Skip to content
2000
Volume 20, Issue 3
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Introduction

Diabetic wounds are a prevalent and impairing consequence of diabetes mellitus that significantly impacts people's lives and global healthcare systems. Because of disturbances in the wound-healing cascade, these intricate, persistent wounds frequently refuse to heal. Focusing on diabetic wound formation, this study seeks to clarify the complex mechanisms and pathophysiology involved while offering a thorough overview of modern multimodal therapy techniques. The etiology of diabetic wounds entails a complex interplay between tissue destruction caused by hyperglycemia, neuropathy, ischemia, and compromised immune response. Extended inflammation, abnormal protease activity, and low oxygen levels in the tissue exacerbate the healing process. Comprehending these pathogenic mechanisms is essential for formulating efficacious therapeutic strategies.

Methodology

A thorough evaluation of the literature was done. Databases like SciFinder, ScienceDirect, PubMed, Google, Google Scholar, and the Egyptian Knowledge Bank were used to find pertinent publications. More than 200 articles and databases were studied to constitute this paper. The accuracy of the retrieved data was carefully reviewed and cross-checked. The current review aims to define wounds, various methods of classification, and various advancements for wound management. Several multidisciplinary strategies, including debridement, unloading, antimicrobial stewardship, and innovative therapeutics, are currently needed to manage diabetic wounds. Debridement—the excision of non-viable tissue—is necessary to create an environment that is conducive to recovery. Biomechanical interventions and offloading help to prevent additional tissue damage caused by repetitive stress. Antimicrobial treatments fight infections, which are a common diabetic wound consequence. Promising supplementary treatments are provided by developments in cellular and tissue-based products, ozone therapy growth factors, bioengineered skin substitutes, and hyperbaric oxygen therapy.

Results

After applying article selection criteria and reviewing the quality of the methodology a total of 200 articles were selected to be included in the review. In this review, intricate interactions between peripheral neuropathy, vascular insufficiency, and hyperglycemia in the pathophysiology of diabetic wounds are explained. The efficacy of multimodal therapies is discussed in detail.

Discussion

A thorough comprehension of the complex mechanisms that underlie diabetic wounds is essential for efficient therapy. This review emphasizes how important multimodal approaches are to treating the complex pathophysiology of these wounds. Clinicians can greatly enhance the prognosis of patients with diabetic foot ulcers by addressing vascular insufficiency, neuropathy, infection, and poor healing.

Conclusion

Timely wound resolution remains a key difficulty despite the implementation of multimodal methods. To customize therapies, personalized medicine strategies utilizing genetic and proteomic biomarkers must be the main focus of future research. Furthermore, cutting-edge biotechnologies with the potential to transform diabetic wound treatment include optogenetics and nanomedicine.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328326480240927065600
2024-10-14
2025-10-01
Loading full text...

Full text loading...

References

  1. Encyclopedia Britannica2022Available from: https://www. britannica.com/science/wound Accessed 29 February 2024.
  2. KujathP. MichelsenA. Wounds - From physiology to wound dressing.Dtsch. Arztebl. Int.200810513239248 19629204
    [Google Scholar]
  3. KumarB. VijayakumarM. GovindarajanR. PushpangadanP. Ethnopharmacological approaches to wound healing—Exploring medicinal plants of India.J. Ethnopharmacol.2007114210311310.1016/j.jep.2007.08.010 17884316
    [Google Scholar]
  4. KarimiK. OdhavA. KolliparaR. FikeJ. StanfordC. HallJ.C. Acute cutaneous necrosis: A guide to early diagnosis and treatment.J. Cutan. Med. Surg.201721542543710.1177/1203475417708164 28470091
    [Google Scholar]
