Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

In the context of modern oncology, radiogenic elements have emerged as pivotal tools for targeted cancer therapies. Elements like Iodine-131 and Yttrium-90 offer unique radiological properties that allow precise treatment delivery. This article explores their growing importance and potential in reshaping the landscape of cancer therapy.

Methods

Utilizing a systematic literature search, relevant studies, clinical trials, and research articles were collected from databases. The selected material was scrutinized to extract insights into the mechanisms, applications, advantages, and challenges of radiogenic elements. These results are combined in the study to give a perceptive picture of how contemporary oncology treatment is developing.

Results

The article reveals a comprehensive analysis of the outcomes derived from the study of radiogenic elements in contemporary cancer treatment. The results highlight the diverse applications of radionuclides like Iodine-131, Yttrium-90, and actinides in targeted therapies. It showcases their ability to selectively damage cancer cells while sparing healthy tissues, emphasizing precision and efficacy. The review underscores the increasing importance of personalized medicine, combination therapies, and the potential of emerging alpha-particle-based treatments. Furthermore, the results shed light on the challenges posed by radiation safety and potential side effects, prompting a need for vigilant management. This comprehensive examination of results provides a nuanced understanding of the pivotal role that radiogenic elements play in shaping the future of modern oncology therapy.

Conclusion

The article examines the role of radiogenic elements in contemporary cancer treatment. It highlights the significance of elements like 131I, 90Y, and actinides in targeted therapies, discussing their mechanisms and applications. The article emphasizes personalized medicine, combination therapies, and emerging alpha-particle-based treatments. Challenges, including radiation safety and side effects, are also addressed. The review anticipates a promising future where radiogenic elements contribute to precise, effective, and patient-centered cancer care.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710337420250102054532
2025-01-22
2025-09-27
Loading full text...

Full text loading...

References

  1. SahaG.B. Fundamentals of Nuclear Pharmacy.7th Ed.ChamSpringer International Publishing201842810.1007/978‑3‑319‑57580‑3
    [Google Scholar]
  2. FriedlanderG. KennedyJ.W. MaciasE.S. MillerJ.M. Nuclear and radiochemistry.3rd Ed.New YorkWiley1981
    [Google Scholar]
  3. VallabhajosulaS. Molecular Imaging and Targeted Therapy.2nd Ed.ChamSpringer Nature202370810.1007/978‑3‑031‑23205‑3
    [Google Scholar]
  4. EstorchM. Eightieth anniversary of Iodine-131: A history of Nuclear Medicine.Rev. Esp. Med. Nucl. Imagen Mol.20224116610.1016/j.remnie.2021.11.00334991839
    [Google Scholar]
  5. International Atomic Energy Agency. Cyclotron produced radionuclides: Principles and practice.Technical Reports Series No. 465, IAEA, Vienna.2008230 https://www-pub.iaea.org/MTCD/Publications/PDF/trs465_web.pdf
    [Google Scholar]
  6. BasuliF. ZhangX. WoodroofeC. C. JagodaE. M. ChoykeP. L. SwensonR. E. Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: A method comparable to direct fluorination.J. Labell. Comp. Radiopharm.201760316817510.1002/jlcr.348727990672
