Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

This review investigates the efficacy of deutetrabenazine in the management of chorea related to HD. Motor, psychological, and cognitive symptoms characterize HD, a neurodegenerative disease. One prominent movement disorder associated with HD is chorea, which results in uncontrollably jerky movements of the muscles. HD has no known cure; instead, symptom management with a variety of medication options is the main goal. Effective management is essential because chorea has a significant impact on patients' quality of life. Dutetrabenazine is the first deuterated medication to receive approval from the US Food and Drug Administration (FDA) for the therapeutic treatment of chorea in Huntington's disease (HD). Treating chorea associated with HD may benefit from the use of deutetrabenazine. The novel compound deutetrabenazine contains deuterium. It inhibits CYP2D6 metabolism, prolongs the half-lives of active metabolites, and may cause persistent systemic exposure while maintaining significant pharmacological action. Deutetrabenazine decreases the release of monoamines, including dopamine, in the synaptic cleft by inhibiting the VMAT2 vesicular monoamine transporter. For chorea, this mechanism has a therapeutic effect. For the treatment of choreiform movement and tardive dyskinesia in HD, the FDA approved deutetrabenazine in 2017. Here we highlight, Deutetrabenazine as a promising new treatment for Huntington's disease chorea, for patients with chorea, deutetrabenazine offers hope for an enhanced quality of life. To completely understand its effectiveness and potential advantages, additional research is necessary, including direct comparison studies, as a result of the mixed study results.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328312991241001051813
2024-10-15
2025-10-18
Loading full text...

Full text loading...

References

  1. MacDonaldM. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell199372697198310.1016/0092‑8674(93)90585‑E8458085
    [Google Scholar]
  2. JankovicJ. RoosR.A.C. Chorea associated with Huntington’s disease: To treat or not to treat?Mov. Disord.201429111414141810.1002/mds.2599625156927
    [Google Scholar]
  3. CoppenE.M. RoosR.A.C. Current pharmacological approaches to reduce Chorea in Huntington’s Disease.Drugs2017771294610.1007/s40265‑016‑0670‑427988871
    [Google Scholar]
  4. WalkerF.O. Huntington’s disease.Lancet2007369955721822810.1016/S0140‑6736(07)60111‑117240289
    [Google Scholar]
  5. HeoY.A. ScottL.J. Deutetrabenazine: A review in chorea associated with Huntington’s Disease.Drugs201777171857186410.1007/s40265‑017‑0831‑029080203
    [Google Scholar]
  6. McColganP. TabriziS.J. Huntington’s disease: A clinical review.Eur. J. Neurol.2018251243410.1111/ene.1341328817209
    [Google Scholar]
  7. Huntington Study GroupTetrabenazine as antichorea therapy in Huntington disease.Neurology200666336637210.1212/01.wnl.0000198586.85250.1316476934
    [Google Scholar]
  8. WalnO. JankovicJ. An update on tardive dyskinesia: From phenomenology to treatment.Tremor Other Hyperkinet. Mov. (N. Y.)20133tre-03-161-4138-110.5334/tohm.16523858394
    [Google Scholar]
  9. JankovicJ. Dopamine depleters in the treatment of hyperkinetic movement disorders.Expert Opin. Pharmacother.201617182461247010.1080/14656566.2016.125806327819145
    [Google Scholar]
  10. SungV.W. GandhiS.K. AblerV. DavisB. IrwinD.E. AndersonK.E. IyerR.G. Retrospective analysis of healthcare resource use, treatment patterns, and treatment-related events in patients with huntington’s disease–associated chorea initiated on tetrabenazine.J. Health Econ. Outcomes Res.201861152410.36469/977932685569
    [Google Scholar]
  11. ReilmannR. Pharmacological treatment of chorea in Huntington’s disease–good clinical practice versus evidence-based guideline.Mov. Disord.20132881030103310.1002/mds.2550023674480
    [Google Scholar]
