cancers1209269932967226
    [Google Scholar]
  95. HongS. RNA binding protein as an emerging therapeutic target for cancer prevention and treatment.J. Cancer Prev.201722420321010.15430/JCP.2017.22.4.20329302577
    [Google Scholar]
  96. GaoY. CaoH. HuangD. ZhengL. NieZ. ZhangS. RNA-binding proteins in bladder cancer.Cancers20231541536831493
    [Google Scholar]
  97. HullE.E. MontgomeryM.R. LeyvaK.J. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases.BioMed Res. Int.2016201611510.1155/2016/879720627556043
    [Google Scholar]
  98. BlairA.B. KimV.M. MuthS.T. SaungM.T. LokkerN. BlouwB. ArmstrongT.D. JaffeeE.M. TsujikawaT. CoussensL.M. HeJ. BurkhartR.A. WolfgangC.L. ZhengL. Dissecting the stromal signaling and regulation of myeloid cells and memory effector t cells in pancreatic cancer.Clin. Cancer Res.201925175351536310.1158/1078‑0432.CCR‑18‑419231186314
    [Google Scholar]
/content/journals/crp/10.2174/0118744710366175250425101010
Loading
/content/journals/crp/10.2174/0118744710366175250425101010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test