  5. SabaleP. BhimaniB. PrajapatiC. SabaleV. An overview of medicinal plants as wound healers.J. Appl. Pharm. Sci.2012211143150
    [Google Scholar]
  6. DatA.D. PoonF. PhamK.B. DoustJ. Aloe vera for treating acute and chronic wounds. Sao Paulo medical journal.Rev. Paul. Med.20141326382
    [Google Scholar]
  7. MoreoK. Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager2005162626710.1016/j.casemgr.2005.01.01415818347
    [Google Scholar]
  8. RudolphR. HurowitzD. PutnamJ. The economics of chronic wounds.Chronic problem wounds. RudolphR. NoeJ.M. BostonLittle Brown & Co.1983173
    [Google Scholar]
  9. BalakumarP Maung-UK JagadeeshG Prevalence and prevention of cardiovascular disease and diabetes mellitus.Pharmacol Res 2016113Pt A600910.1016/j.phrs.2016.09.04027697647
    [Google Scholar]
  10. GouldL. AbadirP. BremH. Chronic wound repair and healing in older adults: Current status and future research.J. Am. Geriatr. Soc.201563342743810.1111/jgs.13332 25753048
    [Google Scholar]
  11. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  12. HanefeldM. DuettingE. BramlageP. Cardiac implications of hypoglycaemia in patients with diabetes – A systematic review.Cardiovasc. Diabetol.201312113510.1186/1475‑2840‑12‑135 24053606
    [Google Scholar]
  13. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina 20215710107210.3390/medicina57101072 34684109
    [Google Scholar]
  14. BoultonA. ArmstrongD. HardmanM. Diagnosis and management of diabetic foot infections.Arlington, VAAmerican Diabetes Association2020
    [Google Scholar]
  15. DesmetC.M. PréatV. GallezB. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing.Adv. Drug Deliv. Rev.201812926228410.1016/j.addr.2018.02.001 29448035
    [Google Scholar]
  16. AhmedN. Advanced glycation endproducts—role in pathology of diabetic complications.Diabetes Res. Clin. Pract.200567132110.1016/j.diabres.2004.09.004 15620429
    [Google Scholar]
  17. KimB.Y. KimC.H. JungC.H. MokJ.O. SuhK.I. KangS.K. Association between subclinical hypothyroidism and severe diabetic retinopathy in Korean patients with type 2 diabetes.Endocr. J.201158121065107010.1507/endocrj.EJ11‑0199 21931224
    [Google Scholar]
  18. ChoudhuryH. PandeyM. LimY.Q. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy.Mater. Sci. Eng. C202011211092510.1016/j.msec.2020.110925 32409075
    [Google Scholar]
  19. NowakN.C. MenichellaD.M. MillerR. PallerA.S. Cutaneous innervation in impaired diabetic wound healing.Transl. Res.20212368710810.1016/j.trsl.2021.05.003 34029747
    [Google Scholar]
  20. DiegelmannR.F. EvansM.C. Wound healing: An overview of acute, fibrotic and delayed healing.Front. Biosci.200491-328328910.2741/1184 14766366
    [Google Scholar]
  21. LazarusG.S. CooperD.M. KnightonD.R. Definitions and guidelines for assessment of wounds and evaluation of healing.Arch. Dermatol.1994130448949310.1001/archderm.1994.01690040093015 8166487
    [Google Scholar]
  22. Demidova-RiceT.N. HamblinM.R. HermanI.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care.Adv. Skin Wound Care201225730431410.1097/01.ASW.0000416006.55218.d0 22713781
    [Google Scholar]
  23. ShawT.J. MartinP. Wound repair at a glance.J. Cell Sci.2009122183209321310.1242/jcs.031187 19726630
    [Google Scholar]
  24. MacKayD. MillerA.L. Nutritional support for wound healing.Altern. Med. Rev.200384359377 14653765
    [Google Scholar]
  25. TsalaD.E. AmadouD. HabtemariamS. Natural wound healing and bioactive natural products.Phytopharmacology201343532560
    [Google Scholar]
  26. LiJ. ChenJ. KirsnerR. Pathophysiology of acute wound healing.Clin. Dermatol.200725191810.1016/j.clindermatol.2006.09.007 17276196
    [Google Scholar]
  27. LeeY.S. WysockiA. WarburtonD. TuanT.L. Wound healing in development.Birth Defects Res. C Embryo Today201296321322210.1002/bdrc.21017 23109317
    [Google Scholar]
  28. LawrenceW.T. DiegelmannR.F. Growth factors in wound healing.Clin. Dermatol.199412115716910.1016/0738‑081X(94)90266‑6 8180938
    [Google Scholar]
  29. WangP.H. HuangB.S. HorngH.C. YehC.C. ChenY.J. Wound healing.J. Chin. Med. Assoc.20188129410110.1016/j.jcma.2017.11.002 29169897
    [Google Scholar]
  30. ChoJ. MosherD.F. Role of fibronectin assembly in platelet thrombus formation.J. Thromb. Haemost.2006471461146910.1111/j.1538‑7836.2006.01943.x 16839338