  12. ReilmannR. Deutetrabenazine—not a revolution but welcome evolution for treating chorea in huntington disease.JAMA Neurol.201673121404140610.1001/jamaneurol.2016.391627749952
    [Google Scholar]
  13. FrankS. TestaC.M. StamlerD. KaysonE. DavisC. EdmondsonM.C. KinelS. LeavittB. OakesD. O’NeillC. VaughanC. GoldsteinJ. HerzogM. SnivelyV. WhaleyJ. WongC. SuterG. JankovicJ. Jimenez-ShahedJ. HunterC. ClaassenD.O. RomanO.C. SungV. SmithJ. JanickiS. ClouseR. Saint-HilaireM. HohlerA. TurpinD. JamesR.C. RodriguezR. RizerK. AndersonK.E. HellerH. CarlsonA. CriswellS. RacetteB.A. RevillaF.J. NuciforaF.Jr MargolisR.L. OngM. MendisT. MendisN. SingerC. QuesadaM. PaulsenJ.S. Brashers-KrugT. MillerA. KerrJ. DubinskyR.M. GrayC. FactorS.A. SperinE. MolhoE. EglowM. EvansS. KumarR. ReevesC. SamiiA. ChouinardS. BelandM. ScottB.L. HickeyP.T. EsmailS. FungW.L.A. GibbonsC. QiL. ColcherA. HackmyerC. McGarryA. KlosK. GudesblattM. FafardL. GraffittiL. SchneiderD.P. DhallR. WojcieszekJ.M. LaFaverK. DukerA. NeefusE. Wilson-PerezH. ShprecherD. WallP. BlindauerK.A. WheelerL. BoydJ.T. HoustonE. FarbmanE.S. AgarwalP. EberlyS.W. WattsA. TariotP.N. FeiginA. EvansS. BeckC. OrmeC. EdicolaJ. ChristopherE. Effect of deutetrabenazine on chorea among patients with huntington disease.JAMA20163161405010.1001/jama.2016.865527380342
    [Google Scholar]
  14. ChenJ.J. OndoW.G. DashtipourK. SwopeD.M. Tetrabenazine for the treatment of hyperkinetic movement disorders: A review of the literature.Clin. Ther.20123471487150410.1016/j.clinthera.2012.06.01022749259
    [Google Scholar]
  15. KenneyC. HunterC. JankovicJ. Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders.Mov. Disord.200722219319710.1002/mds.2122217133512
    [Google Scholar]
  16. GeschwindM.D. ParasN. Deutetrabenazine for treatment of chorea in huntington disease.JAMA20163161333510.1001/jama.2016.801127380339
    [Google Scholar]
  17. GalvanL. AndréV.M. WangE.A. CepedaC. LevineM.S. Functional differences between direct and indirect striatal output pathways in Huntington’s Disease.J. Huntingtons Dis.201211172510.3233/JHD‑2012‑12000925063187
    [Google Scholar]
  18. AlbinR.L. ReinerA. AndersonK.D. PenneyJ.B. YoungA.B. Striatal and nigral neuron subpopulations in rigid Huntington’s disease: Implications for the functional anatomy of chorea and rigidity-akinesia.Ann. Neurol.199027435736510.1002/ana.4102704031972318
    [Google Scholar]
  19. GhoshR. TabriziS.J. Clinical features of Huntington’s Disease.Adv. Exp. Med. Biol.2018104912810.1007/978‑3‑319‑71779‑1_129427096
    [Google Scholar]
  20. Van de ZandeN.A. MasseyT.H. McLauchlanD. Pryce RobertsA. ZuttR. WardleM. PayneG.C. ClenaghanC. TijssenM.A.J. RosserA.E. PeallK.J. Clinical characterization of dystonia in adult patients with Huntington’s disease.Eur. J. Neurol.20172491140114710.1111/ene.1334928661018
    [Google Scholar]
  21. SquitieriF. BerardelliA. NargiE. CastellottiB. MariottiC. CannellaM. Luisa LavitranoM. De GraziaU. GelleraC. RuggieriS. Atypical movement disorders in the early stages of Huntington’s disease: Clinical and genetic analysis.Clin. Genet.2000581505610.1034/j.1399‑0004.2000.580108.x10945661
    [Google Scholar]
  22. RacetteB.A. PerlmutterJ.S. Levodopa responsive parkinsonism in an adult with Huntington’s disease.J. Neurol. Neurosurg. Psychiatry199865457757910.1136/jnnp.65.4.5779771791
    [Google Scholar]
  23. ThompsonP.D. BhatiaK.P. BrownP. DavisM.B. PiresM. QuinnN.P. LuthertP. HonovarM. O’BrienM.D. MarsdenC.D. HardingA.E. Cortical myoclonus in huntington’s disease.Mov. Disord.19949663364110.1002/mds.8700906097845404
    [Google Scholar]
  24. CuiS.S. RenR.J. WangY. WangG. ChenS.D. Tics as an initial manifestation of juvenile Huntington’s disease: Case report and literature review.BMC Neurol.201717115210.1186/s12883‑017‑0923‑128789621
    [Google Scholar]
  25. ShermanC.W. IyerR. AblerV. AntonelliA. CarlozziN.E. Perceptions of the impact of chorea on health-related quality of life in Huntington disease (HD): A qualitative analysis of individuals across the HD spectrum, family members, and clinicians.Neuropsychol. Rehabil.20203061150116810.1080/09602011.2018.156467530849283