    [Google Scholar]
  7. ICRP 2008. Radiation dose to patients from radiopharmaceuticals - Addendum 3 to ICRP Publication 53. ICRP Publication 106.Ann. ICRP2021381-21197 https://www.icrp.org/publication.asp?id=icrp%20publication%20106
    [Google Scholar]
  8. IijimaS. Effects of fetal involvement of inadvertent radioactive iodine therapy for the treatment of thyroid diseases during an unsuspected pregnancy.Eur. J. Obstet. Gynecol. Reprod. Biol.2021259535910.1016/j.ejogrb.2021.02.00333588237
    [Google Scholar]
  9. International Atomic Energy Agency. Manual for reactor produced radioisotopes.IAEATECDOC-1340.200316 https://www.iaea.org/publications/6407/manual-for-reactor-produced-radioisotopes
    [Google Scholar]
  10. International Atomic Energy Agency. Production of long-lived parent nuclides for generators: 68Ge, 82Sr, 90Sr and 188W.IAEA Radioisotopes and Radiopharmaceuticals Series No. 2.201019 https://wwwpub.iaea.org/MTCD/Publications/PDF/Pub1436_web.pdf
    [Google Scholar]
  11. International Atomic Energy Agency. Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators. Vienna.Technical Report Series No. 470.200918 https://wwwpub.iaea.org/MTCD/Publications/PDF/trs470_web.pdf
    [Google Scholar]
  12. StefanacheA. LunguI.I. ButnariuI.A. CalinG. GutuC. MarcuC. GrierosuC. Bogdan GorofteiE.R. DuceacL.D. DabijaM.G. PopaF. DamirD. Understanding how minerals contribute to optimal immune function.J. Immunol. Res.2023202312610.1155/2023/335573337946846
    [Google Scholar]
  13. JoliotF. CurieI. Artificial production of a new kind of radioelement.Nature1934133335420120210.1038/133201a0
    [Google Scholar]
  14. FinnR.D. SchlyerD.J. Production of radionuclides for PET.Principles and practice of positron emission tomography. WahlR.L. BuchananJ.W. PhiladelphiaWilliams & Wilkins2002
    [Google Scholar]
  15. ReadC.H.Jr TanseyM.J. MendaY. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients.J. Clin. Endocrinol. Metab.20048994229423310.1210/jc.2003‑03122315356012
    [Google Scholar]
  16. BeiserA. Concepts of modern physics.5th Ed.New YorkMcGraw-Hill1995242
    [Google Scholar]
  17. SchlyerD.J. Production of radionuclides in accelerators.Handbook of radiopharmaceuticals, radiochemistry. And applications. WelchM.J. RedvanleyC.S. New YorkWiley2003170
    [Google Scholar]
  18. HessE. TakácsS. ScholtenB. TárkányiF. CoenenH.H. QaimS.M. Excitation function of the 18 O( p, n ) 18 F nuclear reaction from threshold up to 30 MeV.Radiochim. Acta200189635736210.1524/ract.2001.89.6.357
    [Google Scholar]
  19. CockcroftJ.D. WaltonE.T.S. Experiments with high velocity positive ions. II. -The disintegration of elements by high velocity protons.Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character193213783122924210.1098/rspa.1932.0133
    [Google Scholar]
  20. OliverC. Compact and effcient accelerators for radioisotope production.Proceedings of IPAC Applications of Accelerators, Technology Transfer and Industrial RelationsCopenhagen, Denmark, 2017, pp. 4824-4829.
    [Google Scholar]
  21. EckelmanW.C. SteigmanJ. PaikC.H. Radiopharmaceutical chemistry.Nuclear medicine: Diagnosis and therapy. HarpertJ. EckelmanW.C. NeumannR.D. New YorkThieme Medical1996213
    [Google Scholar]
  22. WilburD.S. HadleyS.W. HylaridesM.D. AbramsP.G. BeaumierP.A. MorganA.C. RenoJ.M. FritzbergA.R. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer.J. Nucl. Med.19893022162262738650