    [Google Scholar]
  31. Rabhi-SabileS. De RomeufC. PidardD. On the mechanism of plasmin-induced aggregation of human platelets: Implication of secreted von Willebrand factor.Thromb. Haemost.19987961191119810.1055/s‑0037‑1615039 9657447
    [Google Scholar]
  32. OnoY. KuranoM. OhkawaR. Sphingosine 1-phosphate release from platelets during clot formation: Close correlation between platelet count and serum sphingosine 1-phosphate concentration.Lipids Health Dis.20131212010.1186/1476‑511X‑12‑20 23418753
    [Google Scholar]
  33. FalangaV. Wound healing and its impairment in the diabetic foot.Lancet200536694981736174310.1016/S0140‑6736(05)67700‑8 16291068
    [Google Scholar]
  34. NagarajaS. WallqvistA. ReifmanJ. MitrophanovA.Y. Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation.J. Immunol.201419241824183410.4049/jimmunol.1302481 24453259
    [Google Scholar]
  35. SorgH. TilkornD.J. HagerS. HauserJ. MirastschijskiU. Skin wound healing: An update on the current knowledge and concepts.Eur. Surg. Res.2017581-2819410.1159/000454919 27974711
    [Google Scholar]
  36. GurtnerG.C. WernerS. BarrandonY. LongakerM.T. Wound repair and regeneration.Nature2008453719331432110.1038/nature07039 18480812
    [Google Scholar]
  37. WernerS. GroseR. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.200383383587010.1152/physrev.2003.83.3.835 12843410
    [Google Scholar]
  38. CrossK.J. MustoeT.A. Growth factors in wound healing.Surg. Clin. North Am.2003833531545, vi.10.1016/S0039‑6109(02)00202‑512822724
    [Google Scholar]
  39. BarkerT.H. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine.Biomaterials201132184211421410.1016/j.biomaterials.2011.02.027 21515169
    [Google Scholar]
  40. EckesB. NischtR. KriegT. Cell-matrix interactions in dermal repair and scarring.Fibrogenesis Tissue Repair201031410.1186/1755‑1536‑3‑4 20222960
    [Google Scholar]
  41. HuntT.K. The physiology of wound healing.Ann. Emerg. Med.198817121265127310.1016/S0196‑0644(88)80351‑2 3057943
    [Google Scholar]
  42. SimonP.E. OutranH.A. RomoT. Skin wound healing: An update on the current knowledge and concepts.Eur. Surg. Res.2017581-28194
    [Google Scholar]
  43. DesmoulièreA. RedardM. DarbyI. GabbianiG. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar.Am. J. Pathol.199514615666[PubMed 7856739
    [Google Scholar]
  44. HuntT.K. GoodsonW.H. Wound healing.Current surgical diagnosis and treatment. WayL.W. Norwalk, CTAppleton and Lange19888697
    [Google Scholar]
  45. GaoD. ZhangY. BowersD.T. LiuW. MaM. Functional hydrogels for diabetic wound management.APL Bioeng.20215303150310.1063/5.0046682 34286170
    [Google Scholar]
  46. BremH. Tomic-CanicM. Cellular and molecular basis of wound healing in diabetes.J. Clin. Invest.200711751219122210.1172/JCI32169 17476353
    [Google Scholar]
  47. FlynnM.D. TookeJ.E. Aetiology of diabetic foot ulceration: A role for the microcirculation?Diabet. Med.19929432032910.1111/j.1464‑5491.1992.tb01790.x 1600701
    [Google Scholar]
  48. HennesseyP.J. FordE.G. BlackC.T. AndrassyR.J. Wound collagenase activity correlates directly with collagen glycosylation in diabetic rats.J. Pediatr. Surg.1990251757810.1016/S0022‑3468(05)80167‑8 2153794
    [Google Scholar]
  49. MarhofferW. SteinM. MaeserE. FederlinK. Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes.Diabetes Care199215225626010.2337/diacare.15.2.256 1547682
    [Google Scholar]
  50. McMurtryA.L. ChoK. YoungL.J.T. NelsonC.F. GreenhalghD.G. Expression of HSP70 in healing wounds of diabetic and nondiabetic mice.J. Surg. Res.1999861364110.1006/jsre.1999.5700 10452866
    [Google Scholar]
  51. KoitkaA. Impaired pressure-induced vasodilation at the foot in young adults with type diabetes.Diabetes20045372172510.2337/diabetes.53.3.721
    [Google Scholar]
  52. ClaytonW.Jr ElasyT.A. A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients.Clin. Diabetes2009272525810.2337/diaclin.27.2.52
    [Google Scholar]
  53. SchremlS. SzeimiesR.M. PrantlL. KarrerS. LandthalerM. BabilasP. Oxygen in acute and chronic wound healing.Br. J. Dermatol.2010163225726810.1111/j.1365‑2133.2010.09804.x 20394633
    [Google Scholar]
  54. GosainA. DiPietroL.A. Aging and wound healing.World J. Surg.200428332132610.1007/s00268‑003‑7397‑6 14961191