    [Google Scholar]
  26. ThorleyE.M. IyerR.G. WicksP. CurranC. GandhiS.K. AblerV. AndersonK.E. CarlozziN.E. Understanding how chorea affects health-related quality of life in huntington disease: An Online survey of patients and caregivers in the United States.Patient201811554755910.1007/s40271‑018‑0312‑x29750428
    [Google Scholar]
  27. SitekE.J. ThompsonJ.C. CraufurdD. SnowdenJ.S. Unawareness of deficits in Huntington’s disease.J. Huntingtons Dis.20143212513510.3233/JHD‑14010925062855
    [Google Scholar]
  28. IsaacsD. GibsonJ.S. StovallJ. ClaassenD.O. The impact of anosognosia on clinical and patient-reported assessments of psychiatric symptoms in Huntington’s disease.J. Huntingtons Dis.20209329130210.3233/JHD‑20041032925080
    [Google Scholar]
  29. SimpsonJ.A. LoveckyD. KoganJ. VetterL.A. YohrlingG.J. Survey of the Huntington’s disease patient and caregiver community reveals most impactful symptoms and treatment needs.J. Huntingtons Dis.20165439540310.3233/JHD‑16022827983566
    [Google Scholar]
  30. Huntington Study GroupUnified Huntington’s disease rating scale: Reliability and consistency.Mov. Disord.199611213614210.1002/mds.8701102048684382
    [Google Scholar]
  31. PenneyJ.B.Jr YoungA.B. ShoulsonI. Starosta-RubensteinS. SnodgrassS.R. Sanchez-RamosJ. Ramos-ArroyoM. GomezF. PenchaszadehG. AlvirJ. EstevesJ. DeQuirozI. MarsolN. MorenoH. ConneallyP.M. BonillaE. WexlerN.S. Huntington’s disease in venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals.Mov. Disord.199052939910.1002/mds.8700502022139171
    [Google Scholar]
  32. ReilmannR. BohlenS. KirstenF. RingelsteinE.B. LangeH.W. Assessment of involuntary choreatic movements in Huntington’s disease—Toward objective and quantitative measures.Mov. Disord.201126122267227310.1002/mds.2381621661053
    [Google Scholar]
  33. BooG.D. TibbenA. HermansJ. MaatA. RoosR.A.C. Subtle involuntary movements are not reliable indicators of incipient Huntington’s disease.Mov. Disord.1998131969910.1002/mds.8701301209452333
    [Google Scholar]
  34. MestreT.A. ForjazM.J. MahlknechtP. CardosoF. FerreiraJ.J. ReilmannR. SampaioC. GoetzC.G. CuboE. Martinez-MartinP. StebbinsG.T. Rating scales for motor symptoms and signs in Huntington’s disease: Critique and recommendations.Mov. Disord. Clin. Pract. (Hoboken)20185211111710.1002/mdc3.1257130363393
    [Google Scholar]
  35. JohnsonE. B. ReesE. M. LabuschagneI. DurrA. LeavittB. R. RoosR. A. ReilmannR. JohnsonH. HobbsN. Z. LangbehnD. R. StoutJ. C. TabriziS. J. ScahillR. I. The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease.Neuropsychologia201579Pt A13846
    [Google Scholar]
  36. TabriziS.J. ReilmannR. RoosR.A.C. DurrA. LeavittB. OwenG. JonesR. JohnsonH. CraufurdD. HicksS.L. KennardC. LandwehrmeyerB. StoutJ.C. BorowskyB. ScahillR.I. FrostC. LangbehnD.R. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: Analysis of 24 month observational data.Lancet Neurol.2012111425310.1016/S1474‑4422(11)70263‑022137354
    [Google Scholar]
  37. RosenblattA. RanenG. NanceM. PaulsenJ. A physician's guide to the management of Huntington disease.New YorkHuntington's Disease Society of America1999
    [Google Scholar]
  38. GoodmanA.O.G. RogersL. PilsworthS. McAllisterC.J. ShneersonJ.M. MortonA.J. BarkerR.A. Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease.Curr. Neurol. Neurosci. Rep.201111221121710.1007/s11910‑010‑0163‑x21103960
    [Google Scholar]
  39. FishD.R. SawyersD. AllenP.J. BlackieJ.D. LeesA.J. MarsdenC.D. The effect of sleep on the dyskinetic movements of Parkinson’s disease, Gilles De la Tourette syndrome, Huntington’s disease, and torsion dystonia.Arch. Neurol.199148221021410.1001/archneur.1991.005301401060231825167
    [Google Scholar]
  40. HurelbrinkC.B. LewisS.J.G. BarkerR.A. The use of the Actiwatch–Neurologica® system to objectively assess the involuntary movements and sleep–wake activity in patients with mild–moderate Huntington’s disease.J. Neurol.2005252664264710.1007/s00415‑005‑0709‑z15742112