    [Google Scholar]
  23. SchlumbergerM. De VathaireF. CeccarelliC. DelisleM.J. FranceseC. CouetteJ.E. PincheraA. ParmentierC. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients.J. Nucl. Med.19963746066128691249
    [Google Scholar]
  24. SiokaC. FotopoulosA. Effect of I-131 therapy on gonads and pregnancy outcome in patients with thyroid cancer.Fertil. Steril.20219551552155910.1016/j.fertnstert.2011.01.01721300333
    [Google Scholar]
  25. TathamL.M. BoveF.J. KayeW.E. SpenglerR.F. Population exposures to I-131 releases from Hanford Nuclear Reservation and preterm birth, infant mortality, and fetal deaths.Int. J. Hyg. Environ. Health20022051-2414810.1078/1438‑4639‑0012812018015
    [Google Scholar]
  26. HnatowichD.J. Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium.Semin. Nucl. Med.1990201809110.1016/S0001‑2998(05)80178‑32404343
    [Google Scholar]
  27. BeckerD. HurleyJ.R. Radioiodine treatment of hyperthyroidism.Diagnostic nuclear medicine.3rd Ed. SandlerM.P. ColemanR.E. FJTW. BaltimoreWilliams and Wilkins1996943
    [Google Scholar]
  28. GoldsmithS.J. Radioimmunotherapy of lymphoma: Bexxar and Zevalin.Semin. Nucl. Med.201040212213510.1053/j.semnuclmed.2009.11.00220113680
    [Google Scholar]
  29. HurleyJ.R. BeckerD.V. Treatment of thyroid cancer with radioiodine (131I).Diagnostic nuclear medicine.3rd Ed. SandlerM.P. ColemanR.E. FJTW. BaltimoreWilliams and Wilkins1996959
    [Google Scholar]
  30. MaxonH.R.III SmithH.S. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer.Endocrinol. Metab. Clin. North Am.199019368571810.1016/S0889‑8529(18)30317‑72261912
    [Google Scholar]
  31. DuanH. IagaruA. ApariciC.M. Precision medicine in nuclear medicine and molecular imaging.Nanotheranostics20226110311710.7150/ntno.6414134976584
    [Google Scholar]
  32. HerrmannK. LarsonS.M. WeberW.A. Theranostic concepts: More than just a fashion trend—introduction and overview.J. Nucl. Med.201758Suppl. 21S2S10.2967/jnumed.117.19957028864608
    [Google Scholar]
  33. HerrmannK. SchwaigerM. LewisJ.S. SolomonS.B. McNeilB.J. BaumannM. GambhirS.S. HricakH. WeisslederR. Radiotheranostics: A roadmap for future development.Lancet Oncol.2020213e146e15610.1016/S1470‑2045(19)30821‑632135118
    [Google Scholar]
  34. SalemR. JohnsonG.E. KimE. RiazA. BishayV. BoucherE. FowersK. LewandowskiR. PadiaS.A. Yttrium‐90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study.Hepatology20217452342235210.1002/hep.3181933739462
    [Google Scholar]
  35. SalemR. HunterR.D. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review.Int. J. Radiat. Oncol. Biol. Phys.2006662Suppl.S83S8810.1016/j.ijrobp.2006.02.06116979447
    [Google Scholar]
  36. PimlottS.L. SutherlandA. Molecular tracers for the PET and SPECT imaging of disease.Chem. Soc. Rev.201140114916210.1039/B922628C20818455
    [Google Scholar]
  37. SoddV.J. AllenD.R. HoaglandD.R. Radiopharmaceuticals II.New YorkSociety of Nuclear Medicine1979
    [Google Scholar]
  38. MurrayI. DuY. Systemic radiotherapy of bone metastases with radionuclides.Clin. Oncol.20213329810510.1016/j.clon.2020.11.02833353771
    [Google Scholar]
  39. DeshayesE. FersingC. ThibaultC. RoumiguieM. PourquierP. HouédéN. Innovation in radionuclide therapy for the treatment of prostate cancers: Radiochemical perspective and recent therapeutic practices.Cancers20231512313310.3390/cancers1512313337370743
    [Google Scholar]