    [Google Scholar]
  55. D’AlessandroS. MagnavaccaA. PeregoF. Effect of hypoxia on gene expression in cell populations involved in wound healing.BioMed Res. Int.2019201912010.1155/2019/2626374 31534956
    [Google Scholar]
  56. BlakytnyR. JudeE. The molecular biology of chronic wounds and delayed healing in diabetes.Diabet. Med.200623659460810.1111/j.1464‑5491.2006.01773.x 16759300
    [Google Scholar]
  57. DengL. DuC. SongP. The role of oxidative stress and antioxidants in diabetic wound healing.Oxidative Med Cell Longev202111110.1155/2021/8852759
    [Google Scholar]
  58. BarkerA.R. RossonG.D. DellonA.L. Wound healing in denervated tissue.Ann. Plast. Surg.200657333934210.1097/01.sap.0000221465.69826.b7 16929207
    [Google Scholar]
  59. IbukiA. KuriyamaS. ToyosakiY. Aging-like physiological changes in the skin of Japanese obese diabetic patients.SAGE Open Med.2018610.1177/2050312118756662 29449943
    [Google Scholar]
  60. GreenerB. HughesA.A. BannisterN.P. DouglassJ. Proteases and pH in chronic wounds.J. Wound Care2005142596110.12968/jowc.2005.14.2.26739 15739652
    [Google Scholar]
  61. KoïtkaA. AbrahamP. BouhanickB. Sigaudo-RousselD. DemiotC. SaumetJ.L. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes.Diabetes200453372172510.2337/diabetes.53.3.721 14988257
    [Google Scholar]
  62. DworzańskiJ. Strycharz-DudziakM. KliszczewskaE. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus.PLoS One2020153e023037410.1371/journal.pone.0230374 32210468
    [Google Scholar]
  63. HenshawF.R. BoughtonP. LoL. McLennanS.V. TwiggS.M. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: Potential role for CTGF in human diabetic foot ulcer healing.J. Diabetes Res.2015201511010.1155/2015/236238 25789327
    [Google Scholar]
  64. JamesW.B. Classification of foot lesions in diabetic patients.Levin and O’Neals The Diabetic Foot20089221226
    [Google Scholar]
  65. ChoudharyV. ChoudharyM. BollagW.B. Exploring skin wound healing models and the impact of natural lipids on the healing process.Int. J. Mol. Sci.2024257379010.3390/ijms25073790 38612601
    [Google Scholar]
  66. KravitzS.R. McGuireJ. ShanahanS.D. Physical assessment of the diabetic foot.Adv. Skin Wound Care2003162687510.1097/00129334‑200303000‑00007 12690230
    [Google Scholar]
  67. HoffmanA.F. Evaluation of arterial blood flow in the lower extremity.Clin. Podiatr. Med. Surg.199291195610.1016/S0891‑8422(23)00498‑6 1735062
    [Google Scholar]
  68. CaputoG.M. CavanaghP.R. UlbrechtJ.S. GibbonsG.W. KarchmerA.W. Assessment and management of foot disease in patients with diabetes.N. Engl. J. Med.19943311385486010.1056/NEJM199409293311307 7848417
    [Google Scholar]
  69. FardA.S. EsmaelzadehM. LarijaniB. Assessment and treatment of diabetic foot ulcer.Int. J. Clin. Pract.200761111931193810.1111/j.1742‑1241.2007.01534.x 17935551
    [Google Scholar]
  70. SpearM. When and how to culture a chronic wound.Wound Care Advisor201432325
    [Google Scholar]
  71. AlaviA. NiakosariF. SibbaldR.G. When and how to perform a biopsy on a chronic wound.Adv. Skin Wound Care201023313214010.1097/01.ASW.0000363515.09394.66 20177166
    [Google Scholar]
  72. SpearM. Best technique for obtaining wound cultures.Plast. Surg. Nurs.2012321343610.1097/PSN.0b013e31824a7e53 22395174
    [Google Scholar]
  73. HøibyN. BjarnsholtT. MoserC. ESCMID* guideline for the diagnosis and treatment of biofilm infections 2014.Clin. Microbiol. Infect.201521Suppl. 1S1S2510.1016/j.cmi.2014.10.024 25596784
    [Google Scholar]
  74. MüllerB. Christ-CrainM. NylenE.S. SniderR. BeckerK.L. Limits to the use of the procalcitonin level as a diagnostic marker.Clin. Infect. Dis.200439121867186810.1086/426148 15578415
    [Google Scholar]
  75. OkamuraY. YokoiH. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST).Clin. Chim. Acta201141223-242157216110.1016/j.cca.2011.07.024 21839732
    [Google Scholar]
  76. LiS. RenickP. SenkowskyJ. NairA. TangL. Diagnostics for wound infections.Adv. Wound Care202110631732710.1089/wound.2019.1103 32496977
    [Google Scholar]
  77. LyonsT.J. BasuA. Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers.Transl. Res.2012159430331210.1016/j.trsl.2012.01.009 22424433