    [Google Scholar]
  41. RanjanS. KohlerS. HarrisonM.B. QuiggM. Nocturnal post-arousal chorea and repetitive ballistic movement in Huntington’s disease.Mov. Disord. Clin. Pract. (Hoboken)20163220020210.1002/mdc3.1225830363612
    [Google Scholar]
  42. AndrzejewskiK.L. DowlingA.V. StamlerD. FelongT.J. HarrisD.A. WongC. CaiH. ReilmannR. LittleM.A. GwinJ.T. BiglanK.M. DorseyE.R. Wearable sensors in Huntington Disease: A pilot study.J. Huntingtons Dis.20165219920610.3233/JHD‑16019727341134
    [Google Scholar]
  43. GordonM.F. GrachevI.D. MazehI. DolanY. ReilmannR. LoupeP.S. FineS. Navon-PerryL. GrossN. PapapetropoulosS. SavolaJ.M. HaydenM.R. Quantification of motor function in huntington disease patients using wearable sensor devices.Digit. Biomark.20193310311510.1159/00050213632095771
    [Google Scholar]
  44. AdamsJ.L. DineshK. XiongM. TarolliC.G. SharmaS. ShethN. AranyosiA.J. ZhuW. GoldenthalS. BiglanK.M. DorseyE.R. SharmaG. Multiple wearable sensors in parkinson and huntington disease individuals: A pilot study in clinic and at home.Digit. Biomark.201711526310.1159/00047901832095745
    [Google Scholar]
  45. EvansS.J.W. DouglasI. RawlinsM.D. WexlerN.S. TabriziS.J. SmeethL. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records.J. Neurol. Neurosurg. Psychiatry201384101156116010.1136/jnnp‑2012‑30463623482661
    [Google Scholar]
  46. FisherE.R. HaydenM.R. Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk.Mov. Disord.201429110511410.1002/mds.2571724151181
    [Google Scholar]
  47. NanceM.A. Genetics of Huntington disease.Handb. Clin. Neurol.201714431410.1016/B978‑0‑12‑801893‑4.00001‑828947123
    [Google Scholar]
  48. KremerB. GoldbergP. AndrewS.E. TheilmannJ. TeleniusH. ZeislerJ. SquitieriF. LinB. BassettA. AlmqvistE. BirdT.D. HaydenM.R. A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats.N. Engl. J. Med.1994330201401140610.1056/NEJM1994051933020018159192
    [Google Scholar]
  49. NewsholmeP. LimaM.M.R. ProcopioJ. Pithon-CuriT.C. DoiS.Q. BazotteR.B. CuriR. Glutamine and glutamate as vital metabolites.Braz. J. Med. Biol. Res.200336215316310.1590/S0100‑879X200300020000212563517
    [Google Scholar]
  50. DiFigliaM. SappE. ChaseK.O. DaviesS.W. BatesG.P. VonsattelJ.P. AroninN. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.Science199727753341990199310.1126/science.277.5334.19909302293
    [Google Scholar]
  51. BecherM.W. KotzukJ.A. SharpA.H. DaviesS.W. BatesG.P. PriceD.L. RossC.A. Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length.Neurobiol. Dis.19984638739710.1006/nbdi.1998.01689666478
    [Google Scholar]
  52. LutzR.E. In Trinucleotide repeat disorders.Seminars in pediatric neurologyAmsterdamElsevier20072633
    [Google Scholar]
  53. TremblayR. LeeS. RudyB. GABAergic interneurons in the neocortex: From cellular properties to circuits.Neuron201691226029210.1016/j.neuron.2016.06.03327477017
    [Google Scholar]
  54. AlexanderG.E. CrutcherM.D. Functional architecture of basal ganglia circuits: Neural substrates of parallel processing.Trends Neurosci.199013726627110.1016/0166‑2236(90)90107‑L1695401
    [Google Scholar]
  55. NambuA. TokunoH. TakadaM. Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway.Neurosci. Res.200243211111710.1016/S0168‑0102(02)00027‑512067746
    [Google Scholar]
  56. StraubC. SaulnierJ.L. BègueA. FengD.D. HuangK.W. SabatiniB.L. Principles of synaptic organization of GABAergic interneurons in the striatum.Neuron2016921849210.1016/j.neuron.2016.09.00727710792
    [Google Scholar]
  57. PlotkinJ.L. GoldbergJ.A. Thinking outside the box (and arrow): Current themes in striatal dysfunction in movement disorders.Neuroscientist201925435937910.1177/107385841880788730379121
    [Google Scholar]
  58. RaymondL.A. AndréV.M. CepedaC. GladdingC.M. MilnerwoodA.J. LevineM.S. Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function.Neuroscience201119825227310.1016/j.neuroscience.2011.08.05221907762
    [Google Scholar]
