Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Pulmonary hypertension (PH) is a severe, progressive disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and increased mortality. Despite advancements in management, the median survival for PH patients remains 5-7 years, with an in-hospital mortality rate of approximately 6%. The core pathological feature of PH is pulmonary vascular remodeling (PVR), a multifactorial process involving endothelial dysfunction, inflammation, and aberrant immune responses. While current therapies target endothelial dysfunction, they fall short of preventing PVR or halting disease progression. Emerging research highlights the potential of immune-inflammatory pathways, oxygen-sensing mechanisms, and gut microbiota modulation as therapeutic targets. Integrating nutritional strategies, probiotics, and fecal microbiota transplantation (FMT) as adjunctive therapies also shows promise. These factors may collectively influence PVR, offering novel insights into therapeutic avenues for PH management in the future.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328325178241210174545
2024-12-30
2025-09-02
Loading full text...

Full text loading...

References

  1. HumbertM. GuignabertC. BonnetS. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives.Eur. Respir. J.2019531180188710.1183/13993003.01887‑2018 30545970
    [Google Scholar]
  2. ThenappanT. OrmistonM.L. RyanJ.J. ArcherS.L. Pulmonary arterial hypertension: Pathogenesis and clinical management.BMJ2018360j549210.1136/bmj.j5492 29540357
    [Google Scholar]
  3. HussainM.S. SharmaG. The burden of cardiovascular diseases due to COVID-19 pandemic.Thorac. Cardiovasc. Surg.2022721405010.1055/s‑0042‑1755205 35987194
    [Google Scholar]
  4. SimonneauG. MontaniD. CelermajerD.S. Haemodynamic definitions and updated clinical classification of pulmonary hypertension.Eur. Respir. J.2019531180191310.1183/13993003.01913‑2018 30545968
    [Google Scholar]
  5. AnandV. RoyS.S. ArcherS.L. Trends and outcomes of pulmonary arterial hypertension–related hospitalizations in the United States: Analysis of the nationwide inpatient sample database from 2001 through 2012.JAMA Cardiol.2016191021102910.1001/jamacardio.2016.3591 27851838
    [Google Scholar]
  6. MaronB.A. GalièN. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: A review.JAMA Cardiol.2016191056106510.1001/jamacardio.2016.4471 27851839
    [Google Scholar]
  7. HoeperM.M. HumbertM. SouzaR. A global view of pulmonary hypertension.Lancet Respir. Med.20164430632210.1016/S2213‑2600(15)00543‑3 26975810
    [Google Scholar]
  8. BahlG. PathakY. HussainM.S. Navigating sheehan syndrome’s silent onset: A case report.J. Clin. Transl. Endocrinol. Case Rep.202432100168
    [Google Scholar]
  9. HemnesA.R. BeckG.J. NewmanJ.H. PVDOMICS: A multi-center study to improve understanding of pulmonary vascular disease through phenomics.Circ. Res.2017121101136113910.1161/CIRCRESAHA.117.311737 29074534
    [Google Scholar]
  10. MaronB.A. HumbertM. Finding pulmonary arterial hypertension—switching to offense to mitigate disease burden.JAMA Cardiol.20227436937010.1001/jamacardio.2022.0011 35234810
    [Google Scholar]
  11. HoeperM.M. BadeschD.B. GhofraniH.A. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension.N. Engl. J. Med.2023388161478149010.1056/NEJMoa2213558 36877098
    [Google Scholar]
  12. HussainM.S. AfzalO. GuptaG. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis.Pathol. Res. Pract.202324915477310.1016/j.prp.2023.154773 37647827
    [Google Scholar]
  13. McGoonM.D. MillerD.P. REVEAL: A contemporary US pulmonary arterial hypertension registry.Eur. Respir. Rev.20122112381810.1183/09059180.00008211 22379169
    [Google Scholar]
  14. OkyarB. AlbayrakF. TorunB. Experience of chronic thromboembolic pulmonary hypertension (CTEPH) in two cases with scleroderma and immunopathogenesis overview: Case report.J Surg Med202152110.28982/josam.841679