    [Google Scholar]
  78. DmitriyevaM. KozhakhmetovaZ. UrazovaS. KozhakhmetovS. TurebayevD. ToleubayevM. Inflammatory biomarkers as predictors of infected diabetic foot ulcer.Curr. Diabetes Rev.2022186e28092119686710.2174/1573399817666210928144706 34602039
    [Google Scholar]
  79. ChengP. DongY. HuZ. Biomarker prediction of postoperative healing of diabetic foot ulcers.J. Wound Ostomy Continence Nurs.202148433934410.1097/WON.0000000000000780 34186553
    [Google Scholar]
  80. ZhangD. LiZ. WangZ. ZengF. XiaoW. YuA. MicroRNA-126: A promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy.Diabetes Metab. Syndr. Obes.2019121685169610.2147/DMSO.S199705 31564936
    [Google Scholar]
  81. Pletsch-BorbaL. WatzingerC. TurzanskiR. Biomarkers of vascular injury and type 2 diabetes: A prospective study, systematic review and meta-analysis.J. Clin. Med.2019812207510.3390/jcm8122075 31783601
    [Google Scholar]
  82. LipskyB.A. BerendtA.R. CorniaP.B. 2012 infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections.Clin. Infect. Dis.20125412e132e17310.1093/cid/cis346 22619242
    [Google Scholar]
  83. SchaperN.C. van NettenJ.J. ApelqvistJ. Practical guidelines on the prevention and management of diabetes‐related foot disease (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e365710.1002/dmrr.3657 37243927
    [Google Scholar]
  84. BraunL. KimP.J. MargolisD. PetersE.J. LaveryL.A. What’s new in the literature: An update of new research since the original WHS diabetic foot ulcer guidelines in 2006.Wound Repair Regen.201422559460410.1111/wrr.12220 25139424
    [Google Scholar]
  85. TanJ.S. FileT.M.Jr Diagnosis and treatment of diabetic foot infections.Best Pract. Res. Clin. Rheumatol.199913114916110.1053/berh.1999.0011 10952854
    [Google Scholar]
  86. VasP.R.J. EdmondsM. KavarthapuV. The diabetic foot attack: “Tis too late to retreat!”.Int. J. Low. Extrem. Wounds201817171310.1177/1534734618755582 29430981
    [Google Scholar]
  87. KolossváryE. FarkasK. ColganM.P. “No more amputations”: A complex scientific problem and a challenge for effective preventive strategy implementation on vascular field.Int. Angiol.201736210711510.23736/S0392‑9590.16.03673‑7 27310526
    [Google Scholar]
  88. De OliveiraALM MooreZ Treatment of the diabetic foot by offloading: A systematic review.J Wound Care20152412560-570, 56257010.12968/jowc.2015.24.12.56026654736
    [Google Scholar]
  89. BusS.A. ArmstrongD.G. CrewsR.T. Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2023 update).Diabetes Metab. Res. Rev.2024403e364710.1002/dmrr.3647 37226568
    [Google Scholar]
  90. ChunD.I. KimJ. KangE.M. Does amputation negatively influence the incidence of depression in diabetic foot patients?: A population-based nationwide study.Appl. Sci.2022123165310.3390/app12031653
    [Google Scholar]
  91. SmithD.G. EhdeD.M. LegroM.W. ReiberG.E. Del AguilaM. BooneD.A. Phantom limb, residual limb, and back pain after lower extremity amputations.Clin. Orthop. Relat. Res.1999361361293810.1097/00003086‑199904000‑00005 10212593
    [Google Scholar]
  92. FitzgeraldR. RogersL. ArmstrongD.G. The wound healing spectrum: A timeline for the utilization of advanced technology.J Diabetic Foot Complications2009136375
    [Google Scholar]
  93. DrosouA. FalabellaA. KirsnerR. Antiseptics on wounds: An area of controversy.Wounds2003
    [Google Scholar]
  94. BrownC.D. ZitelliJ.A. A review of topical agents for wounds and methods of wounding. Guidelines for wound management.J. Dermatol. Surg. Oncol.199319873273710.1111/j.1524‑4725.1993.tb00417.x 8349913
    [Google Scholar]
  95. GilmanA. GoodmanL. The pharmacological basis of therapeutics.New YorkMacmillan1980380390
    [Google Scholar]
  96. BergstromN. BennetM. CarlsonC. Clinical practice guidelines number 15: Treatment of pressure ulcers.Rockville, MDUS Department for Health & Human Services1994
    [Google Scholar]
  97. KlothL.C. BermanJ.E. LaatschL.J. KirchnerP.A. Bactericidal and cytotoxic effects of chloramine-T on wound pathogens and human fibroblasts in vitro.Adv. Skin Wound Care200720633134510.1097/01.ASW.0000276408.53632.0b 17538259
    [Google Scholar]