  59. WyantK.J. RidderA.J. DayaluP. Huntington’s disease—update on treatments.Curr. Neurol. Neurosci. Rep.20171743310.1007/s11910‑017‑0739‑928324302
    [Google Scholar]
  60. SuchowerskyO. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American academy of neurology.Neurology2013801097010.1212/WNL.0b013e3182885eb323460621
    [Google Scholar]
  61. BashirH. JankovicJ. Deutetrabenazine for the treatment of Huntington’s chorea.Expert Rev. Neurother.201818862563110.1080/14737175.2018.150017829996061
    [Google Scholar]
  62. ArmstrongM.J. MiyasakiJ.M. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American Academy of NeurologyNeurology201279659760310.1212/WNL.0b013e318263c44322815556
    [Google Scholar]
  63. VijayakumarD. JankovicJ. Drug-induced dyskinesia, part 1: Treatment of levodopa-induced dyskinesia.Drugs201676775977710.1007/s40265‑016‑0566‑327091215
    [Google Scholar]
  64. Verhagen MetmanL. MorrisM.J. FarmerC. GillespieM. MosbyK. WuuJ. ChaseT.N. Huntington’s disease.Neurology200259569469910.1212/WNL.59.5.69412221159
    [Google Scholar]
  65. RosasH.D. KoroshetzW.J. JenkinsB.G. ChenY.I. HaydenD.L. BealM.F. CudkowiczM.E. Riluzole therapy in Huntington’s disease (HD).Mov. Disord.199914232633010.1002/1531‑8257(199903)14:2<326::AID‑MDS1019>3.0.CO;2‑Q10091628
    [Google Scholar]
  66. SeppiK. MuellerJ. BodnerT. BrandauerE. BenkeT. Weirich-SchwaigerH. PoeweW. WenningG.K. Riluzole in Huntington’s disease (HD): An open label study with one year follow up.J. Neurol.20012481086686910.1007/s00415017007111697523
    [Google Scholar]
  67. DugganL. FentonM. RathboneJ. DardennesR. El-DosokyA. IndranS. Olanzapine for schizophrenia.Cochrane Database Syst Rev.2005182CD00135910.1002/14651858.CD001359.pub2
    [Google Scholar]
  68. SquitieriF. CannellaM. PorcelliniA. BrusaL. SimonelliM. RuggieriS. Short-term effects of olanzapine in Huntington disease.Neuropsychiatry Neuropsychol. Behav. Neurol.2001141697211234911
    [Google Scholar]
  69. FultonB. GoaK.L. Olanzapine.Drugs199753228129810.2165/00003495‑199753020‑000079028746
    [Google Scholar]
  70. BallM.P. CoonsV.B. BuchananR.W. A program for treating olanzapine-related weight gain.Psychiatr. Serv.200152796796910.1176/appi.ps.52.7.96711433117
    [Google Scholar]
  71. JanssenP.A. NiemegeersC.J. AwoutersF. SchellekensK.H. MegensA.A. MeertT.F. Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties.J. Pharmacol. Exp. Ther.198824426856932450200
    [Google Scholar]
  72. DuffK. BeglingerL.J. O’RourkeM.E. NopoulosP. PaulsonH.L. PaulsenJ.S. Risperidone and the treatment of psychiatric, motor, and cognitive symptoms in Huntington’s disease.Ann. Clin. Psychiatry20082011310.1080/1040123070184480218297579
    [Google Scholar]
  73. ConleyR.R. MahmoudR. A randomized double-blind study of risperidone and olanzapine in the treatment of schizophrenia or schizoaffective disorder.Am. J. Psychiatry2001158576577410.1176/appi.ajp.158.5.76511329400
    [Google Scholar]
  74. TimminsG.S. Deuterated drugs: Where are we now?Expert Opin. Ther. Pat.201424101067107510.1517/13543776.2014.94318425069517
    [Google Scholar]
  75. CitromeL. Deutetrabenazine for tardive dyskinesia: A systematic review of the efficacy and safety profile for this newly approved novel medication-What is the number needed to treat, number needed to harm and likelihood to be helped or harmed?Int. J. Clin. Pract.20177111e1303010.1111/ijcp.1303029024264
    [Google Scholar]
  76. FrankS. Treatment of Huntington’s disease.Neurotherapeutics201411115316010.1007/s13311‑013‑0244‑z24366610
    [Google Scholar]
  77. KopfS. BourriquenF. LiW. NeumannH. JungeK. BellerM. Recent developments for the deuterium and tritium labeling of organic molecules.Chem. Rev.202212266634671810.1021/acs.chemrev.1c0079535179363
    [Google Scholar]
  78. PiraliT. SerafiniM. CargninS. GenazzaniA.A. Applications of deuterium in medicinal chemistry.J. Med. Chem.201962115276529710.1021/acs.jmedchem.8b0180830640460
    [Google Scholar]