    [Google Scholar]
  15. ZaimanA. FijalkowskaI. HassounP.M. TuderR.M. One hundred years of research in the pathogenesis of pulmonary hypertension.Am. J. Respir. Cell Mol. Biol.200533542543110.1165/rcmb.F307 16234331
    [Google Scholar]
  16. BisserierM. PradhanN. HadriL. Current and emerging therapeutic approaches to pulmonary hypertension.Rev. Cardiovasc. Med.202021216317910.31083/j.rcm.2020.02.597 32706206
    [Google Scholar]
  17. HussainM.S. AltamimiA.S.A. AfzalM. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  18. HussainM.S. ChaturvediV. The present condition of sickle cell disease: An overview of stem cell transplantation as a cure.Pharmaceutical Fronts202352e57e6310.1055/s‑0043‑1768918
    [Google Scholar]
  19. WangB. WuQ. Progress in genetic research on primary pulmonary hypertension.Zhonghua Yi Xue Yi Chuan Xue Za Zhi201835460060310.3760/cma.j.issn.1003‑9406.2018.04.031 30098265
    [Google Scholar]
  20. LaneK.B. MachadoR.D. PauciuloM.W. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension.Nat. Genet.2000261818410.1038/79226 10973254
    [Google Scholar]
  21. DengZ. MorseJ.H. SlagerS.L. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene.Am. J. Hum. Genet.200067373774410.1086/303059 10903931
    [Google Scholar]
  22. ThomsonJ.R. MachadoR.D. PauciuloM.W. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family.J. Med. Genet.2000371074174510.1136/jmg.37.10.741 11015450
    [Google Scholar]
  23. GossageJ. ChristmanB. Mediators of acute and chronic pulmonary hypertension (part 1).Semin. Respir. Crit. Care Med.199415319019810.1055/s‑2007‑1006362
    [Google Scholar]
  24. TobalR. PotjewijdJ. EmpelV.P.M. Vascular remodeling in pulmonary arterial hypertension: The potential involvement of innate and adaptive immunity.Front. Med.2021880689910.3389/fmed.2021.806899 35004784
    [Google Scholar]
  25. BerteroT. HandenA.L. ChanS.Y. Factors associated with heritable pulmonary arterial hypertension exert convergent actions on the mir-130/301-vascular matrix feedback loop.Int. J. Mol. Sci.2018198228910.3390/ijms19082289 30081553
    [Google Scholar]
  26. AldredM.A. MorrellN.W. GuignabertC. New mutations and pathogenesis of pulmonary hypertension: Progress and puzzles in disease pathogenesis.Circ. Res.202213091365138110.1161/CIRCRESAHA.122.320084 35482831
    [Google Scholar]
  27. BourgeoisA. OmuraJ. HabboutK. BonnetS. BoucheratO. Pulmonary arterial hypertension: New pathophysiological insights and emerging therapeutic targets.Int. J. Biochem. Cell Biol.201810491310.1016/j.biocel.2018.08.015 30189252
    [Google Scholar]
  28. LteifC. AtayaA. DuarteJ.D. Therapeutic challenges and emerging treatment targets for pulmonary hypertension in left heart disease.J. Am. Heart Assoc.20211011e02063310.1161/JAHA.120.020633 34032129
    [Google Scholar]
  29. GuptaG. HussainM.S. ThapaR. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19.Regen. Med.202318967567810.2217/rme‑2023‑0077 37554111
    [Google Scholar]
  30. MaY. LiuX. LongY. ChenY. Emerging therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in chronic respiratory diseases: an overview of recent progress.Front. Bioeng. Biotechnol.20221084504210.3389/fbioe.2022.845042 35284423
    [Google Scholar]
  31. ParvathaneniV. ShuklaS.K. GuptaV. Emerging therapeutic targets and therapies in idiopathic pulmonary fibrosis.Springer201910.1007/978‑3‑319‑98143‑7_8
    [Google Scholar]
  32. LanN.S.H. MassamB.D. KulkarniS.S. LangC.C. Pulmonary arterial hypertension: Pathophysiology and treatment.Diseases2018623810.3390/diseases6020038 29772649
    [Google Scholar]
  33. BonomiP. FaberL.P. WarrenW. Postoperative bronchopulmonary complications in stage III lung cancer patients treated with preoperative paclitaxel-containing chemotherapy and concurrent radiation.Semin. Oncol.1997244Suppl. 12S12S123