  98. OgutE. YildirimF.B. SarikciogluL. AydinM.A. Demi̇rN. Neuroprotective effects of ozone therapy after sciatic nerve cut injury.Kurume Med. J.201865413714410.2739/kurumemedj.MS654002 31391380
    [Google Scholar]
  99. Astasio-PicadoÁ. BabianoA.Á. López-SánchezM. LozanoR.R. Cobos-MorenoP. Gómez-MartínB. Use of ozone therapy in diabetic foot ulcers.J. Pers. Med.20231310143910.3390/jpm13101439 37888050
    [Google Scholar]
  100. BayerM.E. ThurowH. BayerM.H. Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29.Virology19799419511810.1016/0042‑6822(79)90441‑0 375578
    [Google Scholar]
  101. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H 22109657
    [Google Scholar]
  102. ShiG. ChenW. ZhangY. DaiX. ZhangX. WuZ. An antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing.Langmuir20193551837184510.1021/acs.langmuir.8b01834 30086636
    [Google Scholar]
  103. ZhengQ. ChenC. LiuY. Metal nanoparticles: Advanced and promising technology in diabetic wound therapy.Int. J. Nanomedicine20241996599210.2147/IJN.S434693 38293611
    [Google Scholar]
  104. FathilM.A.M. KatasH. Antibacterial, anti-biofilm and pro-migratory effects of double layered hydrogels packaged with lactoferrin-dsirna-silver nanoparticles for chronic wound therapy.Pharmaceutics202315399110.3390/pharmaceutics15030991 36986852
    [Google Scholar]
  105. GuY. HuangY. QiuZ. Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing.Sci. China Life Sci.2020631687910.1007/s11427‑019‑9590‑6 31463739
    [Google Scholar]
  106. ChigurupatiS. MughalM.R. OkunE. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing.Biomaterials20133492194220110.1016/j.biomaterials.2012.11.061 23266256
    [Google Scholar]
  107. WangY.Y. AddisuK.D. GebrieH.T. Multifunctional thermosensitive hydrogel based on alginate and P(NIPAM-co-HEMIN) composites for accelerated diabetic wound healing.Int. J. Biol. Macromol.202324112454010.1016/j.ijbiomac.2023.124540 37085062
    [Google Scholar]
  108. YangJ. ChuZ. JiangY. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc-based composites for accelerating diabetes wound healing.Adv. Healthc. Mater.20231224230072510.1002/adhm.202300725 37086396
    [Google Scholar]
  109. PangQ. JiangZ. WuK. HouR. ZhuY. Nanomaterials-based wound dressing for advanced management of infected wound.Antibiotics202312235110.3390/antibiotics12020351 36830262
    [Google Scholar]
  110. YangL. RongG.C. WuQ.N. Diabetic foot ulcer: Challenges and future.World J. Diabetes202213121014103410.4239/wjd.v13.i12.1014 36578870
    [Google Scholar]
  111. CreagerM.A. WhiteC.J. HiattW.R. Atherosclerotic peripheral vascular disease symposium II.Circulation2008118252811282510.1161/CIRCULATIONAHA.108.191170 19106402
    [Google Scholar]
  112. AhmedM.E. WidatallaA.B.H. MahadiS.E.D.I. ShawerM.A. ElsayemH.A. Implementation of diabetic foot ulcer classification system for research purposes to predict lower extremity amputation.Int. J. Diabetes Dev. Ctries.20092911510.4103/0973‑3930.50707 20062556
    [Google Scholar]
  113. TurzańskaK. AdesanyaO. RajagopalA. PryceM.T. Fitzgerald HughesD. Improving the management and treatment of diabetic foot infection: Challenges and research opportunities.Int. J. Mol. Sci.2023244391310.3390/ijms24043913 36835330
    [Google Scholar]
  114. AalaaM. MehrdadN. BigdeliS. DehnadA. SohrabiZ. ArabshahiK.S. Challenges and expectations of diabetic foot care from the patients’ point of views.J. Diabetes Metab. Disord.20212021111111810.1007/s40200‑021‑00825‑z 34900764
    [Google Scholar]
  115. NirenjenS. NarayananJ. TamilanbanT. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes.Front. Immunol.20231414121632110.3389/fimmu.2023.1216321 37575261
    [Google Scholar]
  116. ZhengS.Y. WanX.X. KambeyP.A. Therapeutic role of growth factors in treating diabetic wound.World J. Diabetes202314436439510.4239/wjd.v14.i4.364 37122434
    [Google Scholar]
  117. SpampinatoS.F. CarusoG.I. De PasqualeR. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: Looking among old drugs.Pharmaceuticals20201346010.3390/ph13040060 32244718
    [Google Scholar]
  118. ArmstrongD.G. LipskyB.A. Diabetic foot infections: Stepwise medical and surgical management.Int. Wound J.20041212313210.1111/j.1742‑4801.2004.00035.x 16722884
    [Google Scholar]