  40. CiaralloA. RiveraJ. Radioactive iodine therapy in differentiated thyroid cancer: 2020 update.AJR Am. J. Roentgenol.2020215228529110.2214/AJR.19.2262632551904
    [Google Scholar]
  41. JohnsonG.E. PadiaS.A. Yttrium-90 radiation segmentectomy.Semin. Intervent. Radiol.202037553754210.1055/s‑0040‑172095333328710
    [Google Scholar]
  42. TitanoJ.J. KimE. PatelR.S. Yttrium-90 complications: Prevention and management.Tech. Vasc. Interv. Radiol.2019222879210.1053/j.tvir.2019.02.01031079716
    [Google Scholar]
  43. SyvänenS. FangX.T. FaresjöR. RokkaJ. LannfeltL. OlbergD.E. ErikssonJ. SehlinD. Fluorine-18-labeled antibody ligands for pet imaging of amyloid-β in brain.ACS Chem. Neurosci.202011244460446810.1021/acschemneuro.0c0065233236886
    [Google Scholar]
  44. Drugs and Lactation Database (LactMed®).Bethesda (MD)National Institute of Child Health and Human Development200689
    [Google Scholar]
  45. FarhanghiM. HolmesR.A. VolkertW.A. LoganK.W. SinghA. Samarium-153-EDTMP: Pharmacokinetic, toxicity and pain response using an escalating dose schedule in treatment of metastatic bone cancer.J. Nucl. Med.1992338145114581378887
    [Google Scholar]
  46. GoldenbergD.M. SharkeyR.M. PaganelliG. BarbetJ. ChatalJ.F. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy.J. Clin. Oncol.200624582383410.1200/JCO.2005.03.847116380412
    [Google Scholar]
  47. ZhangL. HuangY. ZhengY. CaiL. WenJ. ChenG. The effect of I-131 therapy on pregnancy outcomes after thyroidectomy in patients with differentiated thyroid carcinoma: A meta-analysis.Endocrine202173230130710.1007/s12020‑021‑02657‑634009542
    [Google Scholar]
  48. YamadaK. KaiseH. TaguchiT. HoriguchiJ. TakaoS. SuzukiM. KubotaT. MiuraD. NaruiK. TawarayaK. MachidaY. AkazawaK. KohnoN. IshikawaT. Strontium-89 plus zoledronic acid versus zoledronic acid for patients with painful bone metastatic breast cancer.J. Bone Miner. Metab.2022406998100610.1007/s00774‑022‑01366‑y36042056
    [Google Scholar]
  49. MishraS.G. SawantD.K. ChindarkarA.S. ThamkeA.N. Sanjeev KumarB. DeyA.C. KulkaniM.S. Europium radionuclides in samarium-153-Ethylene Diamine Tetramethylene phosphonic acid (153Sm-EDTMP) radiopharmaceutical waste.Appl. Radiat. Isot.202218811038610.1016/j.apradiso.2022.11038635939938
    [Google Scholar]
  50. AndersonG. EbadiM. VoK. NovakJ. GovindarajanA. AminiA. An updated review on head and neck cancer treatment with radiation therapy.Cancers20211319491210.3390/cancers1319491234638398
    [Google Scholar]
  51. MatsumotoY. FukumitsuN. IshikawaH. NakaiK. SakuraiH. A critical review of radiation therapy: From particle beam therapy (proton, carbon, and bnct) to beyond.J. Pers. Med.202111882510.3390/jpm1108082534442469
    [Google Scholar]
  52. BabarusI. LunguI.I. StefanacheA. Inorganic compounds utilized in cancer therapy: A comprehensive review.Investigat. Medic. Chem. Pharmacol.20236281
    [Google Scholar]
  53. FalzoneL. SalomoneS. LibraM. Evolution of cancer pharmacological treatments at the turn of the third millennium.Front. Pharmacol.20189130010.3389/fphar.2018.0130030483135
    [Google Scholar]
  54. NilssonS. LarsenR.H. FossåS.D. BalteskardL. BorchK.W. WestlinJ.E. SalbergG. BrulandØ.S. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases.Clin. Cancer Res.200511124451445910.1158/1078‑0432.CCR‑04‑224415958630
    [Google Scholar]
  55. RobinsonR.G. PrestonD.F. SchiefelbeinM. BaxterK.G. Package inserts for Theraspheres and SIR-Spheres. Strontium 89 therapy for the palliation of pain due to osseous metastases.JAMA1995274542010.1001/jama.1995.03530050068035