  79. LookerA.R. WildeN. RyanM.P. RoeperS. YeZ. LewandowskiB.L. Utilizing o -quinone methide chemistry: Synthesis of d 9 -ivacaftor.J. Org. Chem.202085250150710.1021/acs.joc.9b0255231846324
    [Google Scholar]
  80. TreitlerD.S. SoumeillantM.C. SimmonsE.M. LinD. InankurB. RogersA.J. DummeldingerM. KolotuchinS. ChanC. LiJ. FreitagA. Lora GonzalezF. SmithM.J. SfouggatakisC. WangJ. BenkovicsT. DeerbergJ. SimpsonJ.H. ChenK. TymonkoS. Development of a commercial process for deucravacitinib, a deuterated API for TYK2 inhibition.Org. Process Res. Dev.20222641202122210.1021/acs.oprd.1c00468
    [Google Scholar]
  81. AtzrodtJ. DerdauV. FeyT. ZimmermannJ. The renaissance of H/D exchange.Angew. Chem. Int. Ed.200746417744776510.1002/anie.20070003917886815
    [Google Scholar]
  82. AtzrodtJ. DerdauV. KerrW.J. ReidM. C− H functionalisation for hydrogen isotope exchange.Angew. Chem. Int. Ed.201857123022304710.1002/anie.20170890329024330
    [Google Scholar]
  83. PrakashG. PaulN. OliverG.A. WerzD.B. MaitiD. C–H deuteration of organic compounds and potential drug candidates.Chem. Soc. Rev.20225183123316310.1039/D0CS01496F35320331
    [Google Scholar]
  84. RowbothamJ.S. RamirezM.A. LenzO. ReeveH.A. VincentK.A. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques.Nat. Commun.2020111145410.1038/s41467‑020‑15310‑z32193396
    [Google Scholar]
  85. LohY.Y. NagaoK. HooverA.J. HeskD. RiveraN.R. CollettiS.L. DaviesI.W. MacMillanD.W.C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds.Science201735863671182118710.1126/science.aap967429123019
    [Google Scholar]
  86. ZhouR. MaL. YangX. CaoJ. Recent advances in visible-light photocatalytic deuteration reactions.Org. Chem. Front.20218342644410.1039/D0QO01299H
    [Google Scholar]
  87. ShiQ. XuM. ChangR. RamanathanD. PeñinB. Funes-ArdoizI. YeJ. Visible-light mediated catalytic asymmetric radical deuteration at non-benzylic positions.Nat. Commun.2022131445310.1038/s41467‑022‑32238‑835915119
    [Google Scholar]
  88. NorcottP.L. Current electrochemical approaches to selective deuteration.Chem. Commun. (Camb.)202258182944295310.1039/D2CC00344A35166759
    [Google Scholar]
  89. LiN. LiY. WuX. ZhuC. XieJ. Radical deuteration.Chem. Soc. Rev.202251156291630610.1039/D1CS00907A35856093
    [Google Scholar]
  90. WangL. XiaY. DerdauV. StuderA. Remote site-selective radical C(sp3)−H monodeuteration of amides using D2O.Angew. Chem. Int. Ed.20216034186451865010.1002/anie.202104254
    [Google Scholar]
  91. SteverlynckJ. SitdikovR. RuepingM. The deuterated “Magic Methyl” group: A guide to site-selective trideuteromethyl incorporation and labeling by using CD3 reagents.Chemistry20212746117511177210.1002/chem.20210117934076925
    [Google Scholar]
  92. SunQ. SouléJ.F. Broadening of horizons in the synthesis of CD3 -labeled molecules.Chem. Soc. Rev.20215019108061083510.1039/D1CS00544H34605827
    [Google Scholar]
  93. NiemannN. Jimenez-ShahedJ. Deutetrabenazine in the treatment of tardive dyskinesia.Neurodegener. Dis. Manag.201992597110.2217/nmt‑2018‑004230702019
    [Google Scholar]
  94. RayP.C. PawarY.D. SingareD.T. DeshpandeT.N. SinghG.P. Novel process for preparation of tetrabenazine and deutetrabenazine.Org. Process Res. Dev.201822452052610.1021/acs.oprd.8b00011
    [Google Scholar]
  95. SchmidtC. First deuterated drug approved.Nat. Biotechnol.201735649349410.1038/nbt0617‑49328591114
    [Google Scholar]
  96. HaydenM.R. LeavittB.R. YasothanU. KirkpatrickP. Tetrabenazine.Nat. Rev. Drug Discov.200981171810.1038/nrd278419116624
    [Google Scholar]
  97. GantT.G. Using deuterium in drug discovery: Leaving the label in the drug.J. Med. Chem.20145793595361110.1021/jm400799824294889
    [Google Scholar]
  98. BelleauB. BurbaJ. PindellM. ReiffensteinJ. Effect of deuterium substitution in sympathomimetic amines on adrenergic responses.Science1961133344610210410.1126/science.133.3446.10217769335
    [Google Scholar]