  119. MoffattC. MurrayS. KeeleyV. AubeeluckA. Non‐adherence to treatment of chronic wounds: Patient versus professional perspectives.Int. Wound J.20171461305131210.1111/iwj.12804 28857457
    [Google Scholar]
  120. Martínez DelgadoM.M. Clinical case: Complicated diabetic foot ulcer.Rev. Esp. Sanid. Penit.2018203121124 30908567
    [Google Scholar]
  121. HumanS. MogotlaneS. Professional practice: A SA nursing perspective.Diabetic neuropathy.Pearson2017
    [Google Scholar]
  122. KongL.Y. Ramirez-GarciaLuna JL, Fraser RDJ, Wang SC. A 57-year-old man with type 1 diabetes mellitus and a chronic foot ulcer successfully managed with a remote patient-facing wound care smartphone application.Am. J. Case Rep.202122e93387910.12659/AJCR.933879 34910717
    [Google Scholar]
  123. BabamiriB. NikkhahF. FarajiN. GoliR. MoghaddamN.V. RahimiK. Diabetic foot ulcer: Successful healing with combination therapy, including surgical debridement, maggot therapy, and negative pressure wound therapy.Int. J. Surg. Case Rep.202311010869510.1016/j.ijscr.2023.108695 37603913
    [Google Scholar]
  124. HaycocksS. A new approach to debridement of wounds in people with diabetes: A case study series.Diabet Foot J.2017120125
    [Google Scholar]
  125. FangW.C. LanC.C.E. The epidermal keratinocyte as a therapeutic target for management of diabetic wounds.Int. J. Mol. Sci.2023245429010.3390/ijms24054290 36901720
    [Google Scholar]
  126. BraunL.R. LamelS.A. RichmondN.A. KirsnerR.S. Topical timolol for recalcitrant wounds.JAMA Dermatol.2013149121400140210.1001/jamadermatol.2013.7135 24172892
    [Google Scholar]
  127. LegrandD. ElassE. CarpentierM. MazurierJ. Lactoferrin.Cell. Mol. Life Sci.200562222549255910.1007/s00018‑005‑5370‑2 16261255
    [Google Scholar]
  128. SosneG. SzliterE.A. BarrettR. KernackiK.A. KleinmanH. HazlettL.D. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury.Exp. Eye Res.200274229329910.1006/exer.2001.1125 11950239
    [Google Scholar]
  129. QuattriniC. JeziorskaM. MalikR.A. Small fiber neuropathy in diabetes: clinical consequence and assessment.Int. J. Low. Extrem. Wounds200431162110.1177/1534734603262483 15866784
    [Google Scholar]
  130. CorralC.J. SiddiquiA. WuL. FarrellC.L. LyonsD. MustoeT.A. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing.Arch. Surg.1999134220020510.1001/archsurg.134.2.200 10025464
    [Google Scholar]
  131. FrankS. HübnerG. BreierG. LongakerM.T. GreenhalghD.G. WernerS. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing.J. Biol. Chem.199527021126071261310.1074/jbc.270.21.12607 7759509
    [Google Scholar]
  132. CreanJ.K. FurlongF. MitchellD. Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B‐mediated phosphorylation and cytoplasmic translocation of p27 Kip‐1.FASEB J.200620101712171410.1096/fj.05‑5010fje 16790529
    [Google Scholar]
  133. Cañedo-DorantesL. Cañedo-AyalaM. Skin acute wound healing: A comprehensive review.Int. J. Inflamm.201920191370631510.1155/2019/3706315 31275545
    [Google Scholar]
  134. MaceK.A. HansenS.L. MyersC. YoungD.M. BoudreauN. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair.J. Cell Sci.2005118122567257710.1242/jcs.02399 15914537
    [Google Scholar]
  135. DizajS.M. JafariS. KhosroushahiA.Y. A sight on the current nanoparticle-based gene delivery vectors.Nanoscale Res. Lett.20149125210.1186/1556‑276X‑9‑252 24936161
    [Google Scholar]
  136. WangL. GaoY. ZhaoX. HOXD3 was negatively regulated by YY1 recruiting HDAC1 to suppress progression of hepatocellular carcinoma cells via ITGA2 pathway.Cell Prolif.2020538e1283510.1111/cpr.12835 32557953
    [Google Scholar]
  137. ZhangD.K. YuJ.J. LiY.M. A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice.Mediators Inflamm.201220121910.1155/2012/751629 23125487
    [Google Scholar]
  138. Zhao-FlemingH. HandA. ZhangK. Effect of non-steroidal anti-inflammatory drugs on post-surgical complications against the backdrop of the opioid crisis.Burns Trauma201862510.1186/s41038‑018‑0128‑x 30221175
    [Google Scholar]
  139. WeigeltM.A. Lev-TovH.A. Tomic-CanicM. Advanced wound diagnostics: Toward transforming wound care into precision medicine.Adv. Wound Care 202211633035910.1089/wound.2020.1319 34128387
    [Google Scholar]