    [Google Scholar]
  34. HussainM.S. GuptaG. GoyalA. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.23482 37530602
    [Google Scholar]
  35. FukudaK. DateH. DoiS. Guidelines for the treatment of pulmonary hypertension (JCS 2017/JPCPHS 2017).Circ. J.201983484294510.1253/circj.CJ‑66‑0158 30853682
    [Google Scholar]
  36. MarshL.M. JandlK. GrünigG. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension.Eur. Respir. J.2018511170121410.1183/13993003.01214‑2017 29371380
    [Google Scholar]
  37. ZhuangW. LianG. HuangB. Pulmonary arterial hypertension induced by a novel method: Twice-intraperitoneal injection of monocrotaline.Exp. Biol. Med.201824312995100310.1177/1535370218794128 30099957
    [Google Scholar]
  38. HussainM.S. GuptaG. SamuelV.P. Immunopathology of herpes simplex virus‐associated neuroinflammation: Unveiling the mysteries.Rev. Med. Virol.2024341e249110.1002/rmv.2491 37985599
    [Google Scholar]
  39. LiM. RiddleS.R. FridM.G. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension.J. Immunol.201118752711272210.4049/jimmunol.1100479 21813768
    [Google Scholar]
  40. SawadaH. SaitoT. NickelN.P. Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension.J. Exp. Med.2014211226328010.1084/jem.20111741 24446489
    [Google Scholar]
  41. SerezaniC.H. KaneS. CollinsL. Morato-MarquesM. OsterholzerJ.J. Peters-GoldenM. Macrophage dectin-1 expression is controlled by leukotriene B4 via a GM-CSF/PU.1 axis.J. Immunol.2012189290691510.4049/jimmunol.1200257 22696442
    [Google Scholar]
  42. Le HiressM. AkagahB. BernadatG. Design, synthesis, and biological activity of new N-(phenylmethyl)-benzoxazol-2-thiones as macrophage migration inhibitory factor (MIF) antagonists: Efficacies in experimental pulmonary hypertension.J. Med. Chem.20186172725273610.1021/acs.jmedchem.7b01312 29526099
    [Google Scholar]
  43. KimY.M. HaghighatL. SpiekerkoetterE. Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions.Am. J. Pathol.201117931560157210.1016/j.ajpath.2011.05.051 21763677
    [Google Scholar]
  44. KlinkeA. BerghausenE. FriedrichsK. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase.JCI Insight2018311e9753010.1172/jci.insight.97530 29875311
    [Google Scholar]
  45. PullamsettiS.S. SeegerW. SavaiR. Classical IL-6 signaling: A promising therapeutic target for pulmonary arterial hypertension.J. Clin. Invest.201812851720172310.1172/JCI120415 29629898
    [Google Scholar]
  46. TamuraY. PhanC. TuL. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension.J. Clin. Invest.201812851956197010.1172/JCI96462 29629897
    [Google Scholar]
  47. Hashimoto-KataokaT. HosenN. SonobeT. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension.Proc. Natl. Acad. Sci. USA201511220E2677E268610.1073/pnas.1424774112 25941359
    [Google Scholar]
  48. MichelakisE.D. GurtuV. WebsterL. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients.Sci. Transl. Med.20179413eaao458310.1126/scitranslmed.aao4583 29070699
    [Google Scholar]
  49. Morales-CanoD. MenendezC. MorenoE. The flavonoid quercetin reverses pulmonary hypertension in rats.PLoS One2014912e11449210.1371/journal.pone.0114492 25460361
    [Google Scholar]
  50. HussainM.S. ChaturvediV. GoyalS. SinghS. MirR.H. An update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases.Curr. Bioact. Compd.2024205e25102322264810.2174/0115734072258656231013085318
    [Google Scholar]
  51. GuptaM. HussainM.S. ThapaR. BhatA.A. KumarN. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis.PharmaNutrition20242910040610.1016/j.phanu.2024.100406
    [Google Scholar]
  52. IslamM.R. RaufA. AlashS. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways.Med. Oncol.202441613410.1007/s12032‑024‑02333‑5 38703282
    [Google Scholar]
  53. LegchenkoE. ChouvarineP. BorchertP. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.Sci. Transl. Med.201810438eaao030310.1126/scitranslmed.aao0303