    [Google Scholar]
  56. HoffmanJ.M. GambhirS.S. Molecular imaging: The vision and opportunity for radiology in the future.Radiology20072441394710.1148/radiol.244106077317507723
    [Google Scholar]
  57. CouturierO. LuxenA. ChatalJ.F. VuillezJ.P. RigoP. HustinxR. Fluorinated tracers for imaging cancer with positron emission tomography.Eur. J. Nucl. Med. Mol. Imaging20043181182120610.1007/s00259‑004‑1607‑915241631
    [Google Scholar]
  58. WeberW.A. CzerninJ. AndersonC.J. BadawiR.D. BarthelH. BengelF. BodeiL. BuvatI. DiCarliM. GrahamM.M. GrimmJ. HerrmannK. KostakogluL. LewisJ.S. MankoffD.A. PetersonT.E. SchelbertH. SchöderH. SiegelB.A. StraussH.W. The future of nuclear medicine, molecular imaging, and theranostics.J. Nucl. Med.20206112Suppl. 2263S272S10.2967/jnumed.120.25453233293447
    [Google Scholar]
  59. MacleanD. NorthropJ.P. PadgettH.C. WalshJ.C. Drugs and probes: The symbiotic relationship between pharmaceutical discovery and imaging science.Mol. Imaging Biol.20035530431110.1016/j.mibio.2003.09.00814630510
    [Google Scholar]
  60. ParkB.K. KitteringhamN.R. O’NeillP.M. Metabolism of fluorine-containing drugs.Annu. Rev. Pharmacol. Toxicol.200141144347010.1146/annurev.pharmtox.41.1.44311264465
    [Google Scholar]
  61. FowlerJ.S. IdoT. Design and synthesis of 2-deoxy-2-[18F]fluoro-D-glucose (18FDG).Handbook of radiopharmaceuticals. WelchM.J. RedvanleyC.S. New YorkWiley2003
    [Google Scholar]
  62. PacákJ. CernýM. History of the first synthesis of 2-deoxy-2-fluoro-D-glucose the unlabeled forerunner of 2-deoxy-2-[18F]fluoro-D-glucose.Mol. Imaging Biol.20024535235410.1016/S1536‑1632(02)00083‑514537109
    [Google Scholar]
  63. SolsA. CraneR.K. Substrate specificity of brain hexokinase.J. Biol. Chem.1954210258159510.1016/S0021‑9258(18)65384‑013211595
    [Google Scholar]
  64. WahlR.L. Principles of cancer imaging with fluorodeoxyglucose.Principles and practice of positron emission tomography. WahlR.L. BuchananJ.W. PhiladelphiaWilliams & Wilkins2002
    [Google Scholar]
  65. StöcklinG.L. Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)?Eur. J. Nucl. Med.19982512161216169917190
    [Google Scholar]
  66. VaragnoloL. StokkelM.P.M. MazziU. PauwelsE.K.J. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG.Nucl. Med. Biol.200027210311210.1016/S0969‑8051(99)00109‑210773538
    [Google Scholar]
  67. CoenenH.H. ElsingaP.H. IwataR. KilbournM.R. PillaiM.R.A. RajanM.G.R. WagnerH.N.Jr ZaknunJ.J. Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences.Nucl. Med. Biol.201037772774010.1016/j.nucmedbio.2010.04.18520870148
    [Google Scholar]
  68. AdlerN.E. PageAnn E.K. National Institute of Medicine Committee on Psychosocial Services to Cancer Patients/Families in a Community Setting (2008) Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs.Washington, DCNational Academies Press20081199310.17226/1199320669419
    [Google Scholar]
  69. KorićanacL.B. ŽakulaJ.J. PetrovićI.M. ValastroL.M. CirroneG.A.P. CuttoneG. Ristić-FiraA.M. Anti-tumour activity of fotemustine and protons in combination with bevacizumab.Chemotherapy201056321422210.1159/00031633320551638
    [Google Scholar]
  70. ParkH.J. OhJ.S. ChangJ.W. HwangS.G. KimJ.S. Proton irradiation sensitizes radioresistant non-small cell lung cancer cells by modulating epidermal growth factor receptor-mediated DNA repair.Anticancer Res.201636120521226722045
    [Google Scholar]