  99. SchneiderF. ErissonL. BeygiH. BradburyM. Cohen-BarakO. GrachevI.D. GuzyS. LoupeP.S. LeviM. McDonaldM. SavolaJ.M. PapapetropoulosS. TracewellW.G. VelinovaM. SpiegelsteinO. Pharmacokinetics, metabolism and safety of deuterated L-DOPA (SD-1077)/carbidopa compared to L-DOPA/carbidopa following single oral dose administration in healthy subjects.Br. J. Clin. Pharmacol.201884102422243210.1111/bcp.1370229959802
    [Google Scholar]
  100. MullardA. Deuterated drugs draw heavier backing.Nat. Rev. Drug Discov.201615421922110.1038/nrd.2016.6327032821
    [Google Scholar]
  101. RussakE.M. BednarczykE.M. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals.Ann. Pharmacother.201953221121610.1177/106002801879711030136594
    [Google Scholar]
  102. TimminsG.S. Deuterated drugs; updates and obviousness analysis.Expert Opin. Ther. Pat.201727121353136110.1080/13543776.2017.137835028885861
    [Google Scholar]
  103. FDANovel Drug Approvals for 2021.2021Available From: https://www.fda.gov/drugs/novel-drug-approvals-fda/novel-drug-approvals-2021
  104. StahlS.M. Comparing pharmacologic mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: Does one have advantages over the other?CNS Spectr.201823423924710.1017/S109285291800121930160230
    [Google Scholar]
  105. FernandezH.H. FactorS.A. HauserR.A. Jimenez-ShahedJ. OndoW.G. JarskogL.F. MeltzerH.Y. WoodsS.W. BegaD. LeDouxM.S. ShprecherD.R. DavisC. DavisM.D. StamlerD. AndersonK.E. Randomized controlled trial of deutetrabenazine for tardive dyskinesia.Neurology201788212003201010.1212/WNL.000000000000396028446646
    [Google Scholar]
  106. CoxD.S. LeviM. Rabinovich-GuilattL. TruongD. StamlerD. 127 cardiovascular safety assessment of deutetrabenazine in healthy volunteers and implications for patients with huntington disease or tardive dyskinesia.CNS Spectr.20182318010.1017/S109285291800024X
    [Google Scholar]
  107. GrigoriadisD.E. SmithE. HoareS.R.J. MadanA. BozigianH. Pharmacologic characterization of valbenazine (NBI-98854) and its metabolites.J. Pharmacol. Exp. Ther.2017361345446110.1124/jpet.116.23916028404690
    [Google Scholar]
  108. SchneiderF. BradburyM. BaillieT.A. StamlerD. HellriegelE. CoxD.S. LoupeP.S. SavolaJ.M. Rabinovich-GuilattL. Pharmacokinetic and metabolic profile of deutetrabenazine (TEV-50717) compared with tetrabenazine in healthy volunteers.Clin. Transl. Sci.202013470771710.1111/cts.1275432155315
    [Google Scholar]
  109. DeWittS.H. MaryanoffB.E. Deuterated drug molecules: Focus on FDA-approved deutetrabenazine.Biochemistry201857547247310.1021/acs.biochem.7b0076529160059
    [Google Scholar]
  110. Teva PharmaceuticalsHighlights of prescribing information.2017
  111. StamlerD. BradburyM. De BoerL. OffmanE. A relative bioavailability study of three dose strengths and four dose levels of SD-809, a potential treatment for movement disorders (P1.054).Neurology201686P1.05410.1212/WNL.86.16_supplement.P1.054
    [Google Scholar]
  112. SchneiderF. StamlerD. BradburyM. LoupeP.S. HellriegelE. CoxD.S. SavolaJ.M. GordonM.F. Rabinovich-GuilattL. Pharmacokinetics of deutetrabenazine and tetrabenazine: Dose proportionality and food effect.Clin. Pharmacol. Drug Dev.202110664765910.1002/cpdd.88233038289
    [Google Scholar]
  113. Teva. Pharmaceuticals USA Inc.AUSTEDO (deutetrabenazine): US prescribing information.2017Available From: https://www.austedo.com/globalassets/austedo/prescribing-information.pdf
  114. RichardA. FrankS. Deutetrabenazine in the treatment of Huntington’s disease.Neurodegener. Dis. Manag.201991313710.2217/nmt‑2018‑004030624137
    [Google Scholar]
  115. FrankS. StamlerD. KaysonE. ClaassenD.O. ColcherA. DavisC. DukerA. EberlyS. ElmerL. Furr-StimmingE. GudesblattM. HunterC. JankovicJ. KostykS.K. KumarR. LoyC. MalloneeW. OakesD. ScottB.L. SungV. GoldsteinJ. VaughanC. TestaC.M. Safety of converting from tetrabenazine to deutetrabenazine for the treatment of Chorea.JAMA Neurol.201774897798210.1001/jamaneurol.2017.135228692723
    [Google Scholar]
  116. US National Institutes of HealthClinicalTrials.gov is a place to learn about clinical studies from around the world.2017Available From: https://clinicaltrials.gov/