    [Google Scholar]
  54. DaiZ. LiM. WhartonJ. ZhuM.M. ZhaoY.Y. Prolyl-4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2α.Circulation2016133242447245810.1161/CIRCULATIONAHA.116.021494 27143681
    [Google Scholar]
  55. MamazhakypovA. ViswanathanG. LawrieA. SchermulyR.T. RajagopalS. The role of chemokines and chemokine receptors in pulmonary arterial hypertension.Br. J. Pharmacol.20211781728910.1111/bph.14826 31399998
    [Google Scholar]
  56. XiaoG. WangT. ZhuangW. RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways.Aging20201264953496910.18632/aging.102922 32176619
    [Google Scholar]
  57. AmsellemV. LipskaiaL. AbidS. CCR5 as a treatment target in pulmonary arterial hypertension.Circulation20141301188089110.1161/CIRCULATIONAHA.114.010757 24993099
    [Google Scholar]
  58. GothwalS.K. GoyalK. GargA.S. A rare case of brucellosis with multivalvular endocarditis and complete heart block.Curr. Cardiol. Rev.2024206e03072423155910.2174/011573403X290326240703100925 38963101
    [Google Scholar]
  59. BahlG. UpadhyayD.K. VarmaM. SinghR. DasS. HussainS. Persistent chronic calcific pancreatitis with intraductal calculi associated with secondary diabetes mellitus type 3 and diabetic ketoacidosis – A case report.Endocr. Regul.202458110110410.2478/enr‑2024‑0011 38656253
    [Google Scholar]
  60. WuD. DasguptaA. ReadA.D. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer.Free Radic. Biol. Med.202117015017810.1016/j.freeradbiomed.2020.12.452 33450375
    [Google Scholar]
  61. LeeH. YeomA. KimK.C. HongY.M. Effect of ambrisentan therapy on the expression of endothelin receptor, endothelial nitric oxide synthase and NADPH oxidase 4 in monocrotaline-induced pulmonary arterial hypertension rat model.Korean Circ. J.201949986687610.4070/kcj.2019.0006 31165592
    [Google Scholar]
  62. ChungH. SohnI.S. Moving beyond the endothelium is still challenging-complex interplay between endothelin and reactive oxygen species in pulmonary arterial hypertension.Korean Circ. J.201949987787810.4070/kcj.2019.0167 31347318
    [Google Scholar]
  63. XuX. LiH. WeiQ. Novel targets in a high-altitude pulmonary hypertension rat model based on RNA-seq and proteomics.Front. Med.20218742436
    [Google Scholar]
  64. SilvaM.M.C. AlencarA.K.N. SilvaJ.S. Therapeutic benefit of the association of lodenafil with mesenchymal stem cells on hypoxia-induced pulmonary hypertension in rats.Cells202099212010.3390/cells9092120 32961896
    [Google Scholar]
  65. XuZ.M. ZhuL-M. CaiX-M. JiG. LiuJ.F. SuZ.K. Outcome of oral bosentan in children with congenital heart disease associated pulmonary arterial hypertension.Zhonghua Yi Xue Za Zhi2009893021062109 20058613
    [Google Scholar]
  66. CallejoM. BarberáJ.A. DuarteJ. Perez-VizcainoF. Impact of nutrition on pulmonary arterial hypertension.Nutrients202012116910.3390/nu12010169 31936113
    [Google Scholar]
  67. HussainM.S. SharmaA. KumarR. Prebiotics and probiotics: A focused review of applications in respiratory disorders.Carpathian J Food Sci Technol202315183207
    [Google Scholar]
  68. SinghR.K. ChangH.W. YanD. Influence of diet on the gut microbiome and implications for human health.J. Transl. Med.20171517310.1186/s12967‑017‑1175‑y 28388917
    [Google Scholar]
  69. TufailM. WuC. HussainM.S. Dietary, addictive and habitual factors, and risk of colorectal cancer.Nutrition202412011233410.1016/j.nut.2023.112334 38271761
    [Google Scholar]
  70. WuQ. TurturiceB. WagnerS. Gut microbiota can impact chronic murine lung allograft rejection.Am. J. Respir. Cell Mol. Biol.201960113113410.1165/rcmb.2018‑0139LE 30592445
    [Google Scholar]
  71. MarquesF.Z. MackayC.R. KayeD.M. Beyond gut feelings: How the gut microbiota regulates blood pressure.Nat. Rev. Cardiol.2018151203210.1038/nrcardio.2017.120 28836619
    [Google Scholar]