  71. MoncharmontC. GuyJ.B. WoznyA.S. GilorminiM. Battiston-MontagneP. ArdailD. BeuveM. AlphonseG. SimoënsX. RancouleC. Rodriguez-LafrasseC. MagnéN. Carbon ion irradiation withstands cancer stem cells’ migration/invasion process in Head and Neck Squamous Cell Carcinoma (HNSCC).Oncotarget2016730477384774910.18632/oncotarget.1028127374096
    [Google Scholar]
  72. OstromQ.T. GittlemanH. TruittG. BosciaA. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015.Neuro-oncol.201820Suppl. 4iv1iv8610.1093/neuonc/noy13130445539
    [Google Scholar]
  73. GrassiL. Psychiatric and psychosocial implications in cancer care: The agenda of psycho-oncology.Epidemiol. Psychiatr. Sci.202029e8910.1017/S204579601900082931915101
    [Google Scholar]
  74. AndersenB.L. DeRubeisR.J. BermanB.S. GrumanJ. ChampionV.L. MassieM.J. HollandJ.C. PartridgeA.H. BakK. SomerfieldM.R. RowlandJ.H. Screening, assessment, and care of anxiety and depressive symptoms in adults with cancer: An American Society of Clinical Oncology guideline adaptation.J. Clin. Oncol.201432151605161910.1200/JCO.2013.52.461124733793
    [Google Scholar]
  75. BultzB.D. CummingsG.G. GrassiL. TravadoL. Hoekstra-WeebersJ. WatsonM. 2013 President’s plenary international psycho‐oncology society: Embracing the IPOS standards as a means of enhancing comprehensive cancer care.Psychooncology20142391073107810.1002/pon.361824953775
    [Google Scholar]
  76. ButowP. PriceM.A. ShawJ.M. TurnerJ. ClaytonJ.M. GrimisonP. RankinN. KirstenL. Clinical pathway for the screening, assessment and management of anxiety and depression in adult cancer patients: Australian guidelines.Psychooncology2015249987100110.1002/pon.392026268799
    [Google Scholar]
  77. CarusoR. NanniM.G. RibaM.B. SabatoS. GrassiL. The burden of psychosocial morbidity related to cancer: Patient and family issues.Int. Rev. Psychiatry201729538940210.1080/09540261.2017.128809028753076
    [Google Scholar]
  78. European Union (EU) (2008) Council Conclusions on reducing the burden of cancer. 876th Employment, Social Policy, Health and Consumer Affairs Council Meeting. Luxembourg.2008Available from: www.eu2008.si/en/News_and_Documents/Council_Conclusions/June/0609_EPSCO-cancer.pdf (Accessed on: 10 June 2008).
  79. Grassi, L.; Riba, M., Eds.; Clinical Psycho-Oncology: An International Perspective.ChichesterWiley201232110.1002/9781119941101
    [Google Scholar]
  80. GrassiL. WatsonM. Psychosocial care in cancer: An overview of psychosocial programmes and national cancer plans of countries within the International Federation of Psycho‐Oncology Societies.Psychooncology201221101027103310.1002/pon.315423027723
    [Google Scholar]
  81. GrassiL. FujisawaD. OdyioP. AsuzuC. AshleyL. BultzB. TravadoL. FieldingR. Disparities in psychosocial cancer care: A report from the International Federation of Psycho‐oncology Societies.Psychooncology201625101127113610.1002/pon.422827452183
    [Google Scholar]
  82. HollandJ.C. History of psycho-oncology: Overcoming attitudinal and conceptual barriers.Psychosom. Med.200264220622110.1097/00006842‑200203000‑0000411914437
    [Google Scholar]
  83. HollandJ. WatsonM. DunnJ. The IPOS New International Standard of Quality Cancer Care: Integrating the psychosocial domain into routine care.Psychooncology201120767768010.1002/pon.197821710503
    [Google Scholar]