  117. FrankS. TestaC. EdmondsonM.C. GoldsteinJ. KaysonE. LeavittB.R. OakesD. O’NeillC. VaughanC. WhaleyJ. GrossN. GordonM.F. SavolaJ.M. FrankS. TestaC. StamlerD. KaysonE. EdmondsonM.C. LeavittB.R. OakesD. O’NeillC. VaughanC. GoldsteinJ. BockusM. LeyvaS. SnivelyV. WhaleyJ. WongC. MalloneeW.M. SuterG. JankovicJ. Jimenez-ShahedJ. HunterC. ClaassenD.O. WestL. RomanO. SungV. SmithJ. ClouseR. Saint-HilaireM. TurpinD. JamesR. RodriguezR. RizerK. AndersonK. HellerH. AhmadA. CriswellS. RacetteB.A. NuciforaF.C.Jr ChurchillG. OngM.J. MendisT. MendisN. SingerC. PaulsenJ.S. KerrJ. DubinskyR. GrayC. FactorS.A. SperinE. MolhoE. EvansS. NickelsB. BergenC. JaynesJ. ReevesC. SegroV. SamiiA. ChristopherE. Del CastilloD. ChouinardS. Perry-TriceP. EsmailS. FungW.L.A. GibbonsC. ColcherA. HackmyerC. McGarryA. KlosK. GudesblattM. SchneiderD. DhallR. SimpsonE. WojcieszekJ. HurtA. LaFaverK. RobinsonA. RevillaF.J. DukerA.P. NeefusE. Wilson-PerezH. ShprecherD. HohnholtT. WallP. BoydJ. HoustonE. FarbmanE.S. PoynorS. AgarwalP. LeonJ. EberlyS. WattsA. TariotP. FeiginA. EvansS.R. BeckC.A. The safety of deutetrabenazine for chorea in huntington disease: An open-label extension study.CNS Drugs202236111207121610.1007/s40263‑022‑00956‑836242718
    [Google Scholar]
  118. CarrollJ.B. BatesG.P. SteffanJ. SaftC. TabriziS.J. Treating the whole body in Huntington’s disease.Lancet Neurol.201514111135114210.1016/S1474‑4422(15)00177‑526466780
    [Google Scholar]
  119. WalkerR.H. Chorea.Continuum (Minneap Minn)2013195 Movement Disorders124263
    [Google Scholar]
  120. AndersonK.E. StamlerD. DavisM.D. FactorS.A. HauserR.A. IsojärviJ. JarskogL.F. Jimenez-ShahedJ. KumarR. McEvoyJ.P. OchudloS. OndoW.G. FernandezH.H. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): A double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Psychiatry20174859560410.1016/S2215‑0366(17)30236‑528668671
    [Google Scholar]
  121. CurtisK. SungV. Real-world experience with deutetrabenazine for huntington disease chorea.J. Clin. Pharmacol.202464217818110.1002/jcph.233637565322
    [Google Scholar]
  122. StamlerD. BradburyM. BrownF. The pharmacokinetics and safety of deuterated-tetrabenazine (P07.210).Neurol. J.2013807_supplementP07.210
    [Google Scholar]
  123. RodriguesF.B. DuarteG.S. CostaJ. FerreiraJ.J. WildE.J. Tetrabenazine versus deutetrabenazine for huntington’s disease: Twins or distant cousins?Mov. Disord. Clin. Pract. (Hoboken)20174458258510.1002/mdc3.1248328920068
    [Google Scholar]
  124. ClaassenD.O. CarrollB. De BoerL.M. WuE. AyyagariR. GandhiS. StamlerD. Indirect tolerability comparison of deutetrabenazine and tetrabenazine for Huntington disease.J. Clin. Mov. Disord.201741310.1186/s40734‑017‑0051‑528265459
    [Google Scholar]
  125. BattagliaS. Di FazioC. MazzàM. TamiettoM. AvenantiA. Targeting human glucocorticoid receptors in fear learning: A multiscale integrated approach to study functional connectivity.Int. J. Mol. Sci.202425286410.3390/ijms2502086438255937
    [Google Scholar]
  126. TanakaM. BattagliaS. Giménez-LlortL. ChenC. HepsomaliP. AvenantiA. VécseiL. Innovation at the intersection: Emerging translational research in neurology and psychiatry.Cells2024131079010.3390/cells1310079038786014
    [Google Scholar]
  127. PagottoG.L.O. SantosL.M.O. OsmanN. LamasC.B. LaurindoL.F. PominiK.T. GuissoniL.M. LimaE.P. GoulartR.A. CatharinV.M.C.S. DireitoR. TanakaM. BarbalhoS.M. Ginkgo biloba: A leaf of hope in the fight against alzheimer’s Dementia: Clinical trial systematic review.Antioxidants202413665110.3390/antiox1306065138929090
    [Google Scholar]
  128. TörökN. TanakaM. VécseiL. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway.Int. J. Mol. Sci.20202124933810.3390/ijms2124933833302404
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328312991241001051813
Loading
/content/journals/crcep/10.2174/0127724328312991241001051813
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chorea; clinical trials; Deutetrabenazine; Huntington’s disease; tetrabenazine; VMAT2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test