  72. ThenappanT. KhorutsA. ChenY. WeirE.K. Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?Am. J. Physiol. Heart Circ. Physiol.20193175H1093H110110.1152/ajpheart.00416.2019 31490732
    [Google Scholar]
  73. CallejoM. Mondejar-ParreñoG. BarreiraB. Pulmonary arterial hypertension affects the rat gut microbiome.Sci. Rep.201881968110.1038/s41598‑018‑27682‑w 29946072
    [Google Scholar]
  74. RanchouxB. BigorgneA. HautefortA. Gut–lung connection in pulmonary arterial hypertension.Am. J. Respir. Cell Mol. Biol.201756340240510.1165/rcmb.2015‑0404LE 28248132
    [Google Scholar]
  75. ChesnéJ. DangerR. BotturiK. Systematic analysis of blood cell transcriptome in end-stage chronic respiratory diseases.PLoS One2014910e10929110.1371/journal.pone.0109291 25329529
    [Google Scholar]
  76. LinK. ChenH. YuL. Pulmonary arterial hypertension caused by congenital extrahepatic portocaval shunt: A case report.BMC Cardiovasc. Disord.201919114110.1186/s12872‑019‑1124‑1 31196005
    [Google Scholar]
  77. WedgwoodS. WarfordC. AgvatisiriS.R. The developing gut–lung axis: Postnatal growth restriction, intestinal dysbiosis, and pulmonary hypertension in a rodent model.Pediatr. Res.202087347247910.1038/s41390‑019‑0578‑2 31537010
    [Google Scholar]
  78. KhorutsA. BrandtL.J. Fecal microbiota transplant: A rose by any other name.Am. J. Gastroenterol.20191147117610.14309/ajg.0000000000000286 31205129
    [Google Scholar]
  79. ChenY.H. YuanW. MengL.K. ZhongJ.C. LiuX.Y. The role and mechanism of gut microbiota in pulmonary arterial hypertension.Nutrients20221420427810.3390/nu14204278 36296961
    [Google Scholar]
  80. SoP.P.S. DaviesR.A. ChandyG. Usefulness of beta-blocker therapy and outcomes in patients with pulmonary arterial hypertension.Am. J. Cardiol.2012109101504150910.1016/j.amjcard.2012.01.368 22385756
    [Google Scholar]
  81. ProvencherS. HerveP. JaisX. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension.Gastroenterology2006130112012610.1053/j.gastro.2005.10.013 16401475
    [Google Scholar]
  82. van CampenJ.S.J.A. de BoerK. van de VeerdonkM.C. Bisoprolol in idiopathic pulmonary arterial hypertension: An explorative study.Eur. Respir. J.201648378779610.1183/13993003.00090‑2016 27390285
    [Google Scholar]
  83. HussainS. KhanM.A. RajanR. Nanorobots: The future of healthcare.AIP Conference ProceedingsAIP Publishing2023
    [Google Scholar]
  84. RothmanA.M.K. VachieryJ.L. HowardL.S. Intravascular ultrasound pulmonary artery denervation to treat pulmonary arterial hypertension (TROPHY1).JACC Cardiovasc. Interv.202013898999910.1016/j.jcin.2019.12.027 32327095
    [Google Scholar]
  85. ZhangH. WeiY. ZhangC. Pulmonary artery denervation for pulmonary arterial hypertension.JACC Cardiovasc. Interv.202215232412242310.1016/j.jcin.2022.09.013 36121246
    [Google Scholar]
  86. GarcíaA.R. PiccariL. Emerging phenotypes of pulmonary hypertension associated with COPD: A field guide.Curr. Opin. Pulm. Med.202228534335110.1097/MCP.0000000000000890 35838373
    [Google Scholar]
  87. RuaroB. SaltonF. BaratellaE. An overview of different techniques for improving the treatment of pulmonary hypertension secondary in systemic sclerosis patients.Diagnostics202212361610.3390/diagnostics12030616 35328169
    [Google Scholar]
  88. LuiJ.K. SanganiR.A. GillmeyerK.R. Hemodynamic response to oral vasodilator therapy in systemic sclerosis-related pulmonary hypertension.Cardiovasc. Drugs Ther.202438365165610.1007/s10557‑022‑07420‑1 36607535
    [Google Scholar]
  89. RosenkranzS. PauschC. CoghlanJ.G. Risk stratification and response to therapy in patients with pulmonary arterial hypertension and comorbidities: A COMPERA analysis.J. Heart Lung Transplant.202342110211410.1016/j.healun.2022.10.003 36333206
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328325178241210174545
Loading
/content/journals/crcep/10.2174/0127724328325178241210174545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test