  84. HowellD. KeshavarzH. EsplenM.J. HackT. HamelM. HowesJ. JonesJ. LiM. ManiiD. McLeodD. MayerC. SellickS. RiahizadehS. NorooziH. AliM. Pan-Canadian Practice Guideline: Screening, Assessment and Management of Psychosocial Distress, Major Depression and Anxiety in Adults with Cancer.Canad. Associ. Psychosoc. Oncol. (CAPO)2015216
    [Google Scholar]
  85. International Psycho-Oncology Society (IPOS) Statement on Standards and Clinical Practice Guidelines in Cancer Care.2014Available from: https://ipos-society.org/about/quality
  86. MitchellA.J. ChanM. BhattiH. HaltonM. GrassiL. JohansenC. MeaderN. Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: A meta-analysis of 94 interview-based studies.Lancet Oncol.201112216017410.1016/S1470‑2045(11)70002‑X21251875
    [Google Scholar]
  87. NorthouseL. WilliamsA. GivenB. McCorkleR. Psychosocial care for family caregivers of patients with cancer.J. Clin. Oncol.201230111227123410.1200/JCO.2011.39.579822412124
    [Google Scholar]
  88. RubinG. BerendsenA. CrawfordS.M. DommettR. EarleC. EmeryJ. FaheyT. GrassiL. GrunfeldE. GuptaS. HamiltonW. HiomS. HunterD. LyratzopoulosG. MacleodU. MasonR. MitchellG. NealR.D. Peake 2 Luigi Grassi.Lancet Oncol.New YorkCambridge University Press201516121231127210.1016/S1470‑2045(15)00205‑326431866
    [Google Scholar]
  89. RolandM SeifertB SislerJ SussmanJ TaplinS VedstedP VorugantiT WalterF WardleJ WatsonE WellerD WenderR WhelanJ WhitlockJ WilkinsonC de WitN ZimmermannC The expanding role of primary care in cancer control.Lancet Oncol.201516121231127210.1016/s1470‑2045%2815%2900205‑3
    [Google Scholar]
  90. TravadoL. BultzB.D. UllrichA. AsuzuC.C. TurnerJ. GrassiL. JacobsenP. 2016 President’s Plenary International Psycho-Oncology Society: Challenges and opportunities for growing and developing psychosocial oncology programmes worldwide.Psychooncology20172691231123810.1002/pon.447128599340
    [Google Scholar]
  91. TravadoL. ReisJ.C. WatsonM. BorràsJ. Psychosocial oncology care resources in Europe: A study under the european partnership for action against cancer (EPAAC).Psychooncology201726452353010.1002/pon.404426685870
    [Google Scholar]
  92. WagnerL.I. SpiegelD. PearmanT. Using the science of psychosocial care to implement the new american college of surgeons commission on cancer distress screening standard.J. Natl. Compr. Canc. Netw.201311221422110.6004/jnccn.2013.002823411387
    [Google Scholar]
  93. World Health Organization (WHO). Latest global cancer data. Press release no. 263, September 2108.2018Available from: https://www.who.int/cancer/PRGlobocanFinal.pdf
  94. LewandowskiR.J. GabrA. AbouchalehN. AliR. Al AsadiA. MoraR.A. KulikL. GangerD. DesaiK. ThornburgB. MouliS. HickeyR. CaicedoJ.C. AbecassisM. RiazA. SalemR. Radiation segmentectomy: Potential curative therapy for early hepatocellular carcinoma.Radiology201828731050105810.1148/radiol.201817176829688155
    [Google Scholar]
  95. SwaminathanD. SwaminathanV. Geriatric oncology: Problems with under-treatment within this population.Cancer Biol. Med.201512427528326779364
    [Google Scholar]
  96. LouisD.N. PerryA. ReifenbergerG. von DeimlingA. Figarella-BrangerD. CaveneeW.K. OhgakiH. WiestlerO.D. KleihuesP. EllisonD.W. The 2016 world health organization classification of tumors of the central nervous system: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑127157931
    [Google Scholar]
/content/journals/crp/10.2174/0118744710337420250102054532
Loading
/content/journals/crp/10.2174/0118744710337420250102054532
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test