  140. DashB.C. KorutlaL. VallabhajosyulaP. HsiaH.C. Unlocking the potential of induced pluripotent stem cells for wound healing: The next frontier of regenerative medicine.Adv. Wound Care (New Rochelle)2022111162263810.1089/wound.2021.0049 34155919
    [Google Scholar]
  141. PavezL.E. BaatoutS. ChoukérA. The future of personalized medicine in space: From observations to countermeasures.Front. Bioeng. Biotechnol.2021973974710.3389/fbioe.2021.739747 34966726
    [Google Scholar]
  142. SanturroA. VulloA.M. BorroM. Personalized medicine applied to forensic sciences: New advances and perspectives for a tailored forensic approach.Curr. Pharm. Biotechnol.201718326327310.2174/1389201018666170207141525 28176637
    [Google Scholar]
  143. AlmadaniY.H. VorstenboschJ. DavisonP.G. MurphyA.M. Wound healing: A comprehensive review.Semin. Plast. Surg.202135314114410.1055/s‑0041‑1731791 34526860
    [Google Scholar]
  144. GolebiewskaE.M. PooleA.W. Platelet secretion: From haemostasis to wound healing and beyond.Blood Rev.201529315316210.1016/j.blre.2014.10.003 25468720
    [Google Scholar]
  145. RosenB.P. Biochemistry of arsenic detoxification.FEBS Lett.20025291869210.1016/S0014‑5793(02)03186‑1 12354618
    [Google Scholar]
  146. MartinP. Wound healing-aiming for perfect skin regeneration.Science19972765309758110.1126/science.276.5309.75 9082989
    [Google Scholar]
  147. GonzalezA.C. CostaT.F. AndradeZ.A. MedradoA.R. Wound healing - A literature review.An. Bras. Dermatol.2016915614620
    [Google Scholar]
  148. CotranR.S. AbbasA.K. FaustoN. RobbinsS.L. KumarV. Robbins & Cotran: Pathology - Pathological Basis of Disease.New YorkElsevier2005
    [Google Scholar]
  149. MouraJ. MadureiraP. LealE.C. FonsecaA.C. CarvalhoE. Immune aging in diabetes and its implications in wound healing.Clin. Immunol.2019200435410.1016/j.clim.2019.02.002 30735729
    [Google Scholar]
  150. BondarA. PopaA. PapanasN. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options (Review).Exp. Ther. Med.202122169010.3892/etm.2021.10122 33986855
    [Google Scholar]
  151. ShahP. InturiR. AnneD. JadhavD. ViswambharanV. KhadilkarR. Wagner’s classification as a tool for treating diabetic foot ulcers: Our observations at a suburban teaching hospital.Cureus20221412150110.7759/cureus.21501
    [Google Scholar]
  152. MeggittB. Surgical management of the diabetic foot.Br. J. Hosp. Med.197616227232
    [Google Scholar]
  153. WagnerF.W.Jr The dysvascular foot: A system for diagnosis and treatment.Foot Ankle1981226412210.1177/107110078100200202 7319435
    [Google Scholar]
  154. RenJ. YangM. XuF. ChenJ. MaS. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats.Life Sci.201923311672810.1016/j.lfs.2019.116728 31386877
    [Google Scholar]
  155. OgutE. ArmaganK. Evaluation of the potential impact of medical ozone therapy on covid-19: A review study.Ozone Sci. Eng.202245411910.1080/01919512.2022.2065242
    [Google Scholar]
  156. AnzaliB.C. GoliR. TorabzadehA. KianiA. RasouliM. BalanejiS.M. Healing refractory diabetic foot ulcers (DFUs) by ozone therapy and silver dressing: A case report.Int. J. Surg. Case Rep.202310510797010.1016/j.ijscr.2023.107970 36924601
    [Google Scholar]
  157. KhanS.A. KushmakovR. GandhiJ. Ozone therapy for diabetic foot.Med. Gas Res.20188311111510.4103/2045‑9912.241076 30319766
    [Google Scholar]
  158. ParizadN. HajimohammadiK. GoliR. MohammadpourY. FarajiN. MakhdomiK. Surgical debridement and maggot debridement therapy (MDT) bring the light of hope to patients with diabetic foot ulcers (DFUs): A case report.Int. J. Surg. Case Rep.20229910772310.1016/j.ijscr.2022.107723 36261953
    [Google Scholar]
  159. BoultonA.J.M. ArmstrongD.G. LöndahlM. New evidence-based therapies for complex diabetic foot wounds.Arlington, VAAmerican Diabetes Association202210.2337/db2022‑02
    [Google Scholar]
  160. OsesC. OlivaresB. EzquerM. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.PLoS One2017125e017801110.1371/journal.pone.0178011 28542352
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328326480240927065600
Loading
/content/journals/crcep/10.2174/0127724328326480240927065600
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetic wound; molecular mechanism; neuropathy; optogenetics; wound